Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review
Abstract
:1. Introduction
2. Room-Temperature Aerosol Deposition
2.1. Construction of AD System
2.2. Working Principle
2.3. Limitations of AD
2.4. Granule Spray in Vacuum
3. Fabrication of Lead-Based Piezoelectric Ceramic Materials
3.1. Fabrication of PZT Thick Films
3.2. Material Properties of AD Thick Films
3.2.1. Piezoelectric Properties
3.2.2. Stress-Related Influences in Thick Films
3.3. Laser Annealing of AD Thick Films
3.4. Deposition of Lead-Free Piezoelectric Thick Films
3.5. Micro-Patterning Materials Fabrication
4. Applications
4.1. Electro-Optic Probes
4.2. Flapper Actuators for Hard Disk Drives
4.3. Optical Modulators
4.3.1. Mechanism of PZT-Driven MOSLM
4.3.2. Construction and Working
4.4. Ultrasonic Motors
4.5. Mechanical Energy Harvesting
4.6. Optical Micro Scanner
4.7. Ultrasonic Transducers
4.8. Energy Storage Capacitors
5. Summary
- (a)
- Dense consolidation of ceramic microparticles is realized at RT.
- (b)
- Film formation in the AD process can be explained using a five-step process: Spraying >> impact >> Cracking >> Densification >> Consolidation.
- (c)
- The piezoelectric properties of lead-based thick films deposited via AD were discussed, along with the effects of low-temperature post-annealing of these thick films. The piezoelectric properties of PZT thick films were enhanced significantly after post-annealing the as-deposited AD films.
- (d)
- AD is capable of fabricating complex ferroelectric thick films, such as lead-free KNN and SBTa, featuring enhanced piezoelectric responses.
- (e)
- AD is considerably effective in fabricating functional piezoelectric materials for applications in micro-devices.
- (f)
- The improved version of AD, i.e., GSV, which is capable of producing a uniform and large-area deposition, is also introduced. GSV involves the intentional crushing of ceramic microparticles into fine particles.
- (g)
- AD/GSV is capable of depositing more than 100-μm-thick films with superior piezoelectric performances.
- (h)
- A few examples of piezoelectric and optical devices fabricated using AD were presented, and the advantages offered by this technique were highlighted.
Author Contributions
Funding
Conflicts of Interest
References
- Akedo, J.; Park, J.H.; Kawakami, Y. Piezoelectric thick film fabricated with aerosol deposition and its application to piezoelectric devices. Jpn. J. Appl. Phys. 2018, 57, 07LA02. [Google Scholar] [CrossRef]
- Akedo, J. Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J. Therm. Spray Technol. 2008, 17, 181–198. [Google Scholar] [CrossRef]
- Schubert, M.; Hanft, D.; Nazarenus, T.; Exner, J.; Schubert, M.; Nieke, P.; Glosse, P.; Leupold, N.; Kita, J.; Moos, R. Powder Aerosol Deposition Method-Novel Applications in the Field of Sensing and Energy Technology. Funct. Mater. Lett. 2019, 1930005. [Google Scholar] [CrossRef] [Green Version]
- Masafumi, N.; Toshihiro, K.; Mizuki, I.; Keishi, O. Application of Electronic Devices for Aerosol Deposition Methods. NEC TECH J. 2007, 2, 76–80. [Google Scholar]
