Effect of Fluidized Bed Drying, Matrix Constituents and Structure on the Viability of Probiotic Lactobacillus paracasei ATCC 55544 during Storage at 4 °C, 25 °C and 37 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Growth and Cell Harvesting Conditions
2.2. Enumeration of Viable Bacteria
2.3. Fluidized Bed Drying
2.4. Water Activity Measurement
2.5. Moisture Content
2.6. Packaging and Storage
2.7. Scanning Electron Microscopy
2.8. Confocal Laser Scanning Microscopy
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO/WHO. Evaluation of Health and Nutritional Properties of Powder Milk and Live Lactic Acid Bacteria; WHO: Geneva, Switzerland, 2001; Available online: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf (accessed on 29 December 2021).
- Pathmakanthan, S.; Li, C.K.F.; Cowie, J.; Hawkey, C.J. Lactobacillus plantarum 299: Beneficial in vitro immunomodulation in cells extracted from inflamed human colon. J. Gastroenterol. Hepatol. 2004, 19, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Goderska, K.; Czarnecki, Z. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Pol. J. Microbiol. 2008, 57, 135–140. [Google Scholar] [PubMed]
- Iyer, C.; Kailasapathy, K. Effect of co-encapsulation of probiotics with prebiotics on increasing the viability of encapsulated bacteria under in vitro acidic and bile salt conditions and in yogurt. J. Food Sci. 2005, 70, M18–M23. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Sodini, I.; Lucas, A.; Oliveira, M.N.; Remeuf, F.; Corrieu, G. Effect of Milk Base and Starter Culture on Acidification, Texture, and Probiotic Cell Counts in Fermented Milk Processing. J. Dairy Sci. 2002, 85, 2479–2488. [Google Scholar] [CrossRef]
- Saxelin, M.; Grenov, B.; Svensson, U.; Fondén, R.; Reniero, R.; Mattila-Sandholm, T. The technology of probiotics. Trends Food Sci. Technol. 1999, 10, 387–392. [Google Scholar] [CrossRef]
- Anal, A.K.; Singh, H. Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 2007, 18, 240–251. [Google Scholar] [CrossRef]
- Poddar, D.; Nag, A.; Das, S.; Singh, H. Stabilization of Probiotics for Industrial Application. In Innovation in Healthy and Functional Foods; CRC Press: Boca Raton, FL, USA, 2016; pp. 286–321. [Google Scholar]
- Fowler, A.; Toner, M. Cryo-injury and biopreservation. Ann. N. Y. Acad. Sci. 2005, 1066, 119–135. [Google Scholar] [CrossRef]
- Kailasapathy, K. Microencapsulation of probiotic bacteria: Technology and potential applications. Curr. Issues Intest. Microbiol. 2002, 3, 39–48. [Google Scholar]
- Caron, C. Commercial Production of Baker’s Yeast and Wine Yeast. In Enzymes, Biomass, Food and Feed; Reed, G., Nagodawithana, T.W., Eds.; VCH: Weinheim, Germany, 1995; pp. 322–351. [Google Scholar]
- Poddar, D.; Das, S.; Jones, G.; Palmer, J.; Jameson, G.B.; Haverkamp, R.G.; Singh, H. Stability of probiotic Lactobacillus paracasei during storage as affected by the drying method. Int. Dairy J. 2014, 39, 1–7. [Google Scholar] [CrossRef]
- Crowe, J.H.; Carpenter, J.F.; Crowe, L.M. The role of vitrification in anhydrobiosis. Ann. Rev. Physiol. 1998, 60, 73–103. [Google Scholar] [CrossRef]
- Miao, S.; Mills, S.; Stanton, C.; Fitzgerald, G.F.; Roos, Y.; Ross, R.P. Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci. Technol. 2008, 88, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Strasser, S.; Neureiter, M.; Geppl, M.; Braun, R.; Danner, H. Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J. Appl. Microbiol. 2009, 107, 167–177. [Google Scholar] [CrossRef]
- Sun, W.Q.; Leopold, A.C. Cytoplasmic vitrification acid survival of anhydrobiotic organisms. Comp. Biochem. Physiol. Part A-Physiol. 1997, 117, 327–333. [Google Scholar] [CrossRef]
- Haque, M.K.; Roos, Y.H. Water sorption and plasticization behavior of spray-dried lactose/protein mixtures. J. Food Sci. 2004, 69, E384–E391. [Google Scholar] [CrossRef]
