Spatiotemporal Changes in Plasmodium vivax msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmodium vivax-Infected Blood Samples
2.2. Gene Amplification and Sequencing
2.3. Data Analysis
3. Results
3.1. Pvmsp142 Polymorphism and Evaluation of Nucleotide and Haplotype Diversity
3.2. Temporal Analysis of pvmsp142 Nucleotide Diversity, Recombination, and Natural Selection
3.3. Haplotype Network, Temporal Changes, and Haplogroups
3.4. Spatiotemporal Distribution of the Haplogroups in Southern Mexico
3.5. Linear B-Cell Epitopes
3.6. SplitsTree Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. World Malaria Report 2021; WHO: Geneva, Switzerland, 2021; Available online: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021 (accessed on 16 December 2021).
- WHO. Global Malaria Control and Elimination: Report of a Technical Review; WHO: Geneva, Switzerland, 2008; Available online: https://www.who.int/publications/i/item/9789241596756https://www.who.int/publications/i/item/9789241596756 (accessed on 16 December 2021).
- Dirección General de Epidemiología. Boletín Epidemiológico 1995–2018; Secretaria de Salud: Mexico City, México, 2018; Available online: https://www.gob.mx/salud/acciones-y-programas/historico-boletin-epidemiologico (accessed on 16 December 2021).
- Pan American Health Organization. Epidemiological Update. Increase of Malaria in the Americas, 2018; PAHO: Washington, DC, USA, 2018; Available online: https://www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=2018-9581&alias=43434-30-january-2018-malaria-epidemiological-update-434&Itemid=270&lang=en (accessed on 16 December 2021).
- Neafsey, D.E.; Galinsky, K.; Jiang, R.H.; Young, L.; Sykes, S.M.; Saif, S.; Gujja, S.; Goldberg, J.M.; Young, S.; Zeng, Q.; et al. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet. 2012, 44, 1046–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekland, E.H.; Fidock, D.A. Advances in understanding the genetic basis of antimalarial drug resistance. Curr. Opin. Microbiol. 2007, 10, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Barry, A.E.; Arnott, A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front. Immunol. 2014, 5, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, A.E.; Waltmann, A.; Koepfli, C.; Barnadas, C.; Mueller, I. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog. Glob. Health 2015, 109, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Volkman, S.K.; Neafsey, D.E.; Schaffner, S.F.; Park, D.J.; Wirth, D.F. Harnessing genomics and genome biology to understand malaria biology. Nat. Rev. Genet. 2012, 13, 315–328. [Google Scholar] [CrossRef] [PubMed]
- del Portillo, H.A.; Longacre, S.; Khouri, E.; David, P.H. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc. Natl. Acad. Sci. USA 1991, 88, 4030–4034. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.J.; Rayner, J.C. Plasmodium falciparum erythrocyte invasion: Combining function with immune evasion. PLoS Pathog. 2014, 10, e1003943. [Google Scholar] [CrossRef] [Green Version]
- Han, E.T.; Song, T.E.; Park, J.H.; Shin, E.H.; Guk, S.M.; Kim, T.Y.; Chai, J.Y. Allelic dimorphism in the merozoite surface protein-3alpha in Korean isolates of Plasmodium vivax. Am. J. Trop. Med. Hyg. 2004, 71, 745–749. [Google Scholar] [CrossRef]
- Sachdeva, S.; Ahmad, G.; Malhotra, P.; Mukherjee, P.; Chauhan, V.S. Comparison of immunogenicities of recombinant Plasmodium vivax merozoite surface protein 1 19- and 42-kiloDalton fragments expressed in Escherichia coli. Infect. Immun. 2004, 72, 5775–5782. [Google Scholar] [CrossRef] [Green Version]
