The Azurin Coding Gene: Origin and Phylogenetic Distribution
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Distribution of Azurin Coding Genes
3.2. Phylogenetic Analysis of Azurin
3.3. Azurin Operon Prediction in Selected Organisms
3.4. Azurin Conserved Domains Search and Analyzes
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nauts, H.C.; Swift, W.E.; Coley, B.L. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1996, 6, 205–216. [Google Scholar]
- Wiemann, B.; Starnes, C.O. Coley’s toxins, tumor necrosis factor and cancer research: A historical perspective. Pharmacol. Ther. 1994, 6, 529–556. [Google Scholar] [CrossRef]
- Bernardes, N.; Seruca, R.; Chakrabarty, A.M.; Fialho, A.M. Microbial-based therapy of cancer: Current progress and future prospects. Bioeng. Bugs 2010, 1, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the use of therapeutic peptides for cancer treatment. J. Biomed. Sci. 2017, 2, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpiński, T.M.; Adamczak, A. Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics 2018, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Sykes, A.G. Active-site properties of the blue copper proteins. Adv. Inorg. Chem. 1991, 36, 377–408. [Google Scholar]
- Baker, E.N. Copper proteins with type 1 sites. In Encyclopedia of Inorganic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 883–923. [Google Scholar]
- De Rienzo, F.; Gabdoulline, R.R.; Menziani, M.C.; Wade, R.C. Blue copper proteins: A comparative analysis of their molecular interaction properties. Protein Sci. 2000, 9, 1439–1454. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Davidson, V.L. Cupredoxins—A study of how proteins may evolve to use metals for bioenergetic processes. Metallomics 2011, 3, 140–151. [Google Scholar] [CrossRef]
- Malmström, B.G. Rack-induced bonding in blue-copper proteins. Eur. J. Biochem. 1999, 223, 711–718. [Google Scholar] [CrossRef]
- Vijgenboom, E.; Busch, J.E.; Canters, G.W. In vivo studies disprove an obligatory role of azurin in denitrification in Pseudomonas aeruginosa and show that azu expression is under control of rpoS and ANR. Microbiology 1997, 13, 2853–2863. [Google Scholar] [CrossRef] [Green Version]
- Verhoeven, W.; Takeda, Y. The participation of cytochrome c in nitrate reduction. In Inorganic Nitrogen Metabolism; Johns Hopkins Press: Baltimore, MD, USA, 1956. [Google Scholar]
- Horio, T. Terminal oxidation system in bacteria. J. Biochem. 1958, 5, 267–279. [Google Scholar] [CrossRef]
- Mahfouz, M.; Hashimoto, W.; Das Gupta, T.K.; Chakrabarty, A.M. Bacterial proteins and CpG-rich extrachromosomal DNA in potential cancer therapy. Plasmid 2007, 57, 17. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, A.; Khazaei, M.; Avan, A.; Hasanian, S.M.; Cho, W.C.; Soleimanpour, S. p28 Bacterial Peptide, as an Anticancer Agent. Front. Oncol. 2020, 10, 1303. [Google Scholar] [CrossRef] [PubMed]
- Fialho, A.M.; Bernardes, A.; Chakrabarty, A.M. Exploring the anticancer potential of the bacterial protein azurin. AIMS Microbiol. 2016, 2, 292–303. [Google Scholar] [CrossRef]
- Mehta, R.R.; Yamada, T.; Taylor, B.N.; Christov, K.; King, M.L.; Majumdar, D.; Lekmine, F.; Tiruppathi, C.; Shilkaitis, A.; Bratescu, L.; et al. A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis 2011, 1, 355–369. [Google Scholar] [CrossRef]