- Jouppila, K.; Roos, Y.H. Water Sorption and Time-Dependent Phenomena of Milk Powders. J. Dairy Sci. 1994, 77, 1798–1808. [Google Scholar] [CrossRef]
- Shrestha, A.K.; Howes, T.; Adhikari, B.P.; Wood, B.J.; Bhandari, B.R. Effect of protein concentration on the surface composition, water sorption and glass transition temperature of spray-dried skim milk powders. Food Chem. 2007, 104, 1436–1444. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Chen, X.D.; Pearce, D. On the mechanisms of surface formation and the surface compositions of industrial milk powders. Dry. Technol. 2003, 21, 265–278. [Google Scholar] [CrossRef]
- Knudsen, J.C.; Antanuse, H.S.; Risbo, J.; Skibsted, L.H. Induction time and kinetics of crystallization of amorphous lactose, infant formula and whole milk powder as studied by isothermal differential scanning calorimetry. Milchwissenschaft 2002, 57, 543–546. [Google Scholar]
- Lahtinen, S.J.; Ouwehand, A.C.; Salminen, S.J.; Forssell, P.; Myllärinen, P. Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett. Appl. Microbiol. 2007, 44, 500–505. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, B.M.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 2004, 96, 1024–1039. [Google Scholar] [CrossRef] [PubMed]
- Poddar, D.; de Jonge, M.D.; Howard, D.L.; Palmer, J.; Ainscough, E.W.; Singh, H.; Haverkamp, R.G.; Jameson, G.B. Manganese accumulation in probiotic Lactobacillus paracasei ATCC 55544 analyzed by synchrotron X-ray fluorescence microscopy and impact of accumulation on the bacterial viability following encapsulation. Food Res. Int. 2021, 147, 110528. [Google Scholar] [CrossRef] [PubMed]
- Bayrock, D.; Ingledew, W.M. Fluidized bed drying of baker’s yeast: Moisture levels, drying rates, and viability changes during drying. Food Res. Int. 1997, 30, 407–415. [Google Scholar] [CrossRef]
- Isengard, H.D. Water determination—Scientific and economic dimensions. Food Chem. 2008, 106, 1393–1398. [Google Scholar] [CrossRef]
- Simpson, P.J.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J. Appl. Microbiol. 2005, 99, 493–501. [Google Scholar] [CrossRef]
- Roszak, D.B.; Colwell, R.R. Metabolic activity of bacterial cells enumerated by direct viable count. Appl. Environ. Microbiol. 1987, 53, 2889–2893. [Google Scholar] [CrossRef] [Green Version]
- Swope, K.L.; Flickinger, M.C. The use of confocal scanning laser microscopy and other tools to characterize Escherichia coli in a high-cell-density synthetic biofilm. Biotechnol. Bioeng. 1996, 52, 340–356. [Google Scholar] [CrossRef]
- McKenna, A.B. Examination of whole milk powder by confocal laser scanning microscopy. J. Dairy Res. 1997, 64, 423–432. [Google Scholar] [CrossRef]
- Auty, M.A.E.; Twomey, M.; Guinee, T.P.; Mulvihill, D.M. Development and application of confocal scanning laser microscopy methods for studying the distribution of fat and protein in selected dairy products. J. Dairy Res. 2001, 68, 417–427. [Google Scholar] [CrossRef]
- Gardiner, G.E.; O’Sullivan, E.; Kelly, J.; Auty, M.A.E.; Fitzgerald, G.F.; Collins, J.K.; Ross, R.P.; Stanton, C. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl. Environ. Microbiol. 2000, 66, 2605–2612. [Google Scholar] [CrossRef] [Green Version]
- Bruno, F.A.; Shah, N.P. Viability of two freeze-dried strains of Bifidobacterium and of commercial preparations at various temperatures during prolonged storage. J. Food Sci. 2003, 68, 2336–2339. [Google Scholar] [CrossRef]
- Gunning, A.P.; Kirby, A.R.; Morris, V.J.; Wells, B.; Brooker, B.E. Imaging bacterial polysaccharides by AFM. Polym. Bull. 1995, 34, 615–619. [Google Scholar] [CrossRef]
- Coulibaly, I.; Amenan, A.Y.; Lognay, G.; Fauconnier, M.L.; Thonart, P. Survival of freeze-dried Leuconostoc mesenteroides and Lactobacillus plantarum related to their cellular fatty acids composition during storage. Appl. Biochem. Biotechnol. 2009, 157, 70–84. [Google Scholar] [CrossRef]