- Kawakami, Y.; Aisawa, S.; Akedo, J. Annealing effect on 0.5Pb(Ni1/3Nb2/3)O3-0.5Pb(Zr0.3Ti0.7)O3 thick film deposited by aerosol deposition method. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2005, 44, 6934–6937. [Google Scholar] [CrossRef]
- Kawakami, Y.; Watanabe, M.; Arai, K.I.; Sugimoto, S. Effects of substrate materials on piezoelectric properties of BaTiO3 thick films deposited by aerosol deposition. Proc. Jpn. J. Appl. Phys. 2016, 55. [Google Scholar] [CrossRef]
- Popovici, D.; Tsuda, H.; Akedo, J. Postdeposition annealing effect on (Ba0.6, Sr0.4)TiO3 thick films deposited by aerosol deposition method. J. Appl. Phys. 2009, 105, 061638. [Google Scholar] [CrossRef]
- Ryu, J.; Choi, J.J.; Hahn, B.D.; Park, D.S.; Yoon, W.H.; Kim, K.H. Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition. Appl. Phys. Lett. 2007, 90, 152901. [Google Scholar] [CrossRef]
- Schubert, M.; Exner, J.; Moos, R. Influence of Carrier Gas Composition on the Stress of Al2O3 Coatings Prepared by the Aerosol Deposition Method. Materials 2014, 7, 5633–5642. [Google Scholar] [CrossRef] [Green Version]
- Kauffmann-Weiss, S.; Hassler, W.; Guenther, E.; Scheiter, J.; Denneler, S.; Glosse, P.; Berthold, T.; Oomen, M.; Arndt, T.; Stocker, T.; et al. Superconducting Properties of Thick Films on Hastelloy Prepared by the Aerosol Deposition Method with Ex Situ MgB2 Powder. IEEE Trans. Appl. Supercond. 2017, 27. [Google Scholar] [CrossRef]
- Akedo, J.; Lebedev, M. Microstructure and electrical properties of lead zirconate titanate (Pb(Zr52/Ti48)O3) thick films deposited by aerosol deposition method. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 1999, 38, 5397–5401. [Google Scholar] [CrossRef]
- Nam, S.M.; Mori, N.; Kakemoto, H.; Wada, S.; Akedo, J.; Tsurumi, T. Alumina thick films as integral substrates using aerosol deposition method. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2004, 43, 5414–5418. [Google Scholar] [CrossRef]
- Sato, Y.; Uemichi, Y.; Nishikawa, K.; Yoshikado, S. Fabrication of Al2O3 Films Using Aerosol Deposition Method and Their Characterization. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 092056. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.I.; Park, D.S.; Park, E.S. Enhancement of interface anchoring and densification of Y2O3 coating by metal substrate manipulation in aerosol deposition process. J. Appl. Phys. 2015, 117, 014903. [Google Scholar] [CrossRef] [Green Version]
- Akedo, J. Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers. J. Am. Ceram. Soc. 2006, 89, 1834–1839. [Google Scholar] [CrossRef]
- Akedo, J.; Lebedev, M. Aerosol Deposition Method (ADM): A novel method of PZT thick films producing for microactuators. Recent Res. Dev. Mater. Sci. 2001, 2, 51–77. [Google Scholar]
- Uchino, K. Advanced Piezoelectric Materials; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Akedo, J.; Lebedev, M. Piezoelectric properties and poling effect of Pb(Zr,Ti)O3 thick films prepared for microactuators by aerosol deposition. Appl. Phys. Lett. 2000, 77, 1710–1712. [Google Scholar] [CrossRef]
- Akedo, J.; Lebedev, M. Effects of annealing and poling conditions on piezoelectric properties of Pb(Zr0.52,Ti0.48)O3 thick films formed by aerosol deposition method. J. Cryst. Growth 2002, 235, 415–420. [Google Scholar] [CrossRef]
