Survey of Active Structural Control and Repair Using Piezoelectric Patches
Abstract
:1. Introduction
2. Piezoelectric Materials
2.1. The Piezoelectric Effect
2.2. Piezoelectric Constitutive Equations
2.3. Piezoelectric Sensors and Actuators Applications in Engineering Structures
3. Active Structural Repair Using Piezoelectric Materials
3.1. Active Repair of Isotropic Materials
3.2. Active Repair of Composite Structures
4. Stress Control of Adhesive Joints Using Piezoelectric Materials
4.1. Stress Control of Adhesive Bonded Joint Systems
4.2. Stress Control of Edge Debonding
5. The Effect of Bonding on Effectiveness of Active Control and Repair
6. Observations
Reference | Methodology | Contributions | Limitations |
---|---|---|---|
[30,31] | Fracture mechanics | Active static repair of a cracked beam. | Only FEM simulation is proposed. |
[33,34] | Boundary element method. | Active repair of a cracked structure using a piezoelectric patch. | No accurate analytical model to explain the repair process. |
[45,46] | Euler–Bernoulli beam theory | An analytical model for the repair of a delaminated beam. | Applicable for static load only. |
[28] | Resonant frequency of criterion. | An analytical model for a notched beam under dynamic loading. | The model gives the final result, no detailed information about the repair mechanism. |
[53] | Boundary Element method | Active repair in the presence of frictional contact conditions. | Only FEM simulation is proposed. |
[35] | Fracture mechanics | Statistical approach using Experimental and FEM simulation. | There is no analytical model to explain the repair process. |
[37] | Slope discontinuity | Active repair of a notched cantilever beam subjected to dynamic loading.An accurate experiment and simulation model. | The result from the analytical model does not match the experimental result perfectly. |
7. Conclusion
Acknowledgements
Conflicts of Interest
References
- Katnam, K.B.; Da Silva, L.F.M.; Young, T.M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Progr. Aerosp. Sci. 2013, 61, 26–42. [Google Scholar] [CrossRef]
- Shinde, P.S.; Tripathi, V.K.; Kumar, P.; Sarkar, P.K.; Singh, K.K. Review paper on analysis of composite patches as a crack arrestor. J. Eng. Appl. Sci. 2011, 6, 222–226. [Google Scholar] [CrossRef]
- Providakis, C.P. Repair of cracked structures under dynamic load using electromechanical admittance approach. Key Eng. Mater. 2007, 348–349, 49–52. [Google Scholar] [CrossRef]
- Wang, Q.; Quek, S.T. Repair of cracked column under axially compressive load via piezoelectric patch. Comput. Struct 2005, 83, 1355–1363. [Google Scholar] [CrossRef]
- Shindo, Y.; Miura, M.; Takeda, T.; Narita, F.; Watanabe, S. Piezoelectric control of delamination response in woven fabric composites under mode I loading. Acta Mechan. 2013, 224, 1315–1322. [Google Scholar] [CrossRef]
- Shaik Dawood, M.S.I.; Iannucci, L.; Greenhalgh, E.; Ariffin, A.K. Low velocity impact induced delamination control using MFC actuator. Appl. Mechan. Mater. 2012, 165, 346–351. [Google Scholar] [CrossRef]
- Lin, X.-J.; Zhou, K.-C.; Zhang, X.-Y.; Zhang, D. Development, modeling and application of piezoelectric fiber composites. Trans. Nonferr. Metals Soc. Chin. 2013, 23, 98–107. [Google Scholar] [CrossRef]
- Badr, B.M.; Ali, W.G. Applications of piezoelectric materials. Adv. Mater. Res. 2011, 189–193, 3612–3620. [Google Scholar] [CrossRef]
- Williams, R.; Park, G. An overview of composite actuators with piezoceramic fibers. Proc. IMAC 2002, 421–427. [Google Scholar]
- Kim, H.S.; Kim, J.-H.; Kim, J. A review of piezoelectric energy harvesting based on vibration. Intl. J. Precis. Eng. Man. 2011, 12, 1129–1141. [Google Scholar] [CrossRef]
- Kovalovs, A.W.M.; Barkanov, E.; Gluhihs, S. Application of macro-fiber composite (MFC) as a piezoelectric actuator. J. Vibroeng. 2009, 11, 105–112. [Google Scholar]
- Sodano, H.A. Comparison of piezoelectric energy harvesting devices for recharging batteries. J. Intel. Mat. Syst. Str. 2005, 16, 799–807. [Google Scholar] [CrossRef]
- Chee, C.Y.K.; Tong, L.; Steven, G.P. A review on the modelling of piezoelectric sensors and actuators incorporated in intelligent structures. J. Intel. Mat. Syst. Str. 1998, 9, 3–19. [Google Scholar] [CrossRef]
- Choi, S.; Han, Y. Piezoelectric Actuators: Control Applications of Smart Materials; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Uchino, K. Advanced Piezoelectric Materials; Woodhead Publishing: Cambridge, UK, 2010; pp. 1–85. [Google Scholar]
- Hall, D.A. Nonlinearity in piezoelectric ceramics. J. Mater. Sci. 2001, 36, 4575–4601. [Google Scholar] [CrossRef]
- Wang, Q.-M.; Zhang, Q.; Xu, B.; Liu, R.; Cross, L.E. Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J. Appl. Phys. 1999, 86, 3352–3360. [Google Scholar] [CrossRef]
- 176–1987-IEEE Standard on Piezoelectricity. Available online: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=26560&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp3Farnumber3D26560 (accessed on 19 Macrh 2015).
