Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolate Collection
2.2. Genus Identification
2.3. DNA Extraction
2.4. Library Preparation and WGS
2.5. In silico Typing
2.6. De novo Assembly and Quality Control
2.7. Pangenome Analysis
2.8. Variant Calling
2.9. Genetic Traits
2.10. Prophage Analyses
3. Results
3.1. Reproducibility of WGS
3.2. Genetic Diversity of Lm Food Isolates
3.2.1. Genetic Diversity at Sample Level
- Set A
- Set B
- Set C isolates obtained from the same samples
- Set F isolates obtained from the same sample
3.2.2. Genetic Diversity at Plant Level
- Processing Plant 1 (Set C)
- Processing Plant 2 (Set D)
- Processing Plant 3 (Set E)
3.2.3. Genetic Diversity of Fish Isolates (Set F)
4. Discussion
4.1. High Reproducibility of Genome Sequences
4.2. High Range of Diverstiy between Spatially Linked Isolates
4.3. Predominant Isolation of Specific Subtypes from Pangasius Catfish and Salmon Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez-Milian, A.; Payeras-Cifre, A. What Is New in Listeriosis? BioMed Res. Int. 2014, 2014, 358051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority; European Centre for Disease Prevention and Contro. The European Union One Health 2020 Zoonoses Report. EFSA J. 2021, 19, e06971. [Google Scholar]
- Besser, J.; Carleton, H.A.; Gerner-Smidt, P.; Lindsey, R.L.; Trees, E. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin. Microbiol. Infect. 2018, 24, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Struelens, M.J. Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin. Microbiol. Infect. 1996, 2, 2–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uelze, L.; Grützke, J.; Borowiak, M.; Hammerl, J.A.; Juraschek, K.; Deneke, C.; Tausch, S.H.; Malorny, B. Typing methods based on whole genome sequencing data. One Health Outlook 2020, 2, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schürch, A.C.; Arredondo-Alonso, S.; Willems, R.J.L.; Goering, R.V. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. Clin. Microbiol. Infect. 2018, 24, 350–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, A.; Oren, Y.; Kelly, D.; Pascoe, B.; Dunn, S.; Sreecharan, T.; Vehkala, M.; Välimäki, N.; Prentice, M.B.; Ashour, A.; et al. Combined Analysis of Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View into the Evolution of Bacterial Populations. PLoS Genet. 2016, 12, e1006280. [Google Scholar] [CrossRef] [Green Version]
- Rouli, L.; Merhej, V.; Fournier, P.E.; Raoult, D. The bacterial pangenome as a new tool for analysing pathogenic bacteria. New Microbes New Infect. 2015, 7, 72–85. [Google Scholar] [CrossRef] [Green Version]
- Abudahab, K.; Prada, J.M.; Yang, Z.; Bentley, S.D.; Croucher, N.J.; Corander, J.; Aanensen, D.M. PANINI: Pangenome Neighbour Identification for Bacterial Populations. Microb. Genom. 2019, 5, e000220. [Google Scholar] [CrossRef]
- Hyden, P.; Pietzka, A.; Lennkh, A.; Murer, A.; Springer, B.; Blaschitz, M.; Indra, A.; Huhulescu, S.; Allerberger, F.; Ruppitsch, W. Whole genome sequence-based serogrouping of Listeria monocytogenes isolates. J. Biotechnol. 2016, 235, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Ragon, M.; Wirth, T.; Hollandt, F.; Lavenir, R.; Lecuit, M.; Le Monnier, A.; Brisse, S. A new perspective on Listeria monocytogenes evolution. PLoS Pathog. 2008, 4, e1000146. [Google Scholar] [CrossRef] [PubMed]
- Ruppitsch, W.; Pietzka, A.; Prior, K.; Bletz, S.; Fernandez, H.L.; Allerberger, F.; Harmsen, D.; Mellmann, A. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J. Clin. Microbiol. 2015, 53, 2869–2876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Gonzalez-Escalona, N.; Hammack, T.S.; Allard, M.W.; Strain, E.A.; Brown, E.W. Core Genome Multilocus Sequence Typing for Identification of Globally Distributed Clonal Groups and Differentiation of Outbreak Strains of Listeria monocytogenes. Appl. Environ. Microbiol. 2016, 82, 6258–6272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moura, A.; Criscuolo, A.; Pouseele, H.; Maury, M.M.; Leclercq, A.; Tarr, C.; Björkman, J.T.; Dallman, T.; Reimer, A.; Enouf, V.; et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2016, 2, 16185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maury, M.M.; Tsai, Y.-H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Lüth, S.; Kleta, S.; Al Dahouk, S. Whole genome sequencing as a typing tool for foodborne pathogens like Listeria monocytogenes—The way towards global harmonisation and data exchange. Trends Food Sci. Technol. 2018, 73, 67–75. [Google Scholar] [CrossRef]
