Computational Prediction of Bacteriophage Host Ranges
Abstract
:1. Introduction
2. Methods to Computationally Predict Bacteriophage Host Ranges
2.1. Alignment-Based Methods
2.2. Alignment-Free Methods
2.3. Machine-Learning Methods
3. Bacteriophage–Host Databases
4. Method Choice: Key Considerations
4.1. Prediction Accuracy
4.2. Usability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rohwer, F. Global Phage Diversity. Cell 2003, 113, 141. [Google Scholar] [CrossRef] [Green Version]
- Twort, F. An investigation on the nature of ultra-microscopic viruses. Lancet 1915, 186, 1241–1243. [Google Scholar] [CrossRef] [Green Version]
- d’Herelle, F. Sur un microbe invisible antagoniste des bacilles dysentériques. C. R. Acad. Sci. Paris 1917, 165, 373–375. [Google Scholar]
- Schofield, D.; Sharp, N.J.; Westwater, C. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage 2012, 2, 105–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molek, P.; Strukelj, B.; Bratkovic, T. Peptide Phage Display as a Tool for Drug Discovery: Targeting Membrane Receptors. Molecules 2011, 16, 857–887. [Google Scholar] [CrossRef]
- Nixon, A.E.; Sexton, D.J.; Ladner, R.C. Drugs derived from phage display: From candidate identification to clinical practice. mAbs 2014, 6, 73–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Q.; Li, X.; Han, G.; Zhu, Y.; Mao, C.; Yang, M. Phage-based vaccines. Adv. Drug Deliv. Rev. 2019, 145, 40–56. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Fenton, M.; McAuliffe, O.; O’Mahony, J.; Coffey, A. Recombinant bacteriophage lysins as antibacterials. Bioeng. Bugs 2010, 1, 9–16. [Google Scholar] [CrossRef]
- Jassim, S.A.A.; Limoges, R.G.; El-Cheikh, H. Bacteriophage biocontrol in wastewater treatment. World J. Microbiol. Biotechnol. 2016, 32, 1–10. [Google Scholar] [CrossRef]
- Edwards, R.; McNair, K.; Faust, K.; Raes, J.; Dutilh, B.E. Computational approaches to predict bacteriophage–host relationships. FEMS Microbiol. Rev. 2016, 40, 258–272. [Google Scholar] [CrossRef] [Green Version]
- Hanna, L.F.; Matthews, T.D.; Dinsdale, E.A.; Hasty, D.; Edwards, R.A. Characterization of the ELPhiS Prophage from Salmonella enterica Serovar Enteritidis Strain LK5. Appl. Environ. Microbiol. 2012, 78, 1785–1793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, W. Unculturable bacteria—the uncharacterized organisms that cause oral infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar]
- Edwards, R.A.; Rohwer, F. Viral metagenomics. Nat. Rev. Microbiol. 2005, 3, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Breitbart, M.; Salamon, P.; Andresen, B.; Mahaffy, J.M.; Segall, A.M.; Mead, D.; Azam, F.; Rohwer, F. Genomic analysis of uncultured marine viral communities. Proc. Natl. Acad. Sci. USA 2002, 99, 14250–14255. [Google Scholar] [CrossRef] [Green Version]
- Coutinho, F.H.; Edwards, R.A.; Rodríguez-Valera, F. Charting the diversity of uncultured viruses of Archaea and Bacteria. BMC Biol. 2019, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Clokie, M.R.J.; Kropinski, A. (Eds.) Bacteriophages: Methods and Protocols. Volume 1: Isolation, Characterization, and Interactions, 1st ed.; Humana Press: Totowa, NJ, USA, 2009. [Google Scholar]
- Zhang, T.; Breitbart, M.; Lee, W.H.; Run, J.-Q.; Wei, C.L.; Soh, S.W.L.; Hibberd, M.; Liu, E.T.; Rohwer, F.; Ruan, Y. RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses. PLoS Biol. 2005, 4, e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, A.; Haynes, M.; Hanson, N.; Angly, F.E.; Heath, A.C.; Rohwer, F.; Gordon, J.I. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 2010, 466, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Pires, D.P.; Costa, A.R.; Azeredo, J. Phage Therapy: Going Temperate? Trends Microbiol. 2019, 27, 368–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touchon, M.; Sousa, J.A.M.D.; Rocha, E.P. Embracing the enemy: The diversification of microbial gene repertoires by phage-mediated horizontal gene transfer. Curr. Opin. Microbiol. 2017, 38, 66–73. [Google Scholar] [CrossRef]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 structures and mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef] [Green Version]
- Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Nature 2015, 526, 55–61. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Zielezinski, A.; Barylski, J.; Karlowski, W.M. Taxonomy-aware, sequence similarity ranking reliably predicts phage–host relationships. BMC Biol. 2021, 19, 1–14. [Google Scholar] [CrossRef]
- Webber, W.; Moffat, A.; Zobel, J. A similarity measure for indefinite rankings. ACM Trans. Inf. Syst. 2010, 28, 1–38. [Google Scholar] [CrossRef]
- Rampersad, S.; Tennant, P. Chapter 3—Replication and expression strategies of viruses. In Viruses; Tennant, P., Fermin, G., Foster, J.E., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 55–82. [Google Scholar]
- Kunisawa, T.; Kanaya, S.; Kutter, E. Comparison of Synonymous Codon Distribution Patterns of Bacteriophage and Host Genomes. DNA Res. 1998, 5, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Lucks, J.B.; Nelson, D.R.; Kudla, G.R.; Plotkin, J.B. Genome Landscapes and Bacteriophage Codon Usage. PLoS Comput. Biol. 2008, 4, e1000001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, A.; Versoza, C.J.; Hua, T.; Kapoor, R.; Lloyd, L.; Mehta, R.; Menolascino, J.; Morais, A.; Munig, S.; Patel, Z.; et al. Phylogenetic relationships and codon usage bias amongst cluster K mycobacteriophages. G3 Genes Genomes Genet. 2021, 11, 291. [Google Scholar] [CrossRef]
- Bourret, J.; Alizon, S.; Bravo, I.G. COUSIN (COdon Usage Similarity INdex): A Normalized Measure of Codon Usage Preferences. Genome Biol. Evol. 2019, 11, 3523–3528. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.G.; Ochman, H. Amelioration of Bacterial Genomes: Rates of Change and Exchange. J. Mol. Evol. 1997, 44, 383–397. [Google Scholar] [CrossRef]
- Pride, D.T.; Wassenaar, T.M.; Ghose, C.; Blaser, M.J. Evidence of host-virus co-evolution in tetranucleotide usage patterns of bacteriophages and eukaryotic viruses. BMC Genom. 2006, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marri, P.R.; Golding, G.B. Gene amelioration demonstrated: The journey of nascent genes in bacteria. Genome 2008, 51, 164–168. [Google Scholar] [CrossRef]
- Pride, D.T.; Meinersmann, R.J.; Wassenaar, T.; Blaser, M.J. Evolutionary Implications of Microbial Genome Tetranucleotide Frequency Biases. Genome Res. 2003, 13, 145–158. [Google Scholar] [CrossRef] [Green Version]
- Ahlgren, N.A.; Ren, J.; Lu, Y.Y.; Fuhrman, J.; Sun, F. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomical-ly-derived viral sequences. Nucleic Acids Res. 2017, 45, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Galiez, C.; Siebert, M.; Enault, F.; Vincent, J.; Söding, J. WIsH: Who is the host? Predicting prokaryotic hosts from metagenomic phage contigs. Bioinformatics 2017, 33, 3113–3114. [Google Scholar] [CrossRef]
- Villarroel, J.; Kleinheinz, K.A.; Jurtz, V.I.; Zschach, H.; Lund, O.; Nielsen, M.; Larsen, M.V. Host Phinder: A Phage Host Prediction Tool. Viruses 2016, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Nami, Y.; Imeni, N.; Panahi, B. Application of machine learning in bacteriophage research. BMC Microbiol. 2021, 21, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Boeckaerts, D.; Stock, M.; Criel, B.; Gerstmans, H.; De Baets, B.; Briers, Y. Predicting bacteriophage hosts based on sequences of annotated receptor-binding proteins. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Young, F.; Rogers, S.; Robertson, D.L. Predicting host taxonomic information from viral genomes: A comparison of feature representations. PLoS Comput. Biol. 2020, 16, e1007894. [Google Scholar] [CrossRef] [PubMed]
- Gałan, W.; Bak, M.; Jakubowska, M. Host Taxon Predictor—A Tool for Predicting Taxon of the Host of a Newly Discovered Virus. Sci. Rep. 2019, 9, 3436. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Zhang, Z.; Cai, Z.; Zhu, Z.; Qiu, Y.; Wu, A.; Jiang, T.; Zheng, H.; Peng, Y. Prokaryotic virus host predictor: A Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 2021, 19, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Li, F.; Zhao, Y.; Liu, M.; Zhang, S.; Bin, Y.; Smith, A.I.; Webb, G.I.; Li, J.; et al. A Deep Learning-Based Method for Identification of Bacteriophage-Host Interaction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ren, J.; Tang, K.; Dart, E.; Ignacio-Espinoza, J.C.; Fuhrman, J.A.; Braun, J.; Sun, F.; Ahlgren, N.A. A network-based integrated framework for predicting virus–prokaryote interactions. NAR Genom. Bioinform. 2020, 2, lqaa044. [Google Scholar] [CrossRef]
