Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review
Abstract
:1. Introduction
2. Petroleum Hydrocarbon Types, Sources, and Occurrence in Waste/Wastewater
3. Biogeochemical Iron Cycle and Natural/Anthropogenic Sources of Iron Compounds
4. Anaerobic Hydrocarbon Degradation and the Effect of Iron
5. Fe(III) as Electron Acceptor in Anaerobic Hydrocarbon Degradation
5.1. Axenic Cultures Performing Hydrocarbon Degradation Coupled to Fe(III) Reduction
Substrate | Iron Compounds | Microorganism | Source/Inoculum | Notes | Ref. |
---|---|---|---|---|---|
Benzene | Amorphous Fe(III) oxyhydroxide | Ferroglobus placidus | Hydrothermal vent sediment | Optimum growth at 85 °C. Complete benzene oxidation to CO2. Benzoate, 4-hydroxybenzoate, and phenol also support growth. First report of an axenic Fe(III)-reducing culture degrading benzene. | [108] |
Benzene Toluene | Amorphous Fe(III) oxide | Geobacter strain Ben | Sediments from the Fe(III) reduction zone of a petroleum-contaminated aquifer | Benzene and toluene are oxidized to CO2. Also degrades benzoate. | [109] |
Benzene Toluene | Fe(III) citrate Amorphous Fe(III) oxide | Geobacter metallireducens GS-15T | Freshwater aquatic sediment | Benzene and toluene are oxidized to CO2. Also degrades benzoate, phenol, and p-cresol. Grows with acetate, but not with H2, nor formate. | [109,111,112] |
Toluene | Fe(III)-citrate Fe(III)-pyrophosphate Fe(III)-NTA Amorphous Fe(III) oxide | Geobacter grbiciae strains TACP-2T and TACP-5 (*) | Freshwater aquatic sediment | Oxidizes acetate and other Simple fatty acids, ethanol, H2, and formate. Also oxidizes benzoate. | [113] |
Toluene | Ferrihydrite Amorphous Fe(III) oxyhydroxide Fe(III) citrate | Geobacter toluenoxydans TMJ1 | Tar oil-contaminated aquifer | Electron recovery of 99 ± 14%. Also oxidizes acetate, benzoate, phenol, m- and p-cresol. | [114,115] |
Toluene | Fe(III)-NTA | Georgfuchsia toluolica | Aquifer polluted with BTEX-containing landfill leachate | Toluene degradation rate of 38–40 mmol L−1 d−1. | [116] |
Ethylbenzene | |||||
Toluene | Ferrihydrite Amorphous Fe(III) oxyhydroxide Fe(III) citrate | Desulfitobacterium aromaticivorans UKTLT | Soil of a former coal gasification site | Complete toluene oxidation to CO2. Electron recovery of 93 ± 1%. It also uses acetate, benzoate, phenol, and p-cresol, but not H2. | [115] |
o-Xylene | |||||
Pyrene Benzo[a]pyrene | Fe(III) citrate | Hydrogenophaga sp. PYR1 | PAH-contaminated river sediments | Significant pyrene and benzo[a]pyrene degradation. | [117] |
Phenantrene | Fe(III) citrate | Anaerobic bacteria closely related to Trichococcus alkaliphilus (strain PheF2) | Mixture of petroleum-polluted soil and anaerobic sludge | 100% anaerobic biodegradation of phenanthrene within 10 days of incubation | [118] |
5.2. Complex Microbial Communities Mediating Hydrocarbon Degradation Coupled to Fe(III) Reduction: Enrichment Cultures and Microcosm Studies
Substrate | Iron Compunds | Source/Inoculum | Community Composition | Notes | Ref. |
---|---|---|---|---|---|
Benzene (10 µmol kg−1 sediment) Toluene (10 µmol kg−1 sediment) | Fe(III)-NTA (2 mmol kg−1) | Sediments and groundwater from a petroleum-contaminated aquifer | Not analyzed | NTA adition stimulated biodegradation. No lag phases were observed after adaptation. | [125] |
Benzene (10 µmol L−1) | Fe(III)-NTA (2 mmol L−1) | Sediment and groundwater from a petroleum polluted aquifer | Not analyzed | Fe-NTA stimulated biodegradation. | [130] |
Benzene (3 μmol L−1) | Amorphous Fe(III) (10 mmol L−1) | River sediment | Not analyzed | After 60 days of incubation, the culture was re-fed 4 times, over which degradation was sustained and became faster. | [131] |
