Methane/Air Flame Control in Non-Premixed Bluff Body Burners Using Ring-Type Plasma Actuators
Abstract
:1. Introduction
2. Methodology
2.1. Governing Equations of Fluid Dynamics
2.2. Combustion Modeling
2.3. Phenomenological Model of the Plasma Actuator
3. Results and Discussion
3.1. Validation of Model
3.2. Influence of Ring Plasma Actuator
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
capacitance of the equivalent circuit | |
heat capacity (J·kg−1·K−1) | |
diameter (m) | |
W | thickness of the flame’s root (m) |
mass diffusion coefficient (m2·s) | |
thermal diffusion coefficient (kg·m−1·s−1) | |
total energy (kJ) | |
electric field vector (V·m−1) | |
wave function | |
plasma-induced body force component (N·m−3) | |
turbulent energy production (kg·m−1·s−3) | |
sensible enthalpy (kJ·kg−1) | |
estimation of the plasma region height (m) | |
radiation intensity | |
component of diffusion flux of species k (kg·m2·s−1) | |
turbulent kinetic energy (m2·s−2) | |
thermal conductivity coefficient (W·m−1·K−1) | |
L | width of the plasma actuator (m) |
estimation of the plasma region height (m) | |
molecular weight (kg·mol−1) | |
pressure (Pa) | |
Prandtl number | |
bluff body radius (m) | |
species reaction rate (kg·m−2·s−2) | |
strain rate tensor (s−1) | |
source of energy due to chemical reaction (J·m−3·s−1) | |
turbulent Schmidt number | |
time (s) | |
mean temperature (K) | |
fluctuating temperature (K) | |
mean velocity component (m·s−1) | |
fluctuating velocity component (m·s−1) | |
plasma ignition voltage (V) | |
coordinate system component (m) | |
species mass fraction | |
Greek symbols | |
density (kg·m−3) | |
charge density (C·m−3) | |
dynamic viscosity (kg·m−1·s−1) | |
turbulent dissipation rate (m2·s−3) | |
vacuum permittivity ( F·m−1) | |
relative dielectric permittivity | |
electric potential (V) | |
Stefan–Boltzmann constant ( W·m−2·K−4) | |
scattering coefficient | |
Debye length (m) | |
shape parameter of the half-Gaussian profile | |
shape parameter of the half-Gaussian profile | |
stoichiometric coefficients | |
Subscripts/superscripts | |
b | bluff body |
eq | equivalent |
effective | |
turbulent | |
normalized value | |
max | maximum value |
References
- Im, S.K.; Bak, M.S.; Mungal, M.G.; Cappelli, M.A. Plasma Actuator Control of a Lifted Ethane Turbulent Jet Diffusion Flame. IEEE Trans. Plasma Sci. 2013, 41, 3293–3298. [Google Scholar] [CrossRef]
- Chen, J.L.; Liao, Y.H. Effects of an Annular Plasma Actuator on a Co-Flow Jet Downstream of a Bluff-Body. Appl. Therm. Eng. 2021, 192, 116975. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Abdollahzadeh, M.; Pascoa, J. Dielectric Barrier Discharge Plasma Actuators for Active Flow Control, Ice Formation Detection and Ice Accumulation Prevention. Am. Soc. Mech. Eng. Fluids Eng. Div. FEDSM 2020, 2, 11. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Páscoa, J.C.; Oliveira, P.J. Two-Dimensional Numerical Modeling of Interaction of Micro-Shock Wave Generated by Nanosecond Plasma Actuators and Transonic Flow. J. Comput. Appl. Math. 2014, 270, 401–416. [Google Scholar] [CrossRef]
- Corke, T.C.; Enloe, C.L.; Wilkinson, S.P. Dielectric Barrier Discharge Plasma Actuators for Flow Control. Annu. Rev. Fluid Mech. 2010, 45, 505–529. [Google Scholar] [CrossRef]
- Chen, Q.; Che, X.; Tong, Y.; Chen, C.; Zhu, Y.; Nie, W. Influence of Surface Dielectric Barrier Discharge on Diffusion Flame Combustion Characteristics. J. Beijing Univ. Aeronaut. Astronaut. 2021, 47, 1015–1024. [Google Scholar] [CrossRef]
- Wang, C.; Roy, S. Combustion Stabilization Using Serpentine Plasma Actuators. Appl. Phys. Lett. 2011, 99, 041502. [Google Scholar] [CrossRef]
- Wang, C.; Roy, S. Numerical Simulation of a Gas Turbine Combustor Using Nanosecond Pulsed Actuators. In Proceedings of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, TA, USA, 7–10 January 2013; pp. 1–17. [Google Scholar]