- Centorotola, G.; Guidi, F.; D’Aurizio, G.; Salini, R.; Di Domenico, M.; Ottaviani, D.; Petruzzelli, A.; Fisichella, S.; Duranti, A.; Tonucci, F.; et al. Intensive Environmental Surveillance Plan for Listeria monocytogenes in Food Producing Plants and Retail Stores of Central Italy: Prevalence and Genetic Diversity. Foods 2021, 10, 1944. [Google Scholar] [CrossRef]
- Szymczak, B.; Szymczak, M.; Trafiałek, J. Prevalence of Listeria species and L. monocytogenes in ready-to-eat foods in the West Pomeranian region of Poland: Correlations between the contamination level, serogroups, ingredients, and producers. Food Microbiol. 2020, 91, 103532. [Google Scholar] [CrossRef]
- Morganti, M.; Scaltriti, E.; Cozzolino, P.; Bolzoni, L.; Casadei, G.; Pierantoni, M.; Foni, E.; Pongolini, S.; Elkins, C.A. Processing-Dependent and Clonal Contamination Patterns of Listeria monocytogenes in the Cured Ham Food Chain Revealed by Genetic Analysis. Appl. Environ. Microbiol. 2016, 82, 822–831. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, S.; López, V.; Villatoro, D.; López, P.; Dávila, J.C.; Martinez-Suarez, J.V. A 3-year surveillance of the genetic diversity and persistence of Listeria monocytogenes in an Iberian pig slaughterhouse and processing plant. Foodborne Pathog. Dis. 2010, 7, 1177–1184. [Google Scholar] [CrossRef]
- López, V.; Villatoro, D.; Ortiz, S.; López, P.; Navas, J.; Dávila, J.C.; Martínez-Suárez, J.V. Molecular tracking of Listeria monocytogenes in an Iberian pig abattoir and processing plant. Meat Sci. 2008, 78, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Lüth, S.; Halbedel, S.; Rosner, B.; Wilking, H.; Holzer, A.; Roedel, A.; Dieckmann, R.; Vincze, S.; Prager, R.; Flieger, A.; et al. Backtracking and forward checking of human listeriosis clusters identified a multiclonal outbreak linked to Listeria monocytogenes in meat products of a single producer. Emerg. Microbes Infect. 2020, 9, 1600–1608. [Google Scholar] [CrossRef] [PubMed]
- Acciari, V.A.; Ruolo, A.; Torresi, M.; Ricci, L.; Pompei, A.; Marfoglia, C.; Valente, F.M.; Centorotola, G.; Conte, A.; Salini, R.; et al. Genetic diversity of Listeria monocytogenes strains contaminating food and food producing environment as single based sample in Italy (retrospective study). Int. J. Food Microbiol. 2022, 366, 109562. [Google Scholar] [CrossRef]
- Pightling, A.W.; Pettengill, J.B.; Luo, Y.; Baugher, J.D.; Rand, H.; Strain, E. Interpreting whole-genome sequence analyses of foodborne bacteria for regulatory applications and outbreak investigations. Front. Microbiol. 2018, 9, 1482. [Google Scholar] [CrossRef] [Green Version]
- Besser, J.M.; Carleton, H.A.; Trees, E.; Stroika, S.G.; Hise, K.; Wise, M.; Gerner-Smidt, P. Interpretation of whole-genome sequencing for enteric disease surveillance and outbreak investigation. Foodborne Pathog. Dis. 2019, 16, 504–512. [Google Scholar] [CrossRef]
- Martín, B.; Perich, A.; Gómez, D.; Yangüela, J.; Rodríguez, A.; Garriga, M.; Aymerich, T. Diversity and distribution of Listeria monocytogenes in meat processing plants. Food Microbiol. 2014, 44, 119–127. [Google Scholar] [CrossRef]
- Pietzka, A.; Allerberger, F.; Murer, A.; Lennkh, A.; Stöger, A.; Cabal Rosel, A.; Huhulescu, S.; Maritschnik, S.; Springer, B.; Lepuschitz, S.; et al. Whole Genome Sequencing Based Surveillance of L. monocytogenes for Early Detection and Investigations of Listeriosis Outbreaks. Front. Public Health 2019, 7, 139. [Google Scholar] [CrossRef]
- Pavlovic, M.; Huber, I.; Konrad, R.; Busch, U. Application of MALDI-TOF MS for the identification of food borne bacteria. Open Microbiol. J. 2013, 7, 135. [Google Scholar] [CrossRef] [Green Version]
- Jünemann, S.; Sedlazeck, F.J.; Prior, K.; Albersmeier, A.; John, U.; Kalinowski, J.; Mellmann, A.; Goesmann, A.; von Haeseler, A.; Stoye, J.; et al. Updating benchtop sequencing performance comparison. Nat. Biotechnol. 2013, 31, 294–296. [Google Scholar] [CrossRef] [Green Version]
- Souvorov, A.; Agarwala, R.; Lipman, D.J. SKESA: Strategic k-mer extension for scrupulous assemblies. Genome Biol. 2018, 19, 153. [Google Scholar] [CrossRef] [Green Version]
- Deneke, C.; Brendebach, H.; Uelze, L.; Borowiak, M.; Malorny, B.; Tausch, S.H. Species-Specific Quality Control, Assembly and Contamination Detection in Microbial Isolate Sequences with AQUAMIS. Genes 2021, 12, 644. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayliss, S.C.; Thorpe, H.A.; Coyle, N.M.; Sheppard, S.K.; Feil, E.J. PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. GigaScience 2019, 8, giz119. [Google Scholar] [CrossRef]
- Deneke, C. Snippysnake—Variant Calling Pipeline with Snippy. Available online: https://gitlab.com/bfr_bioinformatics/snippySnake (accessed on 15 September 2022).