- Ryu, J.; Han, G.; Song, T.K.; Welsh, A.; Trolier-Mckinstry, S.; Choi, H.; Lee, J.P.; Kim, J.W.; Yoon, W.H.; Choi, J.J.; et al. Upshift of phase transition temperature in nanostructured PbTiO3 thick film for high temperature applications. ACS Appl. Mater. Interfaces 2014, 6, 11980–11987. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Choi, M.-G.; Ryu, J.; Lee, J.-P.; Lim, Y.-S.; Jeong, D.-Y. Stress Modulation and Ferroelectric Properties of Nanograined PbTiO3 Thick Films on the Different Substrates Fabricated by Aerosol Deposition. J. Am. Ceram. Soc. 2014, 97, 3872–3876. [Google Scholar] [CrossRef]
- Hahn, B.D.; Kim, K.H.; Park, D.S.; Choi, J.J.; Ryu, J.; Yoon, W.H.; Park, C.; Kim, D.Y. Fabrication of lead zirconate titanate thick films using a powder containing organic residue. Jpn. J. Appl. Phys. 2008, 47, 5545–5552. [Google Scholar] [CrossRef]
- Han, G.; Ryu, J.; Yoon, W.-H.; Choi, J.-J.; Hahn, B.-D.; Park, D.-S. Effect of Film Thickness on the Piezoelectric Properties of Lead Zirconate Titanate Thick Films Fabricated by Aerosol Deposition. J. Am. Ceram. Soc. 2011, 94, 1509–1513. [Google Scholar] [CrossRef]
- Ryu, J.; Priya, S.; Park, C.S.; Kim, K.Y.; Choi, J.J.; Hahn, B.D.; Yoon, W.H.; Lee, B.K.; Park, D.S.; Park, C. Enhanced domain contribution to ferroelectric properties in freestanding thick films. J. Appl. Phys. 2009, 106, 024108. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, M.; Akedo, J. Patterning Properties of Lead Zirconate Titanate (PZT) Thick Films Made by Aerosol Deposition. IEEJ Trans. Sens. Micromachines 2000, 120, 600–601. [Google Scholar] [CrossRef] [Green Version]
- Han, G.; Ryu, J.; Yoon, W.H.; Choi, J.J.; Hahn, B.D.; Kim, J.W.; Park, D.S.; Ahn, C.W.; Priya, S.; Jeong, D.Y. Stress-controlled Pb(Zr0.52Ti0.48)O3 thick films by thermal expansion mismatch between substrate and Pb(Zr0.52Ti0.48)O3 film. J. Appl. Phys. 2011, 110, 124101. [Google Scholar] [CrossRef] [Green Version]
- Baba, S.; Akedo, J. Fiber laser annealing of nanocrystalline PZT thick film prepared by aerosol deposition. Appl. Surf. Sci. 2009, 255, 9791–9795. [Google Scholar] [CrossRef]
- Palneedi, H.; Maurya, D.; Kim, G.Y.; Priya, S.; Kang, S.J.L.; Kim, K.H.; Choi, S.Y.; Ryu, J. Enhanced off-resonance magnetoelectric response in laser annealed PZT thick film grown on magnetostrictive amorphous metal substrate. Appl. Phys. Lett. 2015, 107, 012904. [Google Scholar] [CrossRef]
- Palneedi, H.; Maurya, D.; Kim, G.Y.; Annapureddy, V.; Noh, M.S.; Kang, C.Y.; Kim, J.W.; Choi, J.J.; Choi, S.Y.; Chung, S.Y.; et al. Unleashing the Full Potential of Magnetoelectric Coupling in Film Heterostructures. Adv. Mater. 2017, 29, 1–9. [Google Scholar] [CrossRef]
- Palneedi, H.; Choi, I.; Kim, G.-Y.; Annapureddy, V.; Maurya, D.; Priya, S.; Kim, J.-W.; Lee, K.J.; Choi, S.-Y.; Chung, S.-Y.; et al. Tailoring the Magnetoelectric Properties of Pb(Zr,Ti)O3 Film Deposited on Amorphous Metglas Foil by Laser Annealing. J. Am. Ceram. Soc. 2016, 99, 2680–2687. [Google Scholar] [CrossRef]
- Im, I.-H.; Chung, K.-H.; Kim, D.-H. Dependence of Annealing Temperature on Properties of PZT Thin Film Deposited onto SGGG Substrate. Trans. Electr. Electron. Mater. 2014, 15, 253–256. [Google Scholar] [CrossRef]