Benzene (140 mmol L−1) | Fe(III) oxide (30 mmol L−1) | Sediment from a remote forested area contaminated by a leak in a pipeline | Enriched in members of Geobacteraceae family | Uncultivated Geobacter spp. seem to be related with benzene removal in this aquifer. | [127] |
Benzene (900 µmol L−1) | Amorphous Fe(III) oxide (50 mmol L−1) | Soil of a former coal gasification site | 3 major clone clusters: within the Clostridia (Peptococcaceae) (37%), Deltaproteobacteria (Desulfobulbaceae) (20%), and Actinobacteria (29%) | DNA-SIP was used to identify the microorganisms involved in benzene degradation in an iron-reducing enrichment culture. | [128] |
Toluene (1 mmol L−1) | Fe(III) oxyhydroxide (40 mmol L−1) | Sediment from a tar oil-contaminated aquifer | The dominating labelled phylotype was related to the genus Thermincola | To ensure constantly low in situ-like concentrations, toluene was loaded in amberlite XAD7 absorber resin. | [132] |
Toluene (0.96 mmol L−1) | Fe(III)-NTA (60 mmol L−1) | Contaminated tidal flat sediment | Dominant member affiliated with the Desulfuromonas genus | 100 % toluene degradation in 35 d. DNA-SIP and metagenomic sequencing were used. | [56] |
BTEX (5 mg L−1 each) | Amorphous Fe(III) Goethite (20 mmol L−1 each) | Contaminated river sediment and water | Not analyzed | All BTEX were degraded, in the following order: benzene ≤ p-xylene ≤ (toluene = o-xylene = m-xylene) ≤ ethylbenzene | [133] |
Benzene Toluene Ethylbenzene o-xylene (1 mmol L−1 each) | Amorphous Fe(III) hydroxide (50 mmol L−1) | Groundwater from a tar oil-contaminated former gasworks site | Not analyzed | AQDS accelerated Fe(III) reduction and BTEX oxidation. | [134] |
Benzene (20 µmol L−1) Toluene (100 µmol L−1) o-, m-, p-Xylene (60 µmol L−1 each) | Amorphous Fe(III) oxyhydroxide (10 mmol L−1) | Sediment and groundwater from a polluted iron-reducing aquifer | Not analyzed | Substrate swap suggested that the same group of bacteria could be involved in the removal of more than one BTEX compound. When in a mixture, benzene and toluene were degradaded simultaneouly. | [135] |
Benzene (10–30 µmol L−1) Toluene (300–400 µmol L−1) o-, m-, p-Xylene (300–400 µmol L−1 each) | Amorphous Fe(III) | Sediment and groundwater from a polluted iron-reducing aquifer | Not analyzed | BTX degradation rates in enrichments progressively increased in time. | [136] |
BTEX (15 mg L−1) | FeCl3 (3.58 mmol L−1) | Pristine sediment and groundwater collected from a shallow well | Not analyzed | BTEX and trimethylbenzene isomers were degradaded in microcosms containing both nitrate and Fe(III). | [137] |
BTEX (100 mg L−1) | Goethite Akaganeite (0.1 g L−1 each) | Contaminated aquifer | Concentration not mentioned | BTEX removal was higher with akaganeite (46%, 58%, 59%, and 70 % for benzene, toluene, ethylbenzene, and xylenes, respectively). | [138] |
BTEX (concentration not determined) | Fe(III)-NTA (5 mmol L−1) | Groundwater sample from a BTEX-contaminated aquifer (leakage of a petrol station) | Enriched in Geobacter-related bacteria and a Rhodoferax phylotype | In the laboratory, Rhodoferax-related bacteria were not enriched. Geobacter was readly enriched, but the diversity of BSS gene, both in the enrichments and in the initial groundwater sample, suggested that Geobacter was not a key player in toluene degradation in this site. | [128] |
Substrate | Iron Compunds | Source/Inoculum | Community Composition | Notes | Ref. |
---|---|---|---|---|---|