- Dams, D.; Brøndsted, L.; Drulis-Kawa, Z.; Briers, Y. Engineering of receptor-binding proteins in bacteriophages and phage tail-like bacteriocins. Biochem. Soc. Trans. 2019, 47, 449–460. [Google Scholar] [CrossRef]
- Baláž, A.; Kajsík, M.; Budiš, J.; Szemeš, T.; Turňa, J. PHERI-Phage Host Exploration Pipeline. bioRxiv 2020. [Google Scholar] [CrossRef]
- Dutilh, B.E.; Cassman, N.; McNair, K.; Sanchez, S.E.; Silva, G.G.Z.; Boling, L.; Barr, J.; Speth, D.; Seguritan, V.; Aziz, R.; et al. A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes. Nat. Commun. 2014, 5, 4498. [Google Scholar] [CrossRef] [Green Version]
- Shkoporov, A.N.; Khokhlova, E.V.; Fitzgerald, C.B.; Stockdale, S.R.; Draper, L.A.; Ross, R.P.; Hill, C. ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Bourexis, D.; Brister, J.R.; Canese, K.; Comeau, D.C.; Funk, K.; Kim, S.; Klimke, W.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49, D10–D17. [Google Scholar] [CrossRef]
- Lamy-Besnier, Q.; Brancotte, B.; Brancotte, H.M.; Ménager, L.D. Viral Host Range database, an online tool for recording, analyzing and disseminating virus–host interactions. Bioinformatics 2021, 37, 2798. [Google Scholar] [CrossRef]
- Lapidus, A.L.; Korobeynikov, A.I. Metagenomic data assembly–the way of decoding unknown microorganisms. Front. Microbiol. 2021, 12, 653. [Google Scholar] [CrossRef] [PubMed]
- Staden, R. A new computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Res. 1980, 8, 3673–3694. [Google Scholar] [CrossRef] [Green Version]
- Wooley, J.C.; Godzik, A.; Friedberg, I. A Primer on Metagenomics. PLoS Comput. Biol. 2010, 6, e1000667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirnay, J.-P. Phage Therapy in the Year 2035. Front. Microbiol. 2020, 11, 1171. [Google Scholar] [CrossRef]
- Sacher, J.; Zheng, J.; McCallin, S. Sourcing phages for compassionate use. Microbiol. Aust. 2019, 40, 24. [Google Scholar] [CrossRef]
Prediction Tool | Input | Output | User Interface | Key Considerations | Reference | |
---|---|---|---|---|---|---|
Alignment-based | Phirbo | two ranked lists (phage and host genomes) | phage–host predictions | CLI (Python) | Linux and macOS multi-threading support | [26] |
Alignment-free | HostPhinder | phage FASTA file | predicted hosts | web-based | not limited to any OS | [39] |
VirHostMatcher | phage FASTA file host FASTA file taxonomy text file | dissimilarity index phage–host pairs | CLI (Python) | Linux, macOS, Windows | [37] | |
WIsH | phage FASTA file host FASTA file | predicted hosts | CLI (C++) | Linux and macOS multi-threading support | [38] | |
BacteriophageHostPrediction | phage FASTA file | predicted hosts | CLI (Python) | Linux and macOS | [41] | |
Machine-learning-based | Host Taxon Predictor (HTP) | phage FASTA file | Predicted host lineages | CLI (Python) | Linux and macOS | [43] |
Prokaryotic virus Host Predictor (PHP) | phage FASTA file | predicted hosts | CLI (Python); web-based | Linux and macOS user-defined training models | [44] | |
PredPHI | protein sequences (phage–host pairs) | phage-host predictions | CLI (Python) | Linux and macOS | [45] | |
PHERI | phage FASTA file | predicted hosts predicted shared genes protein sequence clusters | CLI (Python) | Linux and macOS | [48] | |
VirHostMatcher-Net | phage FASTA file | predicted hosts | CLI (Python) | Linux and macOS multi-threading support | [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Versoza, C.J.; Pfeifer, S.P. Computational Prediction of Bacteriophage Host Ranges. Microorganisms 2022, 10, 149. https://doi.org/10.3390/microorganisms10010149
Versoza CJ, Pfeifer SP. Computational Prediction of Bacteriophage Host Ranges. Microorganisms. 2022; 10(1):149. https://doi.org/10.3390/microorganisms10010149
Chicago/Turabian StyleVersoza, Cyril J., and Susanne P. Pfeifer. 2022. "Computational Prediction of Bacteriophage Host Ranges" Microorganisms 10, no. 1: 149. https://doi.org/10.3390/microorganisms10010149
APA StyleVersoza, C. J., & Pfeifer, S. P. (2022). Computational Prediction of Bacteriophage Host Ranges. Microorganisms, 10(1), 149. https://doi.org/10.3390/microorganisms10010149