- Oh, S.W.; Akedo, J.; Park, J.H.; Kawakami, Y. Fabrication and evaluation of lead-free piezoelectric ceramic LF4 thick film deposited by aerosol deposition method. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2006, 45, 7465–7470. [Google Scholar] [CrossRef]
- Ryu, J.; Choi, J.J.; Hahn, B.D.; Park, D.S.; Yoon, W.H. Ferroelectric and piezoelectric properties of 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free piezoelectric thick film by aerosol deposition. Appl. Phys. Lett. 2008, 92, 012905. [Google Scholar] [CrossRef]
- Maeder, M.D.; Damjanovic, D.; Setter, N. Lead free piezoelectric materials. In Proceedings of the Journal of Electroceramics; Springer: Berlin/Heidelberg, Germany, 2004; Volume 13, pp. 385–392. [Google Scholar]
- Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M. Lead-free piezoceramics. Nature 2004, 432, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xia, R.; Shrout, T.R.; Zang, G.; Wang, J. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3-0.052LiSbO3 lead-free ceramics. J. Appl. Phys. 2006, 100, 104108. [Google Scholar] [CrossRef]
- De Araujo, C.A.P.; Cuchiaro, J.D.; Mc Millan, D.L.; Scott, M.C.; Scott, J.F. Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 1995, 374, 627–629. [Google Scholar] [CrossRef]
- Noguchi, Y.; Miyayama, M.; Kudo, T. Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties. Phys. Rev. B Condens. Matter Mater. Phys. 2001, 63, 214102. [Google Scholar] [CrossRef]
- Atsuki, T.; Soyama, N.; Yonezawa, T.; Ogi, K. Preparation of bi-based ferroelectric thin films by sol-gel method. Jpn. J. Appl. Phys. 1995, 34, 5096–5099. [Google Scholar] [CrossRef]
- Noguchi, T.; Hase, T.; Miyasaka, Y. Analysis of the dependence of ferroelectric properties of strontium bismuth tantalate (SBT) thin films on the composition and process temperature. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 1996, 35, 4900–4904. [Google Scholar] [CrossRef]
- Noda, M.; Matsumuro, Y.; Sugiyama, H.; Okuyama, M. A fatigue-tolerant metal-ferroelectric-oxide-semiconductor structure with large memory window using Sr-deficient and Bi-excess Sr0.7Bi2+yTa2O9 ferroelectric films prepared on SiO2/Si at low temperature by pulsed laser deposition. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 1999, 38, 2275–2280. [Google Scholar] [CrossRef]
- Furuya, A.; Cuchiaro, J.D. Compositional Dependence of Electrical Characteristics in SrBi2Ta2-xNbxO9 Ferroelectric Capacitor Reduced by H2 Annealing. Jpn. J. Appl. Phys. 2000, 39, L371–L373. [Google Scholar] [CrossRef]
- Forbess, M.J.; Seraji, S.; Wu, Y.; Nguyen, C.P.; Cao, G.Z. Dielectric properties of layered perovskite Sr1-xAxBi2Nb2O9 ferroelectrics (A=La, Ca and x=0,0.1). Appl. Phys. Lett. 2000, 76, 2934–2936. [Google Scholar] [CrossRef]
- Aizawa, K.; Tokumitsu, E.; Okamoto, K.; Ishiwara, H. Impact of face-to-face annealing in preparation of sol-gel-derived SrBi2Ta2O9 thin films. Appl. Phys. Lett. 2000, 76, 2609–2611. [Google Scholar] [CrossRef]
- Chung, H.-T.; Cho, J.-H.; Kim, H.-G. The Effect of Bi Ions Substituting at the Sr Site in SrBi2Ta2O9. Jpn. J. Appl. Phys. 1998, 37, 2554–2558. [Google Scholar] [CrossRef]