[C14]Naphthalene (1 µCi) | Fe(III) oxide (9.6 µmol g−1) | Sediments from petroleum-contaminated aquifers | Not analyzed | After 85 days of incubation, around 90% naphtalene degradation. | [124] |
Naphthalene Acenaphthalene Phenanthrene Anthracene Pyrene Fluoranthene (above solubility concentration) | Ferrihydrite | Coal tar-contaminated sediment from a former coal gasification plant | Not analyzed | PAH solubility was enhanced by hydroxypropyl-β-cyclodextrin (HPCD) concentrations up to 5 g L−1. Low HPCD concentrations (0.05–0.5 g L−1) also enhanced phenanthrene mineralization by 25%. The culture was still able to mineralize PAHs at 10 °C. | [139] |
Naphthalene (2 mmol L−1) | Ferrihydrite (50 mmol L−1) | Sediment from an aquifer contaminated with tar oil | Enriched in bacteria belonging to the Peptococcaceae family | 7.5 ± 3 µmol naphthalene degraded after 180 days. Also grows with 1- and 2-methylnaphthalene. | [140] |
Phenanthrene (20–30 mg L−1) | Ferric citrate (20 mmol L−1) | Petroleum-contaminated soil + coking sludge + domestic sludge (5:1:1 as volatile suspended solids) | Bacterial community: Carnobacteriaceae (18%), Geobacteraceae (9%), Anaerolinaceae (9%) Archaeal community: Methanobacteriaceae (28%), Methanosarcinaceae (14%) | At the end of the enrichment process (244 days), phenanthrene degradation rate stabilized at 2.7 μmol L−1 d−1. | [141] |
5.3. Complex Microbial Communities Mediating Hydrocarbon Degradation Coupled to Fe(III) Reduction: Sediment Columns and Field Studies
5.4. Fe(III) as Electron Acceptor in the Degradation of Intermediates of Anaerobic Hydrocarbon Conversion
6. Iron as a Catalyst in Anaerobic Hydrocarbon Degradation
6.1. Effect of Iron-Based Conductive Materials in Interspecies Electron Transfer
6.2. Effect of Zero-Valent Iron (ZVI) in Anaerobic Hydrocarbons Degradation
7. Indirect Roles of Iron in Anaerobic Hydrocarbons Degradation
8. Knowledge Gaps and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jafarinejad, S. Petroleum Waste Treatment and Pollution Control, 1st ed.; Butterworth-Heinemann: Cambridge, MA, USA, 2017; pp. 1–17. [Google Scholar]
- Perera, F.P.; Tang, D.; Wang, S.; Vishnevetsky, J.; Zhang, B.; Diaz, D.; Camann, D.; Rauh, V. Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6–7 years. Environ. Health Perspect. 2012, 120, 921–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Essaid, H.I.; Bekins, B.A.; Godsy, E.M.; Warren, E.; Baedecker, M.J.; Cozzarelli, I.M. Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site. Water Resour. Res. 1995, 31, 3309–3327. [Google Scholar] [CrossRef]
- Thorn, K.; Aiken, G. Biodegradation of crude oil into nonvolatile organic acids in a contaminated aquifer near Bemidji, Minnesota. Org. Geochem. 1998, 29, 909–931. [Google Scholar] [CrossRef]
- Kingston, P.F. Long-term Environmental Impact of Oil Spills. Spill Sci. Technol. Bull. 2002, 7, 53–61. [Google Scholar] [CrossRef]
- Das, N.; Chandran, P. Microbial Degradation of Petroleum Hydrocarbon Contaminants: An Overview. Biotechnol. Res. Int. 2011, 2011, 941810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, G.; Li, J.; Zeng, G. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 2013, 261, 470–490. [Google Scholar] [CrossRef]
- U.S. Energy Administration Information. Short-Term Energy Outlook. 2022. Available online: https:///outlooks/steo/report/global_oil.php (accessed on 22 August 2022).
- Castro, R. Hydrocarbonoclastic Bacteria: From Bioremediation to Bioenergy Feedstock. Ph.D. Thesis, University of Minho, Braga, Portugal, 2015. Available online: http://hdl.handle.net/1822/40436 (accessed on 12 May 2021).