- Ruseska, I.; Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein. J. Nanotechnol. 2020, 11, 101–123. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhou, J.; Su, Z.; Huang, Y. Bacterial cupredoxin azurin hijacks cellular signaling networks: Protein–protein interactions and cancer therapy. Protein Sci. 2017, 26, 2334–2341. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, S.; Mandal, M. Induction of apoptosis of azurin synthesized from P. aeruginosa MTCC 253 against Dalton’s lymphoma ascites model. Biomed. Pharmacother. 2011, 65, 61–66. [Google Scholar] [CrossRef]
- Yamada, T.; Mehta, R.R.; Lekmine, F.; Christov, K.; King, M.L.; Majumdar, D.; Shilkaitis, A.; Bratescu, L.; Green, A.; Beattie, C.W.; et al. A peptide fragment of azurin induces a p53-mediated cell cycle arrest in human breast cancer cells. Mol. Cancer Ther. 2009, 8, 297–2958. [Google Scholar] [CrossRef] [Green Version]
- Olsson, M.H.; Ryde, U. The influence of axial ligands on the reduction potential of blue copper proteins. J. Biol. Inorg. Chem. 1999, 5, 65–663. [Google Scholar] [CrossRef]
- Inoue, T.; Nishio, N.; Suzuki, S.; Kataoka, K.; Kohzuma, T.; Kai, Y. Crystal Structure Determinations of Oxidized and Reduced Pseudoazurins from Achromobacter cycloclastes: Concerted Movement of Copper Site in Redox Forms with the Rearrangement of Hydrogen Bond at a Remote Histidine. J. Biol. Chem. 1999, 27, 1785–17852. [Google Scholar]
- Barzelighi, H.M.; Bakhshi, B.; Daraei, B.; Fazeli, H.; Esfahani, B.N. Global Sequence Analysis and Expression of Azurin Gene in Different Clinical Specimens of Burn Patients with Pseudomonas aeruginosa Infection. Infect. Drug Resist. 2020, 13, 2261. [Google Scholar] [CrossRef]
- Das, D.; Ainavarapu, S.R.K. Azurin-Derived Peptides: Comparison of Nickel-and Copper-Binding Properties. Inorg. Chem. 2021, 60, 9720–9726. [Google Scholar] [CrossRef]
- Sutherland, I.W.; Wilkinson, J.F. Azurin: A copper protein found in Bordetella. Microbiology 1963, 30, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Dodd, F.E.; Hasnain, S.S.; Hunter, W.N.; Abraham, Z.H.; Debenham, M.; Kanzler, H.; Eldridge, M.; Eady, R.R.; Ambler, R.P.; Smith, B.E. Evidence for two distinct azurins in Alcaligenes xylosoxidans (NCIMB 11015): Potential electron donors to nitrite reductase. Biochemistry 1995, 3, 10180–10186. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westram, R. ARB: A software environment for sequence data. In Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches; de Bruijn, F.J., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 399–406. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e990. [Google Scholar] [CrossRef] [PubMed]
- Taboada, B.; Estrada, K.; Ciria, R.; Merino, E. Operon-mapper: A web server for precise operon identification in bacterial and archaeal genomes. Bioinformatics 2018, 3, 118–120. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 3, W39–W49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, C.E.; Bailey, T.L.; Noble, W.S. FIMO: Scanning for occurrences of a given motif. Bioinformatics 2011, 27, 1017–1018. [Google Scholar] [CrossRef] [Green Version]