- Caliò, R.; Rongala, U.; Camboni, D.; Milazzo, M.; Stefanini, C.; de Petris, G.; Oddo, C. Piezoelectric energy harvesting solutions. Sensors 2014, 14, 4755–4790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Wu, N. A review on structural enhancement and repair using piezoelectric materials and shape memory alloys. Smart. Mater. Struct. 2011, 21. [Google Scholar] [CrossRef]
- Irschik, H.; Krommer, M.; Vetyukov, Y. On the use of piezoelectric sensors in structural mechanics: Some novel strategies. Sensors 2010, 10, 5626–5641. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.H.; Wang, Q.; Quek, S.T. Applications of piezoelectric materials in structural health monitoring and repair: Selected research examples. Materials 2010, 3, 5169–5194. [Google Scholar] [CrossRef]
- Raghavan, A.; Cesnik, C.E.S. The shock and vibration digest review of guided-wave structural health monitoring. Shock Vib. Dig. 2007, 39, 91–114. [Google Scholar] [CrossRef]
- Irschik, H. A review on static and dynamic shape control of structures by piezoelectric actuation. Eng. Struct. 2002, 24, 5–11. [Google Scholar] [CrossRef]
- Rogers, C.A. Intelligent material systems—The dawn of a new materials age. J. Intel. Mat. Syst. Str. 1993, 4, 4–12. [Google Scholar] [CrossRef]
- Shah, D.K.; Joshi, S.P.; Chan, W.S. Stress concentration reduction in a plate with a hole using piezoceramic layers. Smart. Mater. Struct. 1994, 3, 302–308. [Google Scholar] [CrossRef]
- Wang, Q.; Quek, S.T.; Liew, K.M. On the repair of a cracked beam with a piezoelectric patch. Smart. Mater. Struct. 2002, 11, 404–410. [Google Scholar] [CrossRef]
- Wang, Q.; Duan, W.H.; Quek, S.T. Repair of notched beam under dynamic load using piezoelectric patch. Int. J. Mech. Sci. 2004, 46, 1517–1533. [Google Scholar] [CrossRef]
- Hideki, S. Advances in smart-patch repair of aircraft panels. In Proceedings of the 12th Unites States/Japan Conference on Composite Materials, Dearborn, MI, USA, 22 September 2006.
- Liu, T.J.-C. Crack repair performance of piezoelectric actuator estimated by slope continuity and fracture mechanics. Eng. Fract. Mech. 2008, 75, 2566–2574. [Google Scholar] [CrossRef]
- Liu, T.J.C. Fracture mechanics and crack contact analyses of the active repair of multi-layered piezoelectric patches bonded on cracked structures. Theo. Appl. Fract. Mec. 2007, 47, 120–132. [Google Scholar] [CrossRef]
- Ariaei, A.; Ziaei-Rad, S.; Ghayour, M. Repair of a cracked timoshenko beam subjected to a moving mass using piezoelectric patches. Int. J. Mech. Sci. 2010, 52, 1074–1091. [Google Scholar] [CrossRef]
- Alaimo, A.; Milazzo, A.; Orlando, C. On the dynamic behavior of piezoelectric active repair by the boundary element method. J. Intel. Mat. Syst. Str. 2011, 22, 2137–2146. [Google Scholar] [CrossRef]
- Alaimo, A.; Milazzo, A.; Orlando, C. Boundary elements analysis of adhesively bonded piezoelectric active repair. Eng. Fract. Mech. 2009, 76, 500–511. [Google Scholar] [CrossRef]
- Platz, R.; Stapp, C.; Hanselka, H. Statistical approach to evaluating reduction of active crack propagation in aluminum panels with piezoelectric actuator patches. Smart. Mater. Struct. 2011, 20. [Google Scholar] [CrossRef]
- Platz, R.; Stapp, C. Investigating the potential of piezoelectric actuator patches for the reduction of fatigue crack propagation in aluminum panels. In Proceedings of the 21st International. Conference on Adaptive Structures and Technologies, University Park, PA, USA, 4–6 October 2010; pp. 258–226.