- Ghimire, N.; Wang, S. Chapter 5—Biological Treatment of Petrochemical Wastewater. In Petroleum Chemicals—Recent Insight; IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/books/petroleum-chemicals-recent-insight/biological-treatment-of-petrochemical-wastewater. (accessed on 5 September 2022).
- Sierra-Garcia, I.N.; Oliveira, V.M. Chapter 3H—Microbial Hydrocarbon Degradation: Efforts to Understand Biodegradation in Petroleum Reservoirs. In Biodegradation—Engineering and Technology; Chamy, R., Rosenkranz, R., Eds.; IntechOpen: London, UK, 2007; Available online: https://www.intechopen.com/books/biodegradation-engineering-and-technology/microbial-hydrocarbon-degradation-efforts-to-understand-biodegradation-in-petroleum-reservoirs. (accessed on 5 September 2022).
- Head, I.M.; Aitken, C.M.; Gray, N.D.; Sherry, A.; Adams, J.; Jones, D.M.; Rowan, A.K. Hydrocarbon degradation in petroleum reservoirs. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 3097–3109. [Google Scholar]
- Gray, N.D.; Sherry, A.; Hubert, C.; Dolfing, J.; Head, I.M. Methanogenic degradation of petroleum hydrocarbons in subsurface environments remediation, heavy oil formation, and energy recovery. Adv. Appl. Microbiol. 2010, 72, 137–161. [Google Scholar]
- Boopathy, R. Use of anaerobic soil slurry reactors for the removal of petroleum hydrocarbons in soil. Int. Biodeterior. Biodegrad. 2003, 52, 161–166. [Google Scholar] [CrossRef]
- Godambe, T.; Fulekar, M. Bioremediation of petrochemical hydrocarbons (BTEX)—Review. J. Environ. Sci. Pollut. Res. 2017, 3, 189–199. [Google Scholar]
- Tian, T.; Yu, H.-Q. Iron-assisted biological wastewater treatment: Synergistic effect between iron and microbes. Biotechnol. Adv. 2020, 44, 107610. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Zhao, L.; Pan, X.; Cai, G.; Zhu, G. The application status, development and future trend of nano-iron materials in anaerobic digestion system. Chemosphere 2020, 269, 129389. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.; Salvador, A.F.; Pereira, L.; Alves, M.M. Methane Production and Conductive Materials: A Critical Review. Environ. Sci. Technol. 2018, 52, 10241–10253. [Google Scholar] [CrossRef] [PubMed]
- Aulenta, F.; Tucci, M.; Viggi, C.C.; Dolfing, J.; Head, I.M.; Rotaru, A.-E. An underappreciated DIET for anaerobic petroleum hydrocarbon-degrading microbial communities. Microb. Biotechnol. 2020, 14, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Tsui, T.-H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Methodological framework for wastewater treatment plants delivering expanded service: Economic tradeoffs and technological decisions. Sci. Total Environ. 2022, 823, 153616. [Google Scholar] [CrossRef]
- Meslé, M.; Dromart, G.; Oger, P. Microbial methanogenesis in subsurface oil and coal. Res. Microbiol. 2013, 164, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.J. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 2017, 223, 277–286. [Google Scholar] [CrossRef]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of risk from potential emerging contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Widdel, F.; Rabus, R. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 2001, 12, 259–276. [Google Scholar] [CrossRef]
- Hung, C.-M.; Huang, C.-P.; Lam, S.S.; Chen, C.-W.; Dong, C.-D. The removal of polycyclic aromatic hydrocarbons (PAHs) from marine sediments using persulfate over a nano-sized iron composite of magnetite and carbon black activator. J. Environ. Chem. Eng. 2020, 8, 104440. [Google Scholar] [CrossRef]
- Keith, L.; Telliard, W. ES&T Special Report: Priority pollutants: I-a perspective view. Environ. Sci. Technol. 1979, 13, 416–423. [Google Scholar] [CrossRef]
- Doggett, T.; Rascoe, A. Global Energy Demand Seen Up 44 Percent by 2030; Reuters: Washington, DC, USA, 2009; Available online: https://www.reuters.com/article/us-eia-global-demand-idUSN2719528620090527 (accessed on 13 May 2021).