- Seemann, T. Snippy—Rapid Haploid Variant Calling and Core Genome Alignment. Available online: https://github.com/tseemann/snippy (accessed on 15 September 2022).
- Harter, E.; Wagner, E.M.; Zaiser, A.; Halecker, S.; Wagner, M.; Rychli, K.; Drake, H.L. Stress Survival Islet 2, Predominantly Present in Listeria monocytogenes Strains of Sequence Type 121, Is Involved in the Alkaline and Oxidative Stress Responses. Appl. Environ. Microbiol. 2017, 83, e00827-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, S.; Begley, M.; Hill, C.; Gahan, C.G.M. A five-gene stress survival islet (SSI-1) that contributes to the growth of Listeria monocytogenes in suboptimal conditions. J. Appl. Microbiol. 2010, 109, 984–995. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J. The Distribution, Diversity and Functional Characterization of the Listeria Genomic Island 1; University of Manitoba: Winnipeg, MB, Canada, 2011. [Google Scholar]
- Gilmour, M.W.; Graham, M.; van Domselaar, G.; Tyler, S.; Kent, H.; Trout-Yakel, K.M.; Larios, O.; Allen, V.; Lee, B.; Nadon, C. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genom. 2010, 11, 120. [Google Scholar] [CrossRef] [Green Version]
- Palma, F.; Brauge, T.; Radomski, N.; Mallet, L.; Felten, A.; Mistou, M.-Y.; Brisabois, A.; Guillier, L.; Midelet-Bourdin, G. Dynamics of mobile genetic elements of Listeria monocytogenes persisting in ready-to-eat seafood processing plants in France. BMC Genom. 2020, 21, 130. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Ward, T.J.; Jima, D.D.; Parsons, C.; Kathariou, S.; Dudley, E.G. The Arsenic Resistance-Associated Listeria Genomic Island LGI2 Exhibits Sequence and Integration Site Diversity and a Propensity for Three Listeria monocytogenes Clones with Enhanced Virulence. Appl. Environ. Microbiol. 2017, 83, e01189-17. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, F.; Atilano, M.L.; Pombinho, R.; Covas, G.; Gallo, R.L.; Filipe, S.R.; Sousa, S.; Cabanes, D. L-Rhamnosylation of Listeria monocytogenes Wall Teichoic Acids Promotes Resistance to Antimicrobial Peptides by Delaying Interaction with the Membrane. PLoS Pathog. 2015, 11, e1004919. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, A.; Gray, M.; Wiedmann, M.; Boor, K.J. Comparative genomic analysis of the sigB operon in Listeria monocytogenes and in other Gram-positive bacteria. Curr. Microbiol. 2004, 48, 39–46. [Google Scholar] [CrossRef]
- Camargo, A.C.; Moura, A.; Avillan, J.; Herman, N.; McFarland, A.P.; Sreevatsan, S.; Call, D.R.; Woodward, J.J.; Lecuit, M.; Nero, L.A. Whole-genome sequencing reveals Listeria monocytogenes diversity and allows identification of long-term persistent strains in Brazil. Environ. Microbiol. 2019, 21, 4478–4487. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Liang, Y.; Lynch, K.H.; Dennis, J.J.; Wishart, D.S. PHAST: A fast phage search tool. Nucleic Acids Res. 2011, 39, W347–W352. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.A.; Thürmer, A.; Flieger, A.; Halbedel, S. Complete Genome Sequences of Three Clinical Listeria monocytogenes Sequence Type 8 Strains from Recent German Listeriosis Outbreaks. Microbiol. Resour. Announc. 2021, 10, e00303-21. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, K.K.; Ivy, R.A.; Ho, A.J.; Fortes, E.D.; Njaa, B.L.; Peters, R.M.; Wiedmann, M. inlA Premature Stop Codons Are Common among Listeria monocytogenes Isolates from Foods and Yield Virulence-Attenuated Strains That Confer Protection against Fully Virulent Strains. Appl. Environ. Microbiol. 2008, 74, 6570–6583. [Google Scholar] [CrossRef] [Green Version]