- Wu, N.; Wang, Q. An experimental study on the repair of a notched beam subjected to dynamic loading with piezoelectric patches. Smart. Mater. Struct. 2011, 20. [Google Scholar] [CrossRef]
- Yan, B.; Liu, C.; Liu, J.; Zhao, L. Repair efficiency of cracked panel repaired by a piezoelectric patch. J. Chongqing Univ. 2009, 32, 950–954. [Google Scholar]
- Christensen, R.M. Mechanic of Composite Materials; Courier Dover Publications: Mineola, NY, USA, 2012. [Google Scholar]
- Soutis, C. Fibre reinforced composites in aircraft construction. Progr. Aerosp. Sci. 2005, 41, 143–151. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S. Buckling, post-buckling and delamination propagation in debonded composite laminates. Compos. Struct. 2009, 88, 121–130. [Google Scholar] [CrossRef]
- Laffan, M.J.; Pinho, S.T.; Robinson, P.; McMillan, A.J. Translaminar fracture toughness testing of composites: A review. Polym. Test. 2012, 31, 481–489. [Google Scholar] [CrossRef]
- Wu, L.; Tjahjanto, D.; Becker, G.; Makradi, A.; Jérusalem, A.; Noels, L. A micro–meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous galerkin/cohesive zone method. Eng. Fract. Mech. 2013, 104, 162–183. [Google Scholar] [CrossRef] [Green Version]
- Alaimo, A.; Milazzo, A.; Orlando, C. Application of the 3-D boundary element method to delaminated composite structures. Eng. Fract. Mech. 2013, 110, 201–217. [Google Scholar] [CrossRef]
- Caimmi, F.; Pavan, A. A numerical study of crack–fibre interaction at varying fibre orientation. Eng. Fract. Mech. 2013, 101, 129–139. [Google Scholar] [CrossRef]
- Hinton, M. Predicting failure in composite laminates: The background to the exercise. Compos. Sci. Technol. 1998, 58, 1001–1010. [Google Scholar] [CrossRef]
- Shah, D.K.; Chan, W.S.; Joshi, S.P. Delamination detection and suppression in a composite laminate using piezoceramic layers. Smart. Mater. Struct. 1994, 3, 293–301. [Google Scholar] [CrossRef]
- Wang, Q.; Quek, S.T. Repair of delaminated beams via piezoelectric patches. Smart. Mater. Struct. 2004, 13, 1222–1229. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, G.Y.; Quek, S.T. Repair of delaminated beams subjected to compressive force via piezoelectric layers. Adv. Struct. Eng. 2005, 8, 411–426. [Google Scholar] [CrossRef]
- Duan, W.H.; Quek, S.T.; Wang, Q. Finite element analysis of the piezoelectric-based repair of a delaminated beam. Smart. Mater. Struct. 2008, 17. [Google Scholar] [CrossRef]
- Wu, N.; Wang, Q. Repair of vibrating delaminated beam structures using piezoelectric patches. Smart. Mater. Struct. 2010, 19. [Google Scholar] [CrossRef]
- Wu, N.; Wang, Q. Repair of a delaminated plate under static loading with piezoelectric patches. Smart. Mater. Struct. 2010, 19. [Google Scholar] [CrossRef]
- Shaik Dawood, M.S.I. Piezoelectric actuators for delamination control in composite plates subjected to low velocity impact. Ph.D. Thesis, Imperial College London, South Kensington, UK, 2010. [Google Scholar]
- Shindo, Y.; Watanabe, S.; Takeda, T.; Miura, M.; Narita, F. Controllability of cryogenic mode I delamination behavior in woven fabric composites using piezoelectric actuators. Eng. Fract. Mech. 2013, 102, 171–179. [Google Scholar] [CrossRef]
- Alaimo, A.; Milazzo, A.; Orlando, C. Be analysis of delaminated composite structures repaired with piezoelectric active patches. Proc. Int. 2009, 11, 9–15. [Google Scholar]