- Frith, M.C.; Saunders, N.F.; Kobe, B.; Bailey, T.L. Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput. Biol. 2008, 5, e1000071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hug, L.A.; Baker, B.J.; Anantharaman, K.; Brown, C.T.; Probst, A.J.; Castelle, C.J.; Butterfield, C.N.; Hernsdorf, A.W.; Amano, Y.; Ise, K.; et al. A new view of the tree of life. Nat. Microbiol. 2016, 11, 16048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garizo, A.R.; Castro, F.; Martins, C.; Almeida, A.; Dias, T.P.; Fernardes, F.; Barrias, C.C.; Bernardes, N.; Fialho, A.M.; Sarmento, B. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J. Control Release 2021, 337, 329–332. [Google Scholar] [CrossRef]
- Reissmann, S.; Filatova, M.P. New generation of cell-penetrating peptides: Functionality and potential clinical application. J. Pept. Sci. 2021, 27, e3300. [Google Scholar] [CrossRef] [PubMed]
- Nobre, T.; Campos, M.D.; Lucic-Mercy, E.; Arnholdt-Schmitt, B. Misannotation awareness: A tale of two gene-groups. Front. Plant Sci. 2016, 7, 868. [Google Scholar] [CrossRef] [Green Version]
- Steinegger, M.; Salzberg, S.L. Terminating contamination: Large-scale search identifies more than 2,000,000 contaminated entries in GenBank. Genome Biol. 2020, 21, 115. [Google Scholar] [CrossRef]
- Nabhan, A.R.; Sarkar, I.N. The impact of taxon sampling on phylogenetic inference: A review of two decades of controversy. Brief. Bioinform. 2012, 13, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Bergsten, J. A review of long-branch attraction. Cladistics 2005, 21, 163–193. [Google Scholar] [CrossRef]
- Keese, P.K.; Gibbs, A. Origins of genes: Big bang or continuous creation? Proc. Nat. Acad. Sci. USA 1992, 89, 9489–9493. [Google Scholar] [CrossRef] [Green Version]
- Fani, R.; Fondi, M. Origin and evolution of metabolic pathways. Phys. Life Rev. 2009, 6, 23–52. [Google Scholar] [CrossRef] [PubMed]
- Del Duca, S.; Chioccioli, S.; Vassallo, A.; Castronovo, L.M.; Fani, R. The Role of Gene Elongation in the Evolution of Histidine Biosynthetic Genes. Microorganisms 2020, 8, 732. [Google Scholar] [CrossRef] [PubMed]
- Reunanen, J.; Kainulainen, V.; Huuskonen, L.; Ottman, N.; Belzer, C.; Huhtinen, H.; de Vos, W.M.; Satokari, R. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol. 2015, 81, 3655–3662. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, C.L.J.; Onnerfalt, J.; Xu, J.; Molin, G.; Ahrne´, S.; Thorngren-jerneck, K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity 2012, 20, 2257–2261. [Google Scholar] [CrossRef]
- Png, C.W.; Lind´en, S.K.; Gilshenan, K.S.; Zoetendal, E.G.; McSweeney, C.S.; Sly, L.I.; McGuckin, M.A.; Florin, T.H. Mucolytic bacteria with increased prevalence in IBD mucosa augmentin vitroutilization of mucin by other bacteria. Am. J. Gastroenterol. 2010, 105, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Grenda, A.; Krawczyk, P. Cancer trigger or remedy: Two faces of the human microbiome. Appl. Microbiol. Biotechnol. 2021, 1, 11. [Google Scholar] [CrossRef]
- Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients? Nutrients 2020, 12, 1474. [Google Scholar] [CrossRef]
- Ahmed, F.; Kerna, N.A.; Tulp, O.L. Managing the F: B ratio in DM; a review of the role of firmicutes and bacteroidetes in diabetes mellitus. Adv. Complement. Altern. Med. 2019, 4, 295–298. [Google Scholar]
- Wang, K.; Nakano, K.; Naderi, N.; Bajaj-Elliott, M.; Mosahebi, A. Is the skin microbiota a modifiable risk factor for breast disease?: A systematic review. Breast 2021, 59, 279–285. [Google Scholar] [CrossRef]