- Balandyté, L.; Brodard, I.; Frey, J.; Oevermann, A.; Abril, C. Ruminant rhombencephalitis-associated Listeria monocytogenes alleles linked to a multilocus variable-number tandem-repeat analysis complex. Appl. Environ. Microbiol. 2011, 77, 8325–8335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, X.H.; Fiedler, F.; Lan, Z.; Kathariou, S. A novel serotype-specific gene cassette (gltA-gltB) is required for expression of teichoic acid-associated surface antigens in Listeria monocytogenes of serotype 4b. J. Bacteriol. 2001, 183, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Suo, Y.; Shi, C.; Szlavik, J.; Shi, X.-M.; Knøchel, S. Mutations in gltB and gltC reduce oxidative stress tolerance and biofilm formation in Listeria monocytogenes 4b G. Int. J. Food Microbiol. 2013, 163, 223–230. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Y.; Pettengill, J.; Timme, R.; Melka, D.; Doyle, M.; Jackson, A.; Parish, M.; Hammack, T.S.; Allard, M.W.; et al. Singleton Sequence Type 382, an Emerging Clonal Group of Listeria monocytogenes Associated with Three Multistate Outbreaks Linked to Contaminated Stone Fruit, Caramel Apples, and Leafy Green Salad. J. Clin. Microbiol. 2017, 55, 931. [Google Scholar] [CrossRef] [Green Version]
- Denton, J.F.; Lugo-Martinez, J.; Tucker, A.E.; Schrider, D.R.; Warren, W.C.; Hahn, M.W. Extensive Error in the Number of Genes Inferred from Draft Genome Assemblies. PLoS Comput. Biol. 2014, 10, e1003998. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, C.; Ko, B.J.; Yoo, D.; Won, S.; Phillippy, A.; Fedrigo, O.; Zhang, G.; Howe, K.; Wood, J.; et al. False gene and chromosome losses affected by assembly and sequence errors. bioRxiv 2021. [Google Scholar] [CrossRef]
- Uelze, L.; Borowiak, M.; Bönn, M.; Brinks, E.; Deneke, C.; Hankeln, T.; Kleta, S.; Murr, L.; Stingl, K.; Szabo, K.; et al. German-Wide Interlaboratory Study Compares Consistency, Accuracy and Reproducibility of Whole-Genome Short Read Sequencing. Front. Microbiol. 2020, 11, 573972. [Google Scholar] [CrossRef] [PubMed]
- Harrand, A.S.; Jagadeesan, B.; Baert, L.; Wiedmann, M.; Orsi, R.H.; Dudley, E.G. Evolution of Listeria monocytogenes in a Food Processing Plant Involves Limited Single-Nucleotide Substitutions but Considerable Diversification by Gain and Loss of Prophages. Appl. Environ. Microbiol. 2020, 86, e02493-19. [Google Scholar] [CrossRef] [PubMed]
- Fagerlund, A.; Wagner, E.; Møretrø, T.; Heir, E.; Moen, B.; Rychli, K.; Langsrud, S. Pervasive Listeria monocytogenes Is Common in the Norwegian Food System and Is Associated with Increased Prevalence of Stress Survival and Resistance Determinants. Appl. Environ. Microbiol. 2022, 88, e00861-22. [Google Scholar] [CrossRef]
- Hurley, D.; Luque-Sastre, L.; Parker, C.T.; Huynh, S.; Eshwar, A.K.; Nguyen, S.V.; Andrews, N.; Moura, A.; Fox, E.M.; Jordan, K.; et al. Whole-Genome Sequencing-Based Characterization of 100 Listeria monocytogenes Isolates Collected from Food Processing Environments over a Four-Year Period. mSphere 2019, 4, e00252-19. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Cai, S.; Cheng, J.; Zhang, Y.; Lin, R.; Ye, Q.; Xue, L.; Zeng, H.; Lei, T.; Zhang, S. Distribution, contamination routes, and seasonal influence of persistent Listeria monocytogenes in a commercial fresh Hypsizigus marmoreus production facility. Food Control 2021, 127, 108118. [Google Scholar] [CrossRef]
- Knabel, S.J.; Reimer, A.; Verghese, B.; Lok, M.; Ziegler, J.; Farber, J.; Pagotto, F.; Graham, M.; Nadon, C.A.; Gilmour, M.W. Sequence Typing Confirms that a Predominant Listeria monocytogenes Clone Caused Human Listeriosis Cases and Outbreaks in Canada from 1988 to 2010. J. Clin. Microbiol. 2012, 50, 1748–1751. [Google Scholar] [CrossRef] [Green Version]
- Mäesaar, M.; Mamede, R.; Elias, T.; Roasto, M. Retrospective use of whole-genome sequencing expands the multicountry outbreak cluster of Listeria monocytogenes ST1247. Int. J. Genom. 2021, 2021, 6636138. [Google Scholar] [CrossRef]