- Raharjo, S.; Sofos, J.N. Methodology for measuring malonaldehyde as a product of lipid peroxidation in muscle tissues: A review. Meat Sci. 1993, 35, 145–169. [Google Scholar] [CrossRef]
- Hsiao, H.C.; Lian, W.C.; Chou, C.C. Effect of packaging conditions and temperature on viability of microencapsulated Bifidobacteria during storage. J. Sci. Food Agric. 2004, 84, 134–139. [Google Scholar] [CrossRef]
- Nag, A.; Waterland, M.; Janssen, P.; Anderson, R.; Singh, H. Importance of intact secondary protein structures of cell envelopes and glass transition temperature of the stabilization matrix on the storage stability of probiotics. Food Res. Int. 2019, 123, 198–207. [Google Scholar] [CrossRef]
- Thomsen, M.K.; Jespersen, L.; Sjøstrøm, K.; Risbo, J.; Skibsted, L.H. Water activity—Temperature state diagram of amorphous lactose. J. Agric. Food Chem. 2005, 53, 9182–9185. [Google Scholar] [CrossRef]
- Crittenden, R.; Weerakkody, R.; Sanguansri, L.; Augustin, M. Synbiotic microcapsules that enhance microbial viability during non-refrigerated storage and gastrointestinal transit. Appl. Environ. Microbiol. 2006, 72, 2280–2282. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [Green Version]
- Zivkovic, M.; Miljkovic, M.S.; Ruas-Madiedo, P.; Markelic, M.B.; Veljovic, K.; Tolinacki, M.; Soković, S.; Korać, A.; Golic, N. EPS-SJ Exopolysaccharide Produced by the Strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 Is Involved in Adhesion to Epithelial Intestinal Cells and Decrease on E. coli Association to Caco-2 Cells. Front. Microbial. 2016, 7, 286. [Google Scholar] [CrossRef] [Green Version]
Dye | Excitation/Bandpass Filter | Function | Reference |
---|---|---|---|
Acridine Orange | 488/500–540 | To stain live, recoverable, growth responsive, metabolically active, dormant and active cells | [30] |
Propidium iodide | 488/550–620 | To stain dead cells | [31] |
Nile blue | 488/550–620 | To stain fat | [32] |
Fast Green | 633/650–700 | To stain protein | [33] |
SL/No. | Matrix | Water Activity (aw) | Moisture (%) |
---|---|---|---|
1 | MPI | 0.303 ± 0.010 | 7.96 ± 0.05 |
2 | MPI | 0.403 ± 0.010 | 8.82 ± 0.08 |
3 | MPI | 0.510 ± 0.001 | 11.60 ± 0.12 |
4 | SMP | 0.291 ± 0.002 | 7.26 ± 0.04 |
5 | SMP | 0.395 ± 0.004 | 8.52 ± 0.08 |
6 | SMP | 0.495 ± 0.005 | 12.73 ± 0.13 |
7 | WMP | 0.296 ± 0.002 | 5.19 ± 0.07 |
8 | WMP | 0.396 ± 0.009 | 6.22 ± 0.27 |
9 | WMP | 0.487 ± 0.001 | 10.41 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poddar, D.; Palmer, J.; Das, S.; Gaare, M.; Nag, A.; Singh, H. Effect of Fluidized Bed Drying, Matrix Constituents and Structure on the Viability of Probiotic Lactobacillus paracasei ATCC 55544 during Storage at 4 °C, 25 °C and 37 °C. Microorganisms 2022, 10, 74. https://doi.org/10.3390/microorganisms10010074
Poddar D, Palmer J, Das S, Gaare M, Nag A, Singh H. Effect of Fluidized Bed Drying, Matrix Constituents and Structure on the Viability of Probiotic Lactobacillus paracasei ATCC 55544 during Storage at 4 °C, 25 °C and 37 °C. Microorganisms. 2022; 10(1):74. https://doi.org/10.3390/microorganisms10010074
Chicago/Turabian StylePoddar, Devastotra, Jon Palmer, Shantanu Das, Manju Gaare, Arup Nag, and Harjinder Singh. 2022. "Effect of Fluidized Bed Drying, Matrix Constituents and Structure on the Viability of Probiotic Lactobacillus paracasei ATCC 55544 during Storage at 4 °C, 25 °C and 37 °C" Microorganisms 10, no. 1: 74. https://doi.org/10.3390/microorganisms10010074
APA StylePoddar, D., Palmer, J., Das, S., Gaare, M., Nag, A., & Singh, H. (2022). Effect of Fluidized Bed Drying, Matrix Constituents and Structure on the Viability of Probiotic Lactobacillus paracasei ATCC 55544 during Storage at 4 °C, 25 °C and 37 °C. Microorganisms, 10(1), 74. https://doi.org/10.3390/microorganisms10010074