- Liu, F.; Li, J.; Guan, Y.; Lou, Y.; Chen, H.; Xu, M.; Deng, D.; Chen, J.; Ni, B.; Zhao, L. Dysbiosis of the Gut Microbiome Is Associated With Tumor Biomarkers in Lung Cancer. Int. J. Biol. Sci. 2019, 15, 2381–2392. [Google Scholar] [CrossRef]
Phylum/Superphylum | n of Genomes | n of Hits | n of Positive Genomes | % of Positive Genomes | |
---|---|---|---|---|---|
A | Proteobacteria | 693,126 | 13,546 | 12,942 | 1.86 |
Acidobacteria | 887 | 26 | 20 | 2.25 | |
FCB group | 15,401 | 1111 | 1038 | 6.73 | |
PVC superphylum | 7365 | 288 | 239 | 3.24 | |
Terrabacteria group | 173,867 | 140 | 123 | 0.07 | |
Class | Proteobacteria | ||||
B | Betaproteobacteria | 19,552 | 5857 | 5397 | 27.60 |
Gammaproteobacteria | 595,179 | 7689 | 7544 | 1.26 | |
Deltaproteobacteria | 2271 | 19 | 19 | 0.83 | |
Alphaproteobacteria | 12,724 | 14 | 14 | 0.11 | |
Epsilonproteobacteria | 63,366 | 0 | 0 | 0 | |
Others | 32 | 0 | 0 | 0 | |
Phylum | FCB group | ||||
C | Bacteroidetes | 14,020 | 1063 | 1034 | 7.37 |
Gemmatimonadetes | 723 | 4 | 4 | 0.55 | |
Others | 658 | 0 | 0 | 0 | |
Phylum | PVCsuperphylum | ||||
D | Verrucomicrobia | 3147 | 287 | 238 | 7.59 |
Planctomycetes | 2200 | 1 | 1 | <0.01 | |
Chlamydiae | 2009 | 0 | 0 | 0 | |
Phylum | Terrabacteriagroup | ||||
E | Chloroflexi | 3388 | 134 | 117 | 3.45 |
Actinobacteria | 21,609 | 6 | 6 | <0.01 | |
Cyanobacteria | 1794 | 0 | 0 | 0 | |
Firmicutes | 145,162 | 0 | 0 | 0 | |
Tenericutes | 1173 | 0 | 0 | 0 | |
Others | 742 | 0 | 0 | 0 |
Genus | n of Hits | Genus | n of Hits |
---|---|---|---|
Pseudomonas | 4313 | Paraglaciecola | 1 |
Dyella | 2 | Steroidobacter | 2 |
Dokdonella | 1 | Xylella | 89 |
Rhodanobacter | 1 | Imhoffiella | 3 |
Ventosimonas | 1 | Methylophaga | 2 |
Halomonas | 9 | Pseudoxanthomonas | 9 |
Alteromonas | 18 | Salinivibrio | 5 |
Oblitimonas | 3 | Alcanivorax | 2 |
Pseudomonadaceae | 4 | Nitrincola | 2 |
Lysobacter | 9 | Kangiella | 3 |
Cellvibrio | 2 | Salinisphaera | 1 |
Pseudoalteromonas | 15 | Fulvimonas | 1 |
Aeromonas | 304 | Pseudoteredinibacter | 2 |
Oceanimonas | 2 | Arenimonas | 1 |
Oceanisphaera | 1 | Pseudofulvimonas | 1 |
Shewanella | 81 | Pseudidiomarina | 1 |
Vibrio | 1432 | Glaciecola | 1 |
Xanthomonas | 566 | Vulcaniibacterium | 1 |
Idiomarina | 6 | Dichelobacter | 1 |
Stenotrophomonas | 267 | Bioreactor sample | 1 |
Luteimonas | 5 |
Phylum/Superphylum | Mean Identity |
---|---|
Acidobacteria | 48% |
Chloroflexi | 41% |
FCB group | 45% |
Proteobacteria | 62% |
PVC superphylym | 44% |
ALL | 38% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gammuto, L.; Chiellini, C.; Iozzo, M.; Fani, R.; Petroni, G. The Azurin Coding Gene: Origin and Phylogenetic Distribution. Microorganisms 2022, 10, 9. https://doi.org/10.3390/microorganisms10010009
Gammuto L, Chiellini C, Iozzo M, Fani R, Petroni G. The Azurin Coding Gene: Origin and Phylogenetic Distribution. Microorganisms. 2022; 10(1):9. https://doi.org/10.3390/microorganisms10010009
Chicago/Turabian StyleGammuto, Leandro, Carolina Chiellini, Marta Iozzo, Renato Fani, and Giulio Petroni. 2022. "The Azurin Coding Gene: Origin and Phylogenetic Distribution" Microorganisms 10, no. 1: 9. https://doi.org/10.3390/microorganisms10010009
APA StyleGammuto, L., Chiellini, C., Iozzo, M., Fani, R., & Petroni, G. (2022). The Azurin Coding Gene: Origin and Phylogenetic Distribution. Microorganisms, 10(1), 9. https://doi.org/10.3390/microorganisms10010009