- Wickramarachchi, T.; Illeperuma, R.J.; Perera, L.; Bandara, S.; Holm, I.; Longacre, S.; Handunnetti, S.M.; Udagama-Randeniya, P.V. Comparison of naturally acquired antibody responses against the C-terminal processing products of Plasmodium vivax Merozoite Surface Protein-1 under low transmission and unstable malaria conditions in Sri Lanka. Int. J. Parasitol. 2007, 37, 199–208. [Google Scholar] [CrossRef]
- Riccio, E.K.; Totino, P.R.; Pratt-Riccio, L.R.; Ennes-Vidal, V.; Soares, I.S.; Rodrigues, M.M.; de Souza, J.M.; Daniel-Ribeiro, C.T.; Ferreira-da-Cruz Mde, F. Cellular and humoral immune responses against the Plasmodium vivax MSP-1(1)(9) malaria vaccine candidate in individuals living in an endemic area in north-eastern Amazon region of Brazil. Malar. J. 2013, 12, 326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Zhao, Z.; Zhang, X.; Li, X.; Zhu, M.; Li, P.; Yang, Z.; Wang, Y.; Yan, G.; Shang, H.; et al. Naturally Acquired Antibody Responses to Plasmodium vivax and Plasmodium falciparum Merozoite Surface Protein 1 (MSP1) C-Terminal 19 kDa Domains in an Area of Unstable Malaria Transmission in Southeast Asia. PLoS ONE 2016, 11, e0151900. [Google Scholar] [CrossRef] [PubMed]
- Punnath, K.; Dayanand, K.K.; Midya, V.; Chandrashekar, V.N.; Achur, R.N.; Kakkilaya, S.B.; Ghosh, S.K.; Kumari, S.N.; Gowda, D.C. Acquired antibody responses against merozoite surface protein-119 antigen during Plasmodium falciparum and P. vivax infections in South Indian city of Mangaluru. J. Parasit. Dis. 2020, 45, 1–15. [Google Scholar] [CrossRef]
- Kang, J.-M.; Ju, H.-L.; Kang, Y.-M.; Lee, D.-H.; Moon, S.-U.; Sohn, W.-M.; Park, J.-W.; Kim, T.-S.; Na, B.-K. Genetic polymorphism and natural selection in the C-terminal 42 kDa region of merozoite surface protein-1 among Plasmodium vivax Korean isolates. Malar. J. 2012, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Dias, S.; Longacre, S.; Escalante, A.A.; Udagama-Randeniya, P.V. Genetic diversity and recombination at the C-terminal fragment of the merozoite surface protein-1 of Plasmodium vivax (PvMSP-1) in Sri Lanka. Infect. Genet. Evol. 2011, 11, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Parobek, C.M.; Bailey, J.A.; Hathaway, N.J.; Socheat, D.; Rogers, W.O.; Juliano, J.J. Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens. PLoS Negl. Trop. Dis. 2014, 8, e2796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.; Tambo, E.; Su, J.; Fang, Q.; Ruan, W.; Chen, J.H.; Yin, M.B.; Zhou, X.N. Genetic Diversity and Natural Selection in 42 kDa Region of Plasmodium vivax Merozoite Surface Protein-1 from China-Myanmar Endemic Border. Korean J. Parasitol. 2017, 55, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Alanis, A.; Gonzalez-Ceron, L.; Santillan, F.; Ximenez, C.; Sandoval, M.A.; Cerritos, R. Temporal genetic changes in Plasmodium vivax apical membrane antigen 1 over 19 years of transmission in southern Mexico. Parasit Vectors 2017, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Betanzos, A.F.; Abadia, A. Efficacy of a rapid test to diagnose Plasmodium vivax in symptomatic patients of Chiapas, Mexico. Salud Publica Mex. 2005, 47, 282–287. [Google Scholar] [PubMed] [Green Version]
