Autonomous Tracked Vehicle Trajectory Tracking Control Based on Disturbance Observation and Sliding Mode Control
Abstract
:1. Introduction
- The track slip is treated as a lumped external disturbance, and a track slip factor observer is designed, which features only one adjustable parameter, thereby avoiding complex parameter tuning.
- Unlike most studies on tracked vehicles that only consider kinematic models, this research comprehensively incorporates the dynamic model of the tracks. A hierarchical controller is designed to achieve precise trajectory tracking control.
2. TMRs Modeling
2.1. TMRs Kinematic Model
2.2. TMRs Dynamic Model
3. Main Results
3.1. Observer Design
3.2. Path Following Controller
3.3. Wheel Speed Controller
4. Validation of Effectiveness
4.1. Simulation
4.2. Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.; Rui, X.; Gu, J.; Huang, K.; Zhou, L.; Jiang, M. Fast parametric modeling of visualized simulation and design for tracked vehicle system. Adv. Eng. Softw. 2025, 201, 103852. [Google Scholar] [CrossRef]
- Shentu, S.; Xie, F.; Liu, X.J.; Gong, Z. Motion Control and Trajectory Planning for Obstacle Avoidance of the Mobile Parallel Robot Driven by Three Tracked Vehicles. Robotica 2020, 39, 1037–1050. [Google Scholar] [CrossRef]
- Subari, M.A.; Hudha, K.; Kadir, Z.A.; Dardin, S.M.F.B.S.M.; Amer, N.H. Development of path tracking control of a tracked vehicle for an unmanned ground vehicle. Int. J. Adv. Mechatron. Syst. 2021, 8, 136–143. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Zou, W.; Zhang, H.; Zhou, B.; Xu, D. Dynamic modeling and learning based path tracking control for ROV-based deep-sea mining vehicle. Expert Syst. Appl. 2025, 262, 125612. [Google Scholar] [CrossRef]
- Ahmad, A.J.; Mohammad, S. Trajectory tracking control of tracked vehicles considering nonlinearities due to slipping while skid-steering. Syst. Sci. Control Eng. 2022, 10, 887–898. [Google Scholar]
- Wong, J.Y. Dynamics of tracked vehicles. Veh. Syst. Dyn. 1997, 28, 197–219. [Google Scholar] [CrossRef]
- Dimauro, L.; Venturini, S.; Tota, A.; Galvagno, E.; Velardocchia, M. High-speed tracked vehicle model order reduction for static and dynamic simulations. Def. Technol. 2024, 38, 89–110. [Google Scholar] [CrossRef]
- Ilango, M.; Chandramouli, P. An integrated three-dimensional powertrain-vehicle dynamics model for tracked vehicle analysis. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2023, 237, 3353–3366. [Google Scholar]
- Zhiqiang, G.; Sihai, Z.; Junlin, L. Modelling and analysis of longitudinal-vertical coupling dynamics for the tracked vehicle on uneven roads. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2023, 237, 2885–2898. [Google Scholar]
- Hou, X.; Ma, Y.; Xiang, C. Design and comparative study of steering controller for tracked vehicle based on disturbance observation. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2024, 238, 4216–4229. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, S.; Lv, H.; Fu, Y. A Novel Estimating Algorithm of Critical Driving Parameters for Dual-Motor Electric Drive Tracked Vehicles Based on a Nonlinear Observer and an Adaptive Kalman Filter. Energies 2024, 17, 4625. [Google Scholar] [CrossRef]
- Zhao, X.; Lu, E.; Tang, Z.; Luo, C.; Xu, L.; Wang, H. Trajectory prediction method for agricultural tracked robots based on slip parameter estimation. Comput. Electron. Agric. 2024, 222, 109057. [Google Scholar] [CrossRef]
- Letizia, C.M. Data Driven Control and slip estimation for Agricultural Tracked Vehicles. Franklin Open 2023, 5, 100048. [Google Scholar]
- Hu, K.; Cheng, K. Trajectory Planning for an Articulated Tracked Vehicle and Tracking the Trajectory via an Adaptive Model Predictive Control. Electronics 2023, 12, 1988. [Google Scholar] [CrossRef]
- Sabiha, A.D.; Kamel, M.A.; Said, E.; Hussein, W.M. Dynamic modeling and optimized trajectory tracking control of an autonomous tracked vehicle via backstepping and sliding mode control. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2022, 236, 620–633. [Google Scholar] [CrossRef]
- Cao, Y.; Pu, J. A Novel Zeroing Neural Network Control Scheme for Tracked Mobile Robot Based on an Extended State Observer. Appl. Sci. 2023, 14, 303. [Google Scholar] [CrossRef]
- Xu, Q. Digital integral terminal sliding mode predictive control of piezoelectric-driven motion system. IEEE Trans. Ind. Electron. 2015, 63, 3976–3984. [Google Scholar] [CrossRef]