- Diya’Uddeen, B.H.; Daud, W.M.A.W.; Aziz, A.A. Treatment technologies for petroleum refinery effluents: A review. Process Saf. Environ. Prot. 2011, 89, 95–105. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Krivoruchko, A.V.; Ivshina, I.B. Advanced Bioreactor Treatments of Hydrocarbon-Containing Wastewater. Appl. Sci. 2020, 10, 831. [Google Scholar] [CrossRef]
- Bashat, H. Managing waste in exploration and production activities of the petroleum industry. Environm. Adv. SENV 2002, 1, 1–37. [Google Scholar]
- Fakhru’L-Razi, A.; Pendashteh, A.; Abdullah, L.C.; Biak, D.R.A.; Madaeni, S.S.; Abidin, Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009, 170, 530–551. [Google Scholar] [CrossRef]
- Bakke, T.; Klungsøyr, J.; Sanni, S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar. Environ. Res. 2013, 92, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Ottaviano, J.G.; Cai, J.; Murphy, R.S. Assessing the decontamination efficiency of a three-component flocculating system in the treatment of oilfield-produced water. Water Res. 2014, 52, 122–130. [Google Scholar] [CrossRef]
- Veil, J.A. U.S. Produced Water Volumes and Management Practices in 2012; Veil Environmental, LLC.: Annapolis, MD, USA, 2015; p. 119. [Google Scholar]
- Zheng, J.; Chen, B.; Thanyamanta, W.; Hawboldt, K.; Zhang, B.; Liu, B. Offshore produced water management: A review of current practice and challenges in harsh/Arctic environments Mar. Pollut. Bull. 2016, 104, 7–19. [Google Scholar] [CrossRef]
- Ozgun, H.; Ersahin, M.E.; Erdem, S.; Atay, B.; Kose, B.; Kaya, R.; Altinbas, M.; Sayili, S.; Hoshan, P.; Atay, D.; et al. Effects of the pre-treatment alternatives on the treatment of oil-gas field produced water by nanofiltration and reverse osmosis membranes. J. Chem. Technol. Biotechnol. 2012, 88, 1576–1583. [Google Scholar] [CrossRef]
- Jiménez, S.; Micó, M.; Arnaldos, M.; Medina, F.; Contreras, S. State of the art of produced water treatment. Chemosphere 2018, 192, 186–208. [Google Scholar] [CrossRef]
- Barthe, P.; Chaugny, M.; Roudier, S.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Refining of Mineral Oil and Gas. Industrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control. EUR 27140; Publications Office of the European Union: Luxembourg, 2015; JRC94879.
- Wake, H. Oil refineries: A review of their ecological impacts on the aquatic environment. Estuar. Coast. Shelf Sci. 2005, 62, 131–140. [Google Scholar] [CrossRef]
- Kundu, P.; Mishra, I.M. Treatment and reclamation of hydrocarbon-bearing oily wastewater as a hazardous pollutant by different processes and technologies: A state-of-the-art review. Rev. Chem. Eng. 2018, 35, 73–108. [Google Scholar] [CrossRef]
- Gargouri, B.; Karray, F.; Mhiri, N.; Aloui, F.; Sayadi, S. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. J. Hazard. Mater. 2011, 189, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Jiang, L.Y.; He, Z.; Song, Y. Treatment of metallurgical industry wastewater for organic contaminant removal in China: Status, challenges, and perspectives. Environ. Sci. Water Res. Technol. 2017, 3, 1015–1031. [Google Scholar] [CrossRef]
- Hui, K.; Tang, J.; Lu, H.; Xi, B.; Qu, C.; Li, J. Status and prospect of oil recovery from oily sludge:A review. Arab. J. Chem. 2020, 13, 6523–6543. [Google Scholar] [CrossRef]
- da Silva, L.J.; Alves, F.C.; de França, F.P. A review of the technological solutions for the treatment of oily sludges from petroleum refineries. Waste Manag. Res. 2021, 30, 1016–1030. [Google Scholar] [CrossRef]
- Aguelmous, A.; El Fels, L.; Souabi, S.; Zamama, M.; Hafidi, M. The fate of total petroleum hydrocarbons during oily sludge composting: A critical review. Rev. Environ. Sci. Bio/Technol. 2019, 18, 473–493. [Google Scholar] [CrossRef]