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Wirtz, R.A.; Sina, B.J.; Palomeque, O.L.; Nettel, J.A.; Tsutsumi, V. Plasmodium vivax: A monoclonal antibody recognizes a circumsporozoite protein precursor on the sporozoite surface. Exp. Parasitol. 1998, 90, 203–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, M.H.; Gonzalez-Ceron, L.; Hernandez, J.E.; Nettel, J.A.; Villarreal, C.; Kain, K.C.; Wirtz, R.A. Different prevalences of Plasmodium vivax phenotypes VK210 and VK247 associated with the distribution of Anopheles albimanus and Anopheles pseudopunctipennis in Mexico. Am. J. Trop. Med. Hyg. 2000, 62, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ceron, L.; Martinez-Barnetche, J.; Montero-Solis, C.; Santillan, F.; Soto, A.M.; Rodriguez, M.H.; Espinosa, B.J.; Chavez, O.A. Molecular epidemiology of Plasmodium vivax in Latin America: Polymorphism and evolutionary relationships of the circumsporozoite gene. Malar. J. 2013, 12, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Ceron, L.; Cerritos, R.; Corzo-Mancilla, J.; Santillan, F. Diversity and evolutionary genetics of the three major Plasmodium vivax merozoite genes participating in reticulocyte invasion in southern Mexico. Parasit Vectors 2015, 8, 651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Hudson, R.R.; Kaplan, N.L. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 1985, 111, 147–164. [Google Scholar] [CrossRef]
- Hill, W.G.; Robertson, A. Linkage disequilibrium in finite populations. Theor. Appl. Genet. 1968, 38, 226–231. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
- Muse, S.V.; Gaut, B.S. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol. Biol. Evol. 1994, 11, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 1981, 17, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Wang, D.W.S. Statistical Analysis with ArcView GIS; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 2008, 21, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez, S.; Gonzalez-Ceron, L.; Montoya, A.; Sandoval, M.A.; Torres, M.E.; Cerritos, R. Genetic structure of Plasmodium vivax in Nicaragua, a country in the control phase, based on the carboxyl terminal region of the merozoite surface protein-1. Infect. Genet. Evol. 2016, 40, 324–330. [Google Scholar] [CrossRef]
- Putaporntip, C.; Jongwutiwes, S.; Sakihama, N.; Ferreira, M.U.; Kho, W.G.; Kaneko, A.; Kanbara, H.; Hattori, T.; Tanabe, K. Mosaic organization and heterogeneity in frequency of allelic recombination of the Plasmodium vivax merozoite surface protein-1 locus. Proc. Natl. Acad. Sci. USA 2002, 99, 16348–16353. [Google Scholar] [CrossRef] [Green Version]
- Putaporntip, C.; Jongwutiwes, S.; Seethamchai, S.; Kanbara, H.; Tanabe, K. Intragenic recombination in the 3′ portion of the merozoite surface protein 1 gene of Plasmodium vivax. Mol. Biochem. Parasitol. 2000, 109, 111–119. [Google Scholar] [CrossRef]
- Zeyrek, F.Y.; Tachibana, S.-I.; Yuksel, F.; Doni, N.; Palacpac, N.; Arisue, N.; Horii, T.; Coban, C.; Tanabe, K. Limited Polymorphism of the Plasmodium vivax Merozoite Surface Protein 1 Gene in Isolates from Turkey. Am. J. Trop. Med. Hyg. 2010, 83, 1230–1237. [Google Scholar] [CrossRef] [Green Version]
- Thakur, A.; Alam, M.T.; Sharma, Y.D. Genetic diversity in the C-terminal 42kDa region of merozoite surface protein-1 of Plasmodium vivax (PvMSP-1(42)) among Indian isolates. Acta Trop. 2008, 108, 58–63. [Google Scholar] [CrossRef]
- Sheikh, I.H.; Kaushal, D.C.; Singh, V.; Kumar, N.; Chandra, D.; Kaushal, N.A. Cloning, overexpression and characterization of soluble 42kDa fragment of merozoite surface protein-1 of Plasmodium vivax. Protein Expr. Purif. 2014, 103, 64–74. [Google Scholar] [CrossRef]