- Shimakawa, Y.; Kubo, Y.; Nakagawa, Y.; Kamiyama, T.; Asano, H.; Izumi, F. Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Appl. Phys. Lett. 1999, 74, 1904–1906. [Google Scholar] [CrossRef]
- Noguchi, Y.; Miyayama, M.; Kudo, T. Effect of Bi substitution at the Sr site on the ferroelectric properties of dense strontium bismuth tantalate ceramics. J. Appl. Phys. 2000, 88, 2146–2148. [Google Scholar] [CrossRef]
- Shoji, K.; Aikawa, M.; Uehara, Y.; Sakata, K. Preparation and Properties of SrBi2Ta2O9 Ceramics. Jpn. J. Appl. Phys. 1998, 37, 5273–5276. [Google Scholar] [CrossRef]
- Suzuki, M.; Nishihara, Y.; Uesu, Y.; Akedo, J. Polarization properties of bismuth strontium tantalate ceramic films deposited by aerosol deposition method. Jpn. J. Appl. Phys. 2012, 51, 09LA17. [Google Scholar] [CrossRef]
- Iwanami, M.; Nakada, M.; Tsuda, H.; Ohashi, K.; Akedo, J. Ultra small electro-optic field probe fabricated by aerosol deposition. IEICE Electron. Express 2007, 4, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Nojima, Y.; Koganezawa, S. Newly Designed Slider-Based Micro-Actuator for Magnetic Disk Drive. J. Adv. Mech. Des. Syst. Manuf. 2011, 5, 45–53. [Google Scholar] [CrossRef]
- Hirano, T.; Fan, L.S.; Lee, W.Y.; Hong, J.; Imaino, W.; Pattanaik, S.; Chan, S.; Webb, P.; Horowitz, R.; Aggarwal, S.; et al. High-bandwidth high-accuracy rotary microactuators for magnetic hard disk drive tracking servos. IEEE/ASME Trans. Mechatronics 1998, 3, 156–165. [Google Scholar] [CrossRef]
- Lebedev, M.; Akedo, J. Thick PZT film/stainless steel actuator fabricated by aerosol deposition method: Fatigue property. In Proceedings of the Nano-and Microtechnology: Materials, Processes, Packaging, and Systems; Sood, D.K., Malshe, A.P., Maeda, R., Eds.; SPIE: Melbourne, Australia, 2002; Volume 4936, p. 345. [Google Scholar]
- Schröder, K. Stress operated random access, high-speed magnetic memory. J. Appl. Phys. 1982, 53, 2759–2761. [Google Scholar] [CrossRef]
- Robertson, J.; Warren, W.L. Energy levels of point defects in perovskite oxides. In Proceedings of the Materials Research Society Symposium-Proceedings. Mater. Res. Soc. 1995, 361, 123–128. [Google Scholar] [CrossRef]
- Takagi, H.; Park, J.H.; Mizoguchi, M.; Nishimura, K.; Uchida, H.; Lebedev, M.; Akedo, J.; Inoue, M. PZT-driven micromagnetic optical devices. In Proceedings of the Materials Research Society Symposium-Proceedings; Cambridge University Press: Cambridge, UK, 2003; Volume 785, pp. 177–182. [Google Scholar]
- Akedo, J.; Kiyohara, M. Nanostructuring by Shock Compaction with Fine Particle Beam. J. Soc. Powder Technol. Jpn. 2003, 40, 192–200. [Google Scholar] [CrossRef]
- Akedo, J.; Lebedev, M.; Iwata, A.; Ogiso, H.; Nakano, S. Aerosol Deposition Method (Adm) For Nano-Crystal Ceramics Coating Without Firing. MRS Online Proc. Libr. Arch. 2003, 778. [Google Scholar] [CrossRef]
- Akedo, J.; Lebedev, M. Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2002, 41, 6980–6984. [Google Scholar] [CrossRef]
- Lebedev, M.; Akedo, J.; Mori, K.; Eiju, T. Simple self-selective method of velocity measurement for particles in impact-based deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2000, 18, 563–566. [Google Scholar] [CrossRef]