- Li, G.; Jiang, X.; Jiang, L.; Lei, Z.; Zhu, J.; Mu, Y.; Xu, G. Design and Experimental Evaluation of a Plasma Swirler with Helical Shaped Actuators. Sens. Actuators A Phys. 2020, 315, 112250. [Google Scholar] [CrossRef]
- Li, G.; Jiang, X.; Du, W.; Yang, J.; Liu, C.; Mu, Y.; Xu, G. Vortex Breakdown Control by the Plasma Swirl Injector. Appl. Sci. 2021, 11, 5537. [Google Scholar] [CrossRef]
- Li, G.; Jiang, X. Effects of Electrical Parameters on the Performance of a Plasma Swirler. Phys. Scr. 2019, 94, 095601. [Google Scholar] [CrossRef]
- Jayaraman, B.; Shyy, W. Modeling of Dielectric Barrier Discharge-Induced Fluid Dynamics and Heat Transfer. Prog. Aerosp. Sci. 2008, 44, 139–191. [Google Scholar] [CrossRef]
- Shang, J.S.; Huang, P.G. Surface Plasma Actuators Modeling for Flow Control. Prog. Aerosp. Sci. 2014, 67, 29–50. [Google Scholar] [CrossRef]
- Shyy, W.; Jayaraman, B.; Andersson, A. Modeling of Glow Discharge-Induced Fluid Dynamics. J. Appl. Phys. 2002, 92, 6434. [Google Scholar] [CrossRef]
- Orlov, D.; Corke, T.C. Numerical Simulation of Aerodynamic Plasma Actuator Effects. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 January 2005; pp. 1–12. [Google Scholar] [CrossRef]
- Khasare, S.; Bagherighajari, F.; Dolati, F.; Mahmoudimehr, J.; Pascoa, J.C.; Abdollahzadeh, M. Control of the Flame and Flow Characteristics of a Non-Premixed Bluff Body Burner Using Dielectric Barrier Discharge Plasma Actuators. Appl. Therm. Eng. 2023, 235, 121432. [Google Scholar] [CrossRef]
- Khasare, S.; Bagherighajari, F.; Dolati, F.; Mahmoudimehr, J.; Páscoa, J.; Abdollahzadehsangroudi, M. The Effect of the Dielectric Barrier Discharge Plasma Actuator in the Control of Non-Reactive Flow in a Non-Premixed Bluff Body Burner. Phys. Fluids 2023, 35, 075135. [Google Scholar] [CrossRef]
- Mayrhofer, M.; Koller, M.; Seemann, P.; Prieler, R.; Hochenauer, C. Evaluation of Flamelet-Based Combustion Models for the Use in a Flameless Burner under Different Operating Conditions. Appl. Therm. Eng. 2021, 183, 116190. [Google Scholar] [CrossRef]
- Lysenko, D.A.; Ertesvåg, I.S.; Rian, K.E. Numerical Simulation of Non-Premixed Turbulent Combustion Using the Eddy Dissipation Concept and Comparing with the Steady Laminar Flamelet Model. Flow Turbul. Combust. 2014, 93, 577–605. [Google Scholar] [CrossRef]
- Dally, B.B.; Fletcher, D.F.; Masri, A.R. Flow and Mixing Fields of Turbulent Bluff-Body Jets and Flames. Combust. Theory Model. 1998, 2, 193–219. [Google Scholar] [CrossRef]
- Hossain, M.; Malalasekera, W. Numerical Study of Bluff-Body Non-Premixed Flame Structures Using Laminar Flamelet Model. Proc. Inst. Mech. Eng. Part A J. Power Energy 2005, 219, 361–370. [Google Scholar] [CrossRef]
- Büyükakın, M.K.; Öztuna, S. Numerical Investigation on Hydrogen-Enriched Methane Combustion in a Domestic Back-Pressure Boiler and Non-Premixed Burner System from Flame Structure and Pollutants Aspect. Int. J. Hydrogen Energy 2020, 45, 35246–35256. [Google Scholar] [CrossRef]
- Suzen, Y.B.; Huang, P.G. Simulations of Flow Separation Control Using Plasma Actuators. In Proceedings of the 44th AIAA Aerospace Sciences Meeting, Reno, Nevada, 9–12 January 2006; p. 877. [Google Scholar]
- Abdollahzadeh, M.; Pascoa, J.C.; Oliveira, P.J. Modified Split-Potential Model for Modeling the Effect of DBD Plasma Actuators in High Altitude Flow Control. Curr. Appl. Phys. 2014, 14, 1160–1170. [Google Scholar] [CrossRef]
- Abdollahzadeh, M.; Rodrigues, F.; Pascoa, J.C.; Oliveira, P.J. Numerical design and analysis of a multi-DBD actuator configuration for the experimental testing of ACHEON nozzle model. Curr. Appl. Phys. 2015, 41, 259–273. [Google Scholar] [CrossRef]
- Yoon, J.; Han, J. Semiempirical Thrust Model of Dielectric Barrier Plasma Actuator for Flow Control. J. Aerosp. Eng. 2013, 28, 1–8. [Google Scholar] [CrossRef]