- Jongwutiwes, S.; Putaporntip, C.; Hughes, A.L. Bottleneck effects on vaccine-candidate antigen diversity of malaria parasites in Thailand. Vaccine 2010, 28, 3112–3117. [Google Scholar] [CrossRef] [Green Version]
- Ng, L.C.; Lee, K.S.; Tan, C.H.; Ooi, P.L.; Lam-Phua, S.G.; Lin, R.; Pang, S.C.; Lai, Y.L.; Solhan, S.; Chan, P.P.; et al. Entomologic and molecular investigation into Plasmodium vivax transmission in Singapore, 2009. Malar. J. 2010, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Han, E.-T.; Wang, Y.; Lim, C.S.; Cho, J.H.; Chai, J.-Y. Genetic diversity of the malaria vacine candidate merozoite surface protein 1 gene of Plasmodium vivax field isolates in Republic of Korea. Parasitol. Res. 2011, 109, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlton, J.M.; Adams, J.H.; Silva, J.C.; Bidwell, S.L.; Lorenzi, H.; Caler, E.; Crabtree, J.; Angiuoli, S.V.; Merino, E.F.; Amedeo, P.; et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008, 455, 757–763. [Google Scholar] [CrossRef]
- Joy, D.A.; Gonzalez-Ceron, L.; Carlton, J.M.; Gueye, A.; Fay, M.; McCutchan, T.F.; Su, X.Z. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol. Biol. Evol. 2008, 25, 1245–1252. [Google Scholar] [CrossRef] [Green Version]
- Cerritos, R.; Gonzalez-Ceron, L.; Nettel, J.A.; Wegier, A. Genetic structure of Plasmodium vivax using the merozoite surface protein 1 icb5-6 fragment reveals new hybrid haplotypes in southern Mexico. Malar. J. 2014, 13, 35. [Google Scholar] [CrossRef] [Green Version]
- Hupalo, D.N.; Luo, Z.; Melnikov, A.; Sutton, P.L.; Rogov, P.; Escalante, A.; Vallejo, A.F.; Herrera, S.; Arevalo-Herrera, M.; Fan, Q.; et al. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax. Nat. Genet. 2016, 48, 953–958. [Google Scholar] [CrossRef]
- Gonzalez-Ceron, L.; Mu, J.; Santillan, F.; Joy, D.; Sandoval, M.A.; Camas, G.; Su, X.; Choy, E.V.; Torreblanca, R. Molecular and epidemiological characterization of Plasmodium vivax recurrent infections in southern Mexico. Parasit Vectors 2013, 6, 109. [Google Scholar] [CrossRef] [Green Version]
- Bousema, T.; Drakeley, C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 2011, 24, 377–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, M.U.; Karunaweera, N.D.; da Silva-Nunes, M.; da Silva, N.S.; Wirth, D.F.; Hartl, D.L. Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J. Infect. Dis. 2007, 195, 1218–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Cerón, L.; Rodríguez, M.H.; Ovilla-Muñoz, M.T.; Santillán-Valenzuela, F.; Hernández-Ávila, J.E.; Rodríguez, M.C.; Martínez-Barnetche, J.; Villarreal-Treviño, C. Ookinete-Specific Genes and 18S SSU rRNA Evidenced in Plasmodium vivax Selection and Adaptation by Sympatric Vectors. Front. Genet. 2020, 10, 1362. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ceron, L.; Rodriguez, M.H.; Sandoval, M.A.; Santillan, F.; Galindo-Virgen, S.; Betanzos, A.F.; Rosales, A.F.; Palomeque, O.L. Effectiveness of combined chloroquine and primaquine treatment in 14 days versus intermittent single dose regimen, in an open, non-randomized, clinical trial, to eliminate Plasmodium vivax in southern Mexico. Malar. J. 2015, 14, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naw, H.; Kang, J.M.; Moe, M.; Lee, J.; Le, H.G.; Vo, T.C.; Mya, Y.Y.; Myint, M.K.; Htun, Z.T.; Kim, T.S.; et al. Temporal Changes in the Genetic Diversity of Plasmodium vivax Merozoite Surface Protein-1 in Myanmar. Pathogens 2021, 10, 916. [Google Scholar] [CrossRef] [PubMed]