- Fang, H.B.; Liu, J.Q.; Xu, Z.Y.; Dong, L.; Wang, L.; Chen, D.; Cai, B.C.; Liu, Y. Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 2006, 37, 1280–1284. [Google Scholar] [CrossRef]
- Elfrink, R.; Kamel, T.M.; Goedbloed, M.; Matova, S.; Hohlfeld, D.; Van Andel, Y.; Van Schaijk, R. Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J. Micromechanics Microengineering 2009, 19. [Google Scholar] [CrossRef] [Green Version]
- Trolier-Mckinstry, S.; Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceramics 2004, 12, 7–17. [Google Scholar] [CrossRef]
- Chaoting, C.; Wu, W.-J.; Chen, C.T.; Lin, S.C.; Lin, T.K.; Wu, W.J. High-performance energy harvester fabricated with aerosol deposited PMN-PT material. Artic. J. Phys. Conf. Ser. 2016. [Google Scholar] [CrossRef] [Green Version]
- Hanft, D.; Exner, J.; Schubert, M.; Stöcker, T.; Fuierer, P.; Moos, R. An overview of the Aerosol Deposition method: Process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol. 2015, 6, 147–181. [Google Scholar]
- Heywang, W.; Lubitz, K.; Wersing, W. Piezoelectricity; Springer Series in Materials Science; Springer: Berlin/Heidelberg, Germany, 2008; p. 114. [Google Scholar]
- Hahn, B.D.; Park, D.S.; Choi, J.J.; Yoon, W.H.; Ryu, J.; Kim, D.Y. Effects of Zr/Ti ratio and post-annealing temperature on the electrical properties of lead zirconate titanate (PZT) thick films fabricated by aerosol deposition. J. Mater. Res. 2008, 23, 226–235. [Google Scholar] [CrossRef]
- Jung, J.; Annapureddy, V.; Hwang, G.T.; Song, Y.; Lee, W.; Kang, W.; Ryu, J.; Choi, H. 31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process. Appl. Phys. Lett. 2017, 110, 212903. [Google Scholar] [CrossRef]
- Hwang, G.T.; Annapureddy, V.; Han, J.H.; Joe, D.J.; Baek, C.; Park, D.Y.; Kim, D.H.; Park, J.H.; Jeong, C.K.; Park, K.-I.; et al. Self-Powered Devices: Self-Powered Wireless Sensor Node Enabled by an Aerosol-Deposited PZT Flexible Energy Harvester. Adv. Energy Mater. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Do, Y.H.; Kang, M.G.; Kim, J.S.; Kang, C.Y.; Yoon, S.J. Fabrication of flexible device based on PAN-PZT thin films by laser lift-off process. Sens. Actuators A Phys. 2012, 184, 124–127. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Lin, S.-C.; Wu, W.-J. Fabrication and performance evaluation of a metal-based bimorph piezoelectric MEMS generator for vibration energy harvesting. Smart Mater. Struct. 2016, 25, 105016. [Google Scholar] [CrossRef]
- Asai, N.; Matsuda, R.; Watanabe, M.; Takayama, H.; Yamada, S.; Mase, A.; Shikida, M.; Sato, K.; Lebedev, M.; Akedo, J. A novel high resolution optical scanner actuated by aerosol deposited PZT films. In Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), Kyoto, Japan, 23 January 2003; pp. 247–250. [Google Scholar]
- Park, J.H.; Akedo, J.; Sato, H. High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method. Sens. Actuators A Phys. 2007, 135, 86–91. [Google Scholar] [CrossRef]