- Khazaal, R.M.; Ismail, Z.Z. Bioremediation and detoxification of real refinery oily sludge using mixed bacterial cells. Pet. Res. 2021, 6, 303–308. [Google Scholar] [CrossRef]
- Melton, E.D.; Swanner, E.D.; Behrens, S.; Schmidt, C.; Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 2014, 12, 797–808. [Google Scholar] [CrossRef]
- Borch, T.; Kretzschmar, R.; Kappler, A.; Van Cappellen, P.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. Environ. Sci. Technol. 2009, 44, 15–23. [Google Scholar] [CrossRef]
- Dong, H.; Li, L.; Lu, Y.; Cheng, Y.; Wang, Y.; Ning, Q.; Wang, B.; Zhang, L.; Zeng, G. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review. Environ. Int. 2019, 124, 265–277. [Google Scholar] [CrossRef]
- Baek, G.; Kim, J.; Lee, C. A review of the effects of iron compounds on methanogenesis in anaerobic environments. Renew. Sustain. Energy Rev. 2019, 113, 109282. [Google Scholar] [CrossRef]
- Straub, K.L.; Benz, M.; Schink, B. Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol. Ecol. 2001, 34, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.; Chadwick, O.A.; Rancourt, D.G.; Chorover, J. Iron-oxide crystallinity increases during soil redox oscillations. Geochim. Cosmochim. Acta 2006, 70, 1710–1727. [Google Scholar] [CrossRef]
- Weber, K.A.; Achenbach, L.A.; Coates, J.D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nat. Rev. Genet. 2006, 4, 752–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bryce, C.; Blackwell, N.; Schmidt, C.; Otte, J.; Huang, Y.-M.; Kleindienst, S.; Tomaszewski, E.; Schad, M.; Warter, V.; Peng, C.; et al. Microbial anaerobic Fe(II) oxidation-Ecology, mechanisms and environmental implications. Environ. Microbiol. 2018, 20, 3462–3483. [Google Scholar] [CrossRef] [Green Version]
- Bird, L.J.; Bonnefoy, V.; Newman, D.K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 2011, 19, 330–340. [Google Scholar] [CrossRef]
- Kim, D. Adsorption characteristics of Fe(III) and Fe(III)–NTA complex on granular activated carbon. J. Hazard. Mater. 2004, 106, 67–84. [Google Scholar] [CrossRef]
- Das, P.; Mondal, G.C.; Singh, S.; Singh, A.K.; Prasad, B.; Singh, K.K. Effluent Treatment Technologies in the Iron and Steel Industry—A State of the Art Review. Water Environ. Res. 2018, 90, 395–408. [Google Scholar] [CrossRef]
- Ghose, M. Complete physico-chemical treatment for coke plant effluents. Water Res. 2002, 36, 1127–1134. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, Y.; Lv, J.; Wu, J. Assessment of multi-air emissions: Case of particulate matter (dust), SO2, NO and CO2 from iron and steel industry of China. J. Clean. Prod. 2019, 232, 350–358. [Google Scholar] [CrossRef]
- World Steel Association. Steel’s Contribution to a Low Carbon Future and Climate Resilient Societies; World Steel Association: Brussels, Belgium, 2018; Available online: https://www.worldsteel.org/en/dam/jcr:66fed386-fd0b-485e-aa23-b8a5e7533435/Position_paper_climate_2018.pdf (accessed on 13 May 2021).
- Macingova, E.; Luptakova, A. Recovery of metals from acid mine drainage. Chem. Eng. Trans. 2012, 28, 109–114. [Google Scholar]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S. Remediation of acid mine waters. Proccedings of the 11th International Mine Water Association Congress–Mine Water–Managing the Challenges Aachen, Aachen, Germany, 1 September 2011; pp. 253–257. [Google Scholar]
- Akcil, A.; Koldas, S. Acid Mine Drainage (AMD): Causes, treatment and case studies. J. Clean. Prod. 2006, 14, 1139–1145. [Google Scholar] [CrossRef]
- Johnson, D.B. Chemical and Microbiological Characteristics of Mineral Spoils and Drainage Waters at Abandoned