- Chou, C.-H.; Silva, J.L.; Wang, C. Prevalence and typing of Listeria monocytogenes in raw catfish fillets. J. Food Prot. 2006, 69, 815–819. [Google Scholar] [CrossRef]
- Gendel, S.M.; Ulaszek, J. Ribotype analysis of strain distribution in Listeria monocytogenes. J. Food Prot. 2000, 63, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Navas, J.; Ortiz, S.; Lopez, P.; Lopez, V.; Martínez-Suárez, V. Different enrichment procedures for recovery of Listeria monocytogenes from raw chicken samples can affect the results of detection (by chromogenic plating or real-time PCR) and lineage or strain identification. J. Food Prot. 2007, 70, 2851–2854. [Google Scholar] [CrossRef] [PubMed]
- Tham, W.; Lopez-Valladares, G.; Helmersson, S.; Wennström, S.; Österlund, A.; Danielsson-Tham, M.-L. Occurrence of Genetic Variants of Listeria monocytogenes Strains. Foodborne Pathog. Dis. 2013, 10, 825–826. [Google Scholar] [CrossRef]
- Zamudio, R.; Haigh, R.D.; Ralph, J.D.; De Ste Croix, M.; Tasara, T.; Zurfluh, K.; Kwun, M.J.; Millard, A.D.; Bentley, S.D.; Croucher, N.J.; et al. Lineage-specific evolution and gene flow in Listeria monocytogenes are independent of bacteriophages. Environ. Microbiol. 2020, 22, 5058–5072. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pettengill, J.B.; Pightling, A.; Timme, R.; Allard, M.; Strain, E.; Rand, H. Genetic diversity of Salmonella and Listeria isolates from food facilities. J. Food Prot. 2018, 81, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Leekitcharoenphon, P.; Nielsen, E.M.; Kaas, R.S.; Lund, O.; Aarestrup, F.M. Evaluation of Whole Genome Sequencing for Outbreak Detection of Salmonella enterica. PLoS ONE 2014, 9, e87991. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Holmes, N.; Martinez, E.; Howard, P.; Hill-Cawthorne, G.; Sintchenko, V. It Is Not All about Single Nucleotide Polymorphisms: Comparison of Mobile Genetic Elements and Deletions in Listeria monocytogenes Genomes Links Cases of Hospital-Acquired Listeriosis to the Environmental Source. J. Clin. Microbiol. 2015, 53, 3492–3500. [Google Scholar] [CrossRef] [Green Version]
- Kwon, H.J.; Chen, Z.; Evans, P.; Meng, J.; Chen, Y. Characterization of Mobile Genetic Elements Using Long-Read Sequencing for Tracking Listeria monocytogenes from Food Processing Environments. Pathogens 2020, 9, 822. [Google Scholar] [CrossRef]
- Nguyen, T.A.T.; Jolly, C.M. Global value chain and food safety and quality standards of Vietnam pangasius exports. Aquac. Rep. 2020, 16, 100256. [Google Scholar] [CrossRef]
- Tong Thi, A.N.; Jacxsens, L.; Noseda, B.; Samapundo, S.; Nguyen, B.L.; Heyndrickx, M.; Devlieghere, F. Evaluation of the microbiological safety and quality of Vietnamese Pangasius hypophthalmus during processing by a microbial assessment scheme in combination with a self-assessment questionnaire. Fish. Sci. 2014, 80, 1117–1128. [Google Scholar] [CrossRef]
- Noseda, B.; Tong Thi, A.N.; Rosseel, L.; Devlieghere, F.; Jacxsens, L. Dynamics of microbiological quality and safety of Vietnamese Pangasianodon hypophthalmus during processing. Aquac. Int. 2013, 21, 709–727. [Google Scholar] [CrossRef]
- Tong Thi, A.N.; Arturu, A.M.; Ha, N.C.; Miyamoto, T. Effective operation of food quality management system: A case study from fishery processing. Curr. Res. Nutr. Food Sci. J. 2020, 8, 25–40. [Google Scholar]
- Botzler, R.G.; Cowan, A.B.; Wetzler, T.F. Survival of Listeria monocytogenes in soil and water. J. Wildl. Dis. 1974, 10, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Raschle, S.; Stephan, R.; Stevens, M.J.A.; Cernela, N.; Zurfluh, K.; Muchaamba, F.; Nüesch-Inderbinen, M. Environmental dissemination of pathogenic Listeria monocytogenes in flowing surface waters in Switzerland. Sci. Rep. 2021, 11, 9066. [Google Scholar] [CrossRef] [PubMed]