- Zeyrek, F.Y.; Babaoglu, A.; Demirel, S.; Erdogan, D.D.; Ak, M.; Korkmaz, M.; Coban, C. Analysis of Naturally Acquired Antibody Responses to the 19-kd C-Terminal Region of Merozoite Surface Protein-1 of Plasmodium vivax from Individuals in Sanliurfa, Turkey. Am. J. Trop. Med. Hyg. 2008, 78, 729–732. [Google Scholar] [CrossRef]
- Longley, R.J.; White, M.T.; Takashima, E.; Morita, M.; Kanoi, B.N.; Li Wai Suen, C.S.N.; Betuela, I.; Kuehn, A.; Sripoorote, P.; Franca, C.T.; et al. Naturally acquired antibody responses to more than 300 Plasmodium vivax proteins in three geographic regions. PLoS Negl. Trop. Dis. 2017, 11, e0005888. [Google Scholar] [CrossRef] [Green Version]
- Dinzouna-Boutamba, S.D.; Lee, S.; Son, U.H.; Song, S.M.; Yun, H.S.; Joo, S.Y.; Kwak, D.; Rhee, M.H.; Chung, D.I.; Hong, Y.; et al. Distribution of Antibodies Specific to the 19-kDa and 33-kDa Fragments of Plasmodium vivax Merozoite Surface Protein 1 in Two Pathogenic Strains Infecting Korean Vivax Malaria Patients. Osong Public Health Res. Perspect. 2016, 7, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Murhandarwati, E.E.H.; Herningtyas, E.H.; Puspawati, P.; Mau, F.; Chen, S.B.; Shen, H.M.; Chen, J.H. Genetic diversity of Merozoite surface protein 1-42 (MSP1-42) fragment of Plasmodium vivax from Indonesian isolates: Rationale implementation of candidate MSP1 vaccine. Infect. Genet. Evol. 2020, 85, 104573. [Google Scholar] [CrossRef]
Period (Years) | Genetic Diversity | Recombination | Natural Selection | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | M | S | H | Hd (SD) | π (SD) | θ (SD) | Rm | R2 | dN | dS | dN/dS | Z-Test p Value | Tajima’s D | |
1993–2001 | 31 | 60 | 54 | 10 | 0.798 (0.062) | 0.0196 (0.002) | 0.0144 (0.002) | 8 | 0.350 | 38 | 6 | 0.556 | 0.290 | 0.831 |
2002–2004 | 57 | 57 | 51 | 6 | 0.727 (0.030) | 0.0209 (0.001) | 0.0118 (0.001) | 7 | 0.357 | 37 | 7 | 1.151 | 0.126 | 1.981 |
2005–2007 | 54 | 61 | 54 | 12 | 0.834 (0.027) | 0.0210 (0.001) | 0.0126 (0.001) | 10 | 0.393 | 37 | 8 | 1.282 | 0.101 | 1.810 |
2008–2011 | 56 | 54 | 48 | 6 | 0.697 (0.041) | 0.0205 (0.001) | 0.0111 (0.001) | 7 | 0.420 | 36 | 5 | 1.217 | 0.113 | 2.161 * |
Full period | 198 | 64 | 57 | 17 | 0.802 (0.014) | 0.0219 (0.001) | 0.0104 (0.001) | 12 | 0.332 | 37 | 7 | 1.108 | 0.135 | 2.650 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Alanis, A.; González-Cerón, L.; Santillán-Valenzuela, F.; Ximenez, C.; Sandoval-Bautista, M.A.; Cerritos, R. Spatiotemporal Changes in Plasmodium vivax msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase. Microorganisms 2022, 10, 186. https://doi.org/10.3390/microorganisms10010186
Flores-Alanis A, González-Cerón L, Santillán-Valenzuela F, Ximenez C, Sandoval-Bautista MA, Cerritos R. Spatiotemporal Changes in Plasmodium vivax msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase. Microorganisms. 2022; 10(1):186. https://doi.org/10.3390/microorganisms10010186
Chicago/Turabian StyleFlores-Alanis, Alejandro, Lilia González-Cerón, Frida Santillán-Valenzuela, Cecilia Ximenez, Marco A. Sandoval-Bautista, and Rene Cerritos. 2022. "Spatiotemporal Changes in Plasmodium vivax msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase" Microorganisms 10, no. 1: 186. https://doi.org/10.3390/microorganisms10010186
APA StyleFlores-Alanis, A., González-Cerón, L., Santillán-Valenzuela, F., Ximenez, C., Sandoval-Bautista, M. A., & Cerritos, R. (2022). Spatiotemporal Changes in Plasmodium vivax msp142 Haplotypes in Southern Mexico: From the Control to the Pre-Elimination Phase. Microorganisms, 10(1), 186. https://doi.org/10.3390/microorganisms10010186