- Alaimo, A.; Milazzo, A.; Orlando, C.; Messineo, A. Numerical analysis of piezoelectric active repair in the presence of frictional contact conditions. Sensors 2013, 13, 4390–4403. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Taheri, F. A novel smart adhesively bonded joint system. Smart. Mater. Struct. 2005, 14, 971–981. [Google Scholar] [CrossRef]
- Cheng, J.; Taheri, F. A smart single-lap adhesive joint integrated with partially distributed piezoelectric patches. Int. J. Solids. Struct. 2006, 43, 1079–1092. [Google Scholar] [CrossRef]
- Khalili, S.M.R.; Farsani, R.E.; Khoeini, A. Effect of piezoelectric patches on the behavior of adhesively bonded single lap joints. J. Adhes. 2010, 86, 601–629. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, X.; Li, G.; Taheri, F.; Pang, S.-S. Development of a smart composite pipe joint integrated with piezoelectric layers under tensile loading. Int. J. Solid. Structs. 2006, 43, 5370–5385. [Google Scholar] [CrossRef]
- Cheng, J.; Wu, X.; Li, G.; Pang, S.-S.; Taheri, F. Design and analysis of a smart composite pipe joint system integrated with piezoelectric layers under bending. Int. J. Solid. Struct. 2007, 44, 298–319. [Google Scholar] [CrossRef]
- Cheng, J.; Li, G. Stress analyses of a smart composite pipe joint integrated with piezoelectric composite layers under torsion loading. Int. J. Solid. Struct. 2008, 45, 1153–1178. [Google Scholar] [CrossRef]
- Chen, B.; Yuan, Q.; Luo, J. Stress concentration in adhesive layer of adhesively bonded piezoelectric pipe-joint system. J. Supercond. Nov. Magn. 2010, 23, 945–947. [Google Scholar] [CrossRef]
- Rabinovitch, O. Piezoelectric control of edge debonding in beams strengthened with composite materials: Part i—analytical modeling. J. Compos. Mater. 2007, 41, 525–546. [Google Scholar] [CrossRef]
- Rabinovitch, O. Piezoelectric control of edge debonding in beams strengthened with composite materials: Part ii—failure criteria and optimization. J. Compos. Mater. 2007, 41, 657–677. [Google Scholar] [CrossRef]
- Jin, C.; Wang, X. Analytical modelling of the electromechanical behaviour of surface-bonded piezoelectric actuators including the adhesive layer. Eng. Fract. Mech. 2011, 78, 2547–2562. [Google Scholar] [CrossRef]
- Wang, L.; Bai, R.-X.; Chen, H. Analytical modeling of the interface crack between a piezoelectric actuator and an elastic substrate considering shear effects. Int. J. Mech. Sci. 2013, 66, 141–148. [Google Scholar] [CrossRef]
- Alaimo, A.; Milazzo, A.; Orlando, C. Numerical analysis of a piezoelectric structural health monitoring system for composite flange-skin delamination detection. Compos. Struct. 2013, 100, 343–355. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abuzaid, A.; Hrairi, M.; Dawood, M.S.I.S. Survey of Active Structural Control and Repair Using Piezoelectric Patches. Actuators 2015, 4, 77-98. https://doi.org/10.3390/act4020077
Abuzaid A, Hrairi M, Dawood MSIS. Survey of Active Structural Control and Repair Using Piezoelectric Patches. Actuators. 2015; 4(2):77-98. https://doi.org/10.3390/act4020077
Chicago/Turabian StyleAbuzaid, Ahmed, Meftah Hrairi, and M.S.I. Shaik Dawood. 2015. "Survey of Active Structural Control and Repair Using Piezoelectric Patches" Actuators 4, no. 2: 77-98. https://doi.org/10.3390/act4020077
APA StyleAbuzaid, A., Hrairi, M., & Dawood, M. S. I. S. (2015). Survey of Active Structural Control and Repair Using Piezoelectric Patches. Actuators, 4(2), 77-98. https://doi.org/10.3390/act4020077