- Akedo, J.; Lebedev, M.; Sato, H.; Park, J. High-speed optical microscanner driven with resonation of lam waves using Pb(Zr,Ti)O3 thick films formed by aerosol deposition. Jpn. J. Appl. Phys. Part 1 Regul. Pap. Short Notes Rev. Pap. 2005, 44, 7072–7077. [Google Scholar] [CrossRef]
- Lau, S.T.; Li, X.; Zhou, Q.F.; Shung, K.K.; Ryu, J.; Park, D.S. Aerosol-deposited KNN-LSO lead-free piezoelectric thick film for high frequency transducer applications. Sens. Actuators A Phys. 2010, 163, 226–230. [Google Scholar] [CrossRef]
- Park, C.K.; Lee, S.H.; Lim, J.H.; Ryu, J.; Choi, D.H.; Jeong, D.Y. Nano-size grains and high density of 65PMN-35PT thick film for high energy storage capacitor. Ceram. Int. 2018, 44, 20111–20114. [Google Scholar] [CrossRef]
- Kang, S.B.; Kim, H.S.; Lee, J.G.; Park, C.K.; Ryu, J.; Choi, J.J.; Hahn, B.D.; Wang, L.; Jeong, D.Y. Dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 film by aerosol deposition for energy storage applications. Ceram. Int. 2016, 42, 1740–1745. [Google Scholar] [CrossRef]
- Jung, H.B.; Lim, J.H.; Peddigari, M.; Ryu, J.; Choi, D.H.; Jeong, D.Y. Enhancement of energy storage and thermal stability of relaxor Pb0.92La0.08Zr0.52Ti0.48O3-Bi(Zn0.66Nb0.33)O3 thick films through aerosol deposition. J. Eur. Ceram. Soc. 2020, 40, 63–70. [Google Scholar] [CrossRef]
- Kim, J.-W.; Lim, J.H.; Kim, S.H.; Koo, C.Y.; Ryu, J.; Jeong, D.Y. Energy storage properties of dielectric Bi1.5Zn1.0Nb1.5O7 thick films on flexible metal foil substrates fabricated by aerosol deposition method. J. Ceram. Process. Res. 2018, 19, 243. [Google Scholar]
- Lim, J.H.; Lee, S.H.; Kim, K.H.; Ji, S.Y.; Jung, S.; Park, C.K.; Jung, H.B.; Jeong, D.Y. High temperature grain growth behavior of aerosol deposited BaTiO3 film on (100), (110) oriented SrTiO3 single crystal. Korean J. Mater. Res. 2019, 29, 684–689. [Google Scholar] [CrossRef]
- Lim, J.H.; Kim, J.W.; Lee, S.H.; Park, C.K.; Ryu, J.; Choi, D.H.; Jeong, D.Y. Fabrication of high density BZN-PVDF composite film by aerosol deposition for high energy storage properties. Korean J. Mater. Res. 2019, 29, 175–182. [Google Scholar] [CrossRef]
Parameters | Reported Data |
---|---|
Pressure in the deposition chamber | 0.5~10 Torr |
Pressure in the aerosol chamber | 100~700 Torr |
Nozzle dimensions | 5 × 0.3 mm2~1000 × 1 mm2 |
Carrier gas | Air, N2, O2, He |
Gas flow rate | 1-300 l/min (depending on the nozzle slit) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, D.R.; Annapureddy, V.; Kaarthik, J.; Thakre, A.; Akedo, J.; Ryu, J. Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review. Actuators 2020, 9, 59. https://doi.org/10.3390/act9030059
Patil DR, Annapureddy V, Kaarthik J, Thakre A, Akedo J, Ryu J. Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review. Actuators. 2020; 9(3):59. https://doi.org/10.3390/act9030059
Chicago/Turabian StylePatil, Deepak Rajaram, Venkateswarlu Annapureddy, J. Kaarthik, Atul Thakre, Jun Akedo, and Jungho Ryu. 2020. "Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review" Actuators 9, no. 3: 59. https://doi.org/10.3390/act9030059
APA StylePatil, D. R., Annapureddy, V., Kaarthik, J., Thakre, A., Akedo, J., & Ryu, J. (2020). Piezoelectric Thick Film Deposition via Powder/Granule Spray in Vacuum: A Review. Actuators, 9(3), 59. https://doi.org/10.3390/act9030059