- Kriegseis, J.; Schwarz, C.; Tropea, C.; Grundmann, S. Velocity-Information-Based Force-Term Estimation of Dielectric-Barrier Discharge Plasma Actuators. J. Phys. D Appl. Phys. 2013, 46, 055202. [Google Scholar] [CrossRef]
- Amanifard, N.; Abdollahzadeh, M.; Moayedi, H.; Pascoa, J.C. An Explicit CFD Model for the DBD Plasma Actuators Using Wall-Jet Similarity Approach. J. Electrost. 2020, 107, 103497. [Google Scholar] [CrossRef]
- Coles, D. Topics in Shear Flow; California Institute of Technology: Pasadena, CA, USA, 2017. [Google Scholar]
- Schlichting, H.; Gersten, K. Boundary-Layer Theory; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–799. [Google Scholar] [CrossRef]
- Glauert, B.M.B. The Wall Jet. J. Fluid Mech. 1956, 1, 625–643. [Google Scholar] [CrossRef]
- Thomas, F.O.; Corke, T.C.; Iqbal, M.; Kozlov, A.; Schatzman, D. Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control. AIAA J. 2009, 47, 2169–2178. [Google Scholar] [CrossRef]
- Durscher, R.; Roy, S. Evaluation of Thrust Measurement Techniques for Dielectric Barrier Discharge Actuators. Exp. Fluids 2012, 53, 1165–1176. [Google Scholar] [CrossRef]
- Baleriola, S.; Leroy, A.; Loyer, S.; Devinant, P.; Aubrun, S. Scaling Investigation of Plasma-Induced Flows over Curved and Flat Surfaces: Comparison to the Wall Jet. Int. J. Heat Fluid Flow 2019, 76, 259–273. [Google Scholar] [CrossRef]
- Maden, I.; Maduta, R.; Kriegseis, J.; Jakirlić, S.; Schwarz, C.; Grundmann, S.; Tropea, C. Experimental and Computational Study of the Flow Induced by a Plasma Actuator. Int. J. Heat Fluid Flow 2013, 41, 80–89. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, X.; Chen, S.; Li, Z.; Klingmann, J. Effects of the Position of a Bluff-Body on the Diffusion Flames: A Combined Experimental and Numerical Study. Appl. Therm. Eng. 2018, 131, 507–521. [Google Scholar] [CrossRef]
- Caetano, N.R.; Figueira da Silva, L.F. A Comparative Experimental Study of Turbulent Non Premixed Flames Stabilized by a Bluff-Body Burner. Exp. Therm. Fluid Sci. 2015, 63, 20–33. [Google Scholar] [CrossRef]
- Manrique De la Cruz, J.; Celis, C.; Figueira da Silva, L.F. Non-Premixed Turbulent Combustion Modelling of a Bluff-Body Flame Using a Flamelet Progress Variable Approach. In Proceedings of the 26th International Congress of Mechanical Engineering, Florianopolis, Brazil, 22–26 November 2021. [Google Scholar]
Parameter | Value | Dimension | |
---|---|---|---|
Thomas et al. [32] | Durscher and Roy [33] | ||
Dielectric layer thickness | 6.35 | 3.0 | mm |
Electrode thickness | 0.04 | 0.07 | mm |
Relative permittivity of the dielectric | 2 | 3 | - |
Width of the exposed electrode | 12.7 | 5.0 | mm |
Width of the embedded electrode | 25.4 | 20.0 | mm |
Asymmetric gap between electrodes | 12 | 0 | mm |
Operating voltage | 40 | 20 | KVpp |
Operating Frequency | 2000 | 7000, 14,000 | Hz |
Voltage shape | Sawtooth | Sinusoidal | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagherighajari, F.; Abdollahzadehsangroudi, M.; Páscoa, J.C. Methane/Air Flame Control in Non-Premixed Bluff Body Burners Using Ring-Type Plasma Actuators. Actuators 2025, 14, 47. https://doi.org/10.3390/act14020047
Bagherighajari F, Abdollahzadehsangroudi M, Páscoa JC. Methane/Air Flame Control in Non-Premixed Bluff Body Burners Using Ring-Type Plasma Actuators. Actuators. 2025; 14(2):47. https://doi.org/10.3390/act14020047
Chicago/Turabian StyleBagherighajari, Fatemeh, Mohammadmahdi Abdollahzadehsangroudi, and José C. Páscoa. 2025. "Methane/Air Flame Control in Non-Premixed Bluff Body Burners Using Ring-Type Plasma Actuators" Actuators 14, no. 2: 47. https://doi.org/10.3390/act14020047
APA StyleBagherighajari, F., Abdollahzadehsangroudi, M., & Páscoa, J. C. (2025). Methane/Air Flame Control in Non-Premixed Bluff Body Burners Using Ring-Type Plasma Actuators. Actuators, 14(2), 47. https://doi.org/10.3390/act14020047