- Jin, M.; Lee, J.; Chang, P.H.; Choi, C. Practical nonsingular terminal sliding-mode control of robot manipulators for high-accuracy tracking control. IEEE Trans. Ind. Electron. 2009, 56, 3593–3601. [Google Scholar]
- Chalanga, A.; Kamal, S.; Fridman, L.M.; Bandyopadhyay, B.; Moreno, J.A. Implementation of Super-Twisting Control: Super-Twisting and Higher Order Sliding-Mode Observer-Based Approaches. IEEE Trans. Ind. Electron. 2016, 63, 3677–3685. [Google Scholar] [CrossRef]
- Huiming, W.; Yang, Z.; Xuechuang, W.; Yue, F. Cascaded continuous sliding mode control for tracked mobile robot via nonlinear disturbance observer. Comput. Electr. Eng. 2022, 97, 107579. [Google Scholar]
- Zeng, R.; Kang, Y.; Yang, J.; Wang, Z.; Li, G.; Cao, D. Learning-based terrain identification with proprioceptive sensors for mobile robots. IEEE Trans. Ind. Electron. 2020, 68, 8433–8443. [Google Scholar] [CrossRef]
- Qin, Z.; Chen, L.; Fan, J.; Xu, B.; Hu, M.; Chen, X. An improved real-time slip model identification method for autonomous tracked vehicles using forward trajectory prediction compensation. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Subari, M.A.; Hudha, K.; Kadir, Z.A.; Dardin, S.M.F.S.M.; Amer, N.H. Path following control of tracked vehicle using modified sup controller optimized with particle swarm optimization (PSO). Int. J. Dyn. Control. 2022, 10, 1461–1470. [Google Scholar] [CrossRef]
- Martínez, J.L.; Morales, J.; Mandow, A.; Pedraza, S.; García-Cerezo, A. Inertia-based ICR kinematic model for tracked skid-steer robots. In Proceedings of the 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, China, 11–13 October 2017; IEEE: New York, NY, USA, 2017; pp. 166–171. [Google Scholar]
- Sabiha, A.D.; Kamel, M.A.; Said, E.; Hussein, W.M. ROS-based trajectory tracking control for autonomous tracked vehicle using optimized backstepping and sliding mode control. Robot. Auton. Syst. 2022, 152, 104058. [Google Scholar] [CrossRef]
- Na, J.; Li, Y.; Huang, Y.; Gao, G.; Chen, Q. Output Feedback Control of Uncertain Hydraulic Servo Systems. IEEE Trans Ind. Electron. 2020, 67, 490–500. [Google Scholar] [CrossRef]
- Moreno, J.A.; Osorio, M. A Lyapunov approach to second-order sliding mode controllers and observers. In Proceedings of the 2008 47th IEEE Conference on Decision and Control, Cancun, Mexico, 9–11 December 2008; IEEE: New York, NY, USA, 2008; pp. 2856–2861. [Google Scholar]
Parameter | Value |
---|---|
Total Mass M | 16.3 kg |
Track Spacing | 65 cm |
Track Width | 11 cm |
Track Contact Length | 68.1 cm |
Drive Wheel Radius | 10 cm |
Parameter | Value | Parameter | Value |
---|---|---|---|
Observer Gain κ | 100 | Speed Controller Gain μ2 | 2 |
Adaptation Gain ɑ1 | 10 | Speed Controller Gain μ3 | 7 |
Adaptation Gain ɑ2 | 5 | Disturbance Term Gain μ4 | 25 |
Sliding Surface Gain λ1 | 3 | PID Controller kp | 15 |
Speed Controller Gain μ1 | 1.5 | PID Controller ki | 1 |
Performance Metrics | SMC Controller | PID Controller |
---|---|---|
Computation Time | 17.5 s | 11 s |
Maximum Error | 0.2 m | 0.5 m |
Average Error | 0.05 m | 0.12 m |
Mean Squared Error | 0.005 square meters | 0.03 square meters |
Suitable Environment | Complex environments (nonlinear, external disturbances) | Simple environments (linear, low disturbances) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Wang, S.; He, Y.; Ma, A.; Zhao, S. Autonomous Tracked Vehicle Trajectory Tracking Control Based on Disturbance Observation and Sliding Mode Control. Actuators 2025, 14, 51. https://doi.org/10.3390/act14020051
Yan X, Wang S, He Y, Ma A, Zhao S. Autonomous Tracked Vehicle Trajectory Tracking Control Based on Disturbance Observation and Sliding Mode Control. Actuators. 2025; 14(2):51. https://doi.org/10.3390/act14020051
Chicago/Turabian StyleYan, Xihao, Shuo Wang, Yuxin He, Aixiang Ma, and Sihai Zhao. 2025. "Autonomous Tracked Vehicle Trajectory Tracking Control Based on Disturbance Observation and Sliding Mode Control" Actuators 14, no. 2: 51. https://doi.org/10.3390/act14020051
APA StyleYan, X., Wang, S., He, Y., Ma, A., & Zhao, S. (2025). Autonomous Tracked Vehicle Trajectory Tracking Control Based on Disturbance Observation and Sliding Mode Control. Actuators, 14(2), 51. https://doi.org/10.3390/act14020051