- Chanpiwat, P.; Sthiannopkao, S.; Widmer, K.; Himeno, S.; Miyataka, H.; Vu, N.-U.; Tran, V.-V.; Pham, T.-T.-N. Assessment of metal and bacterial contamination in cultivated fish and impact on human health for residents living in the Mekong Delta. Chemosphere 2016, 163, 342–350. [Google Scholar] [CrossRef]
- Ngoc, P.T.A.; Meuwissen, M.P.M.; Cong Tru, L.; Bosma, R.H.; Verreth, J.; Lansink, A.O. Economic feasibility of recirculating aquaculture systems in pangasius farming. Aquac. Econ. Manag. 2016, 20, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Cao, G.; Xu, X.; Allard, M.; Li, P.; Brown, E.; Yang, X.; Pan, H.; Meng, J. Evolution and Diversity of Listeria monocytogenes from Clinical and Food Samples in Shanghai, China. Front. Microbiol. 2016, 7, 1138. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.H.; Bang, S.; Kim, K.-W.; Nguyen, M.H.; Dang, D.M. Arsenic in groundwater and sediment in the Mekong River delta, Vietnam. Environ. Pollut. 2010, 158, 2648–2658. [Google Scholar] [CrossRef]
- Bhakta, J.N.; Munekage, Y. Spatial distribution and contamination status of arsenic, cadmium and lead in some coastal shrimp (Macrobrachium rosenbergii) farming ponds of Viet Nam. Pac. J. Sci. Technol. 2010, 11, 606–615. [Google Scholar]
- European Food Safety Authority. Development and implementation of a system for the early identification of emerging risks in food and feed. EFSA J. 2010, 8, 1888. [Google Scholar] [CrossRef]
- Rychli, K.; Wagner, E.M.; Ciolacu, L.; Zaiser, A.; Tasara, T.; Wagner, M.; Schmitz-Esser, S. Comparative genomics of human and non-human Listeria monocytogenes sequence type 121 strains. PLoS ONE 2017, 12, e0176857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieczorek, K.; Bomba, A.; Osek, J. Whole-Genome Sequencing-Based Characterization of Listeria monocytogenes from Fish and Fish Production Environments in Poland. Int. J. Mol. Sci. 2020, 21, 9419. [Google Scholar] [CrossRef] [PubMed]
- Løvdal, T.; Brandal, L.T.; Sundaram, A.Y.M.; Naseer, U.; Roth, B.; Lunestad, B.T. Small-Scale Comparative Genomic Analysis of Listeria monocytogenes Isolated from Environments of Salmon Processing Plants and Human Cases in Norway. Hygiene 2021, 1, 43–55. [Google Scholar] [CrossRef]
- Knudsen, G.M.; Nielsen, J.B.; Marvig, R.L.; Ng, Y.; Worning, P.; Westh, H.; Gram, L. Genome-wide-analyses of Listeria monocytogenes from food-processing plants reveal clonal diversity and date the emergence of persisting sequence types. Environ. Microbiol. Rep. 2017, 9, 428–440. [Google Scholar] [CrossRef] [Green Version]
- Pasquali, F.; Palma, F.; Guillier, L.; Lucchi, A.; De Cesare, A.; Manfreda, G. Listeria monocytogenes Sequence Types 121 and 14 Repeatedly Isolated within One Year of Sampling in a Rabbit Meat Processing Plant: Persistence and Ecophysiology. Front. Microbiol. 2018, 9, 596. [Google Scholar] [CrossRef]
- Schmitz-Esser, S.; Müller, A.; Stessl, B.; Wagner, M. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front. Microbiol. 2015, 6, 380. [Google Scholar] [CrossRef] [Green Version]
- Melero, B.; Manso, B.; Stessl, B.; Hernández, M.; Wagner, M.; Rovira, J.; Rodriguez-Lazaro, D. Distribution and persistence of Listeria monocytogenes in a heavily contaminated poultry processing facility. J. Food Prot. 2019, 82, 1524–1531. [Google Scholar] [CrossRef]
- Fagerlund, A.; Langsrud, S.; Schirmer, B.C.T.; Møretrø, T.; Heir, E. Genome Analysis of Listeria monocytogenes Sequence Type 8 Strains Persisting in Salmon and Poultry Processing Environments and Comparison with Related Strains. PLoS ONE 2016, 11, e0151117. [Google Scholar] [CrossRef] [Green Version]
- Gorski, L.; Cooley, M.B.; Oryang, D.; Carychao, D.; Nguyen, K.; Luo, Y.; Weinstein, L.; Brown, E.; Allard, M.; Mandrell, R.E.; et al. Prevalence and Clonal Diversity of over 1,200 Listeria monocytogenes Isolates Collected from Public Access Waters near Produce Production Areas on the Central California Coast during 2011 to 2016. Appl. Environ. Microbiol. 2022, 88, e00357-22. [Google Scholar] [CrossRef]
Set | Isolation Source | Year of Sampling | No. of Isolates | Isolate IDs | RefSeq Accession No. Reference for SNP Calling |
---|---|---|---|---|---|
Sets with different subcultures of the same sample each | |||||
Set A | Smoked sausage | 2019 | 5 | A01 to A05 | NZ_HG813247.1 NZ_HG813248.1 |
Set B | Blood sausage | 2020 | 4 | B01 to B04 | NC_021824.1 |
Sets of isolates originating from the same processing plant | |||||
Set C | Meat and meat products and environment of processing plant A | 2020 | 12 | C01 to C12 Two isolates per sample: Sample 7: C05 and C06 Sample 8: C07 and C08 Sample 9: C09 and C10 One isolate per sample: C01 to C04, C11, C12 | CT8189: NC_018642.1 CT6572: NC_019556.1 |
Set D | Meat and meat products and vegetarian products of processing plant B | 2016 | 12 | D01 to D12 | CT1248: NZ_CP063381.1 |
Set E | Meat and meat products of processing plant C | Total: 21 | E01 to E21 | CT7504: NZ_CP010346.1 CT13309: NZ_CP007198.1 CT14356: NZ_CP020830.1 | |
2018 | 4 | E01 to E03, E09 | |||
2019 | 2 | E04, E10 | |||
2020 | 15 | E05 to E08, E11 to E21 | |||
Fish Set | |||||
Set F | Fish | Total: 38 | F01 to F38 | ST2: NZ_CP013288.1 ST121: NZ_HG813249.1 NZ_HG813250.1 | |
2012 | 1 | F32 | |||
2016 | 1 | F20 | |||
2017 | 9 | F17, F21, F23, F25 to F29, F36 | |||
2019 | 23 | Two isolates per sample Sample 54: F10 and F11 One isolate per sample: F01 to F09, F12, F14 to F16, F18, F19, F22, F24, F30, F31, F33, F38 | |||
2020 | 4 | F13, F34, F35, F37 |
Set | Sample ID | Isolate ID | Lineage | Serogroup | CC 1 | ST 2 | CT 3 | Gene Profile | Phage Profile (PP) | cgMLST Allelic Distance | Pangenome Gene Differences | SNPs 4 (without Filtering) | SNPs 4 (with Filtering) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Set A | 1 | A01 | II | IIa | CC8 | 8 | 1358 | 1 | PP33 | 0–10 | 0–53 | 0–802 | 0–24 |
A02 | |||||||||||||
A03 | |||||||||||||
A04 | |||||||||||||
A05 | PP34 | ||||||||||||
Set B | 2 | B01 | I | IIb | CC191 | 191 | 13,704 | 2 | PP01 | 4–7 | 1–65 | 4–20 | 4–10 |
B02 | |||||||||||||
B03 | |||||||||||||
B04 | PP02 | ||||||||||||
Set C * | 7 | C05 | I | IVb | CC4 | 4 | 8189 | 3 | PP05 | 1 | 0 | 2 | 2 |
C06 | |||||||||||||
8 | C07 | 0 | 0 | 0 | 0 | ||||||||
C08 | |||||||||||||
9 | C09 | 1.057 | 1 | N/A | N/A | ||||||||
C10 | CC1 | 1 | 6572 | 4 | |||||||||
Set F * | 54 | F10 | I | IVb | CC2 | 2 | 8488 | 12 | PP08 | 13 | 0 | 25 | 25 |
F11 | 8489 |
Set | Sample ID | Isolate ID | Lineage | Serogroup | CC | ST | CT | Gene Profile (GP) | Phage Profile (PP) | cgMLST Allelic Distance | Pangenome Gene Differences | SNPs (without Filtering) | SNPs (with Filtering) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Set C (Plant 1) | 3 | C01 | I | IVb | CC4 | 4 | 8189 | 3 | PP05 | 0–1 | 0–2 | 0–3 | 0–3 |
4 | C02 | ||||||||||||
5 | C03 | ||||||||||||
6 | C04 | ||||||||||||
7 | C05 | ||||||||||||
C06 | |||||||||||||
8 | C07 | ||||||||||||
C08 | |||||||||||||
9 | C09 | ||||||||||||
C10 | CC1 | 1 | 6572 | 4 | 0–1 | 0 | 1–2 | 1–2 | |||||
10 | C11 | ||||||||||||
11 | C12 | ||||||||||||
Set D (Plant 2) | 12 | D01 | II | IIa | CC121 | 121 | 3720 | 7 | PP14 | N/A | N/A | N/A | N/A |
13 | D02 | CC31 | 325 | 2060 | 6 | PP27 | N/A | N/A | N/A | N/A | |||
14 | D03 | CC8 | 8 | 1248 | 5 | PP31 | 0–3 | 0–33 | 0–891 | 0–9 | |||
15 | D04 | ||||||||||||
16 | D05 | ||||||||||||
17 | D06 | PP32 | |||||||||||
18 | D07 | ||||||||||||
19 | D08 | ||||||||||||
20 | D09 | ||||||||||||
21 | D10 | ||||||||||||
22 | D11 | ||||||||||||
23 | D12 | ||||||||||||
Set E (Plant 3) | 24 | E01 | II | IIa | CC121 | 121 | 7523 | 11 | PP22 | N/A | N/A | N/A | N/A |
25 | E02 | CC18 | 18 | 14,356 | 10 | PP24 | 5 | 3 | 11 | N/A | |||
26 | E03 | PP25 | |||||||||||
27 | E04 | CC37 | 37 | 13,309 | 9 | PP29 | 0–1 | 0–1 | 1–4 | 0–4 | |||
28 | E05 | ||||||||||||
29 | E06 | ||||||||||||
30 | E07 | ||||||||||||
31 | E08 | I | IVb | CC6 | 6 | 7504 | 8 | PP02 | 0–5 | 0–80 | 0–8 | 0–8 | |
32 | E09 | PP10 | |||||||||||
33 | E10 | ||||||||||||
34 | E11 | ||||||||||||
35 | E12 | ||||||||||||
36 | E13 | ||||||||||||
37 | E14 | ||||||||||||
38 | E15 | ||||||||||||
39 | E16 | ||||||||||||
40 | E17 | ||||||||||||
41 | E18 | ||||||||||||
42 | E19 | ||||||||||||
43 | E20 | ||||||||||||
44 | E21 |
Set | Sample ID | Isolate ID | Lineage | Serogroup | CC | ST | CT | Gene Profile | Phage Profile (PP) | Allelic Distance | Pangenome Gene Differences | SNPs (without Filtering) | SNPs (with Filtering) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Set F | 45 | F01 1 | I | IIb | CC288 | 330 | 8487 | 16 | PP03 | NA | NA | NA | NA |
46 | F02 1 | CC3 | 3 | 4792 | 17 | PP04 | NA | NA | NA | NA | |||
47 | F03 2 | CC59 | 59 | 9054 | 15 | PP02 | NA | NA | NA | NA | |||
48 | F04 3 | IVb | CC1 | 1 | 8948 | 4 | PP06 | NA | NA | NA | NA | ||
49 | F05 1 | 13,330 | 14 | PP07 | NA | NA | NA | NA | |||||
50 | F06 4 | CC2 | 2 | 4240 | 12 | PP08 | 2–29 | 0–159 | 3–54 | 3–54 | |||
51 | F07 4 | 5312 | |||||||||||
52 | F08 4 | 8488 | |||||||||||
53 | F09 4 | ||||||||||||
54 | F10 4 | ||||||||||||
F11 4 | 8489 | ||||||||||||
55 | F12 4 | ||||||||||||
56 | F13 4 | 14,148 | |||||||||||
57 | F14 4 | 14,725 | |||||||||||
58 | F15 4 | 6639 | 13 | ||||||||||
59 | F16 4 | 13,038 | PP09 | ||||||||||
60 | F17 5 | IVb v. | CC183 | 382 | 2944 | 3 | PP02 | NA | NA | NA | NA | ||
61 | F18 6 | II | IIa | CC101 | 101 | 8424 | 21 | PP11 | NA | NA | NA | NA | |
62 | F19 7 | CC11 | 451 | 13,697 | 19 | PP12 | NA | NA | NA | NA | |||
63 | F20 8 | CC121 | 121 | 2278 | 20 | PP13 | 0–56 | 0–267 | 2–115 | 2–115 | |||
64 | F21 8 | 4295 | PP15 | ||||||||||
65 | F22 9 | PP16 | |||||||||||
66 | F23 8 | 4507 | PP17 | ||||||||||
67 | F24 4 | 9100 | PP18 | ||||||||||
68 | F25 8 | 5554 | |||||||||||
69 | F26 8 | ||||||||||||
70 | F27 8 | ||||||||||||
71 | F28 8 | PP20 | |||||||||||
72 | F29 8 | 7 | PP19 | ||||||||||
73 | F30 10 | 6097 | PP21 | ||||||||||
74 | F31 4 | CC155 | 155 | 2842 | 23 | PP23 | NA | NA | NA | NA | |||
75 | F32 4 | 8952 | NA | NA | NA | NA | |||||||
76 | F33 11 | CC21 | 21 | 8946 | 9 | PP26 | NA | NA | NA | NA | |||
77 | F34 8 | CC37 | 37 | 7559 | 22 | PP28 | NA | NA | NA | NA | |||
78 | F35 7 | CC415 | 394 | 14,488 | 18 | PP30 | NA | NA | NA | NA | |||
79 | F36 8 | IIc | CC9 | 9 | 92 | 24 | PP35 | NA | NA | NA | NA | ||
80 | F37 8 | 1690 | PP36 | NA | NA | NA | NA | ||||||
81 | F38 12 | III | L | CC203 | 1461 | 2761 | 25 | PP37 | NA | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murr, L.; Huber, I.; Pavlovic, M.; Guertler, P.; Messelhaeusser, U.; Weiss, M.; Ehrmann, M.; Tuschak, C.; Bauer, H.; Wenning, M.; et al. Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity. Microorganisms 2022, 10, 2120. https://doi.org/10.3390/microorganisms10112120
Murr L, Huber I, Pavlovic M, Guertler P, Messelhaeusser U, Weiss M, Ehrmann M, Tuschak C, Bauer H, Wenning M, et al. Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity. Microorganisms. 2022; 10(11):2120. https://doi.org/10.3390/microorganisms10112120
Chicago/Turabian StyleMurr, Larissa, Ingrid Huber, Melanie Pavlovic, Patrick Guertler, Ute Messelhaeusser, Manuela Weiss, Matthias Ehrmann, Christian Tuschak, Hans Bauer, Mareike Wenning, and et al. 2022. "Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity" Microorganisms 10, no. 11: 2120. https://doi.org/10.3390/microorganisms10112120
APA StyleMurr, L., Huber, I., Pavlovic, M., Guertler, P., Messelhaeusser, U., Weiss, M., Ehrmann, M., Tuschak, C., Bauer, H., Wenning, M., Busch, U., & Bretschneider, N. (2022). Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity. Microorganisms, 10(11), 2120. https://doi.org/10.3390/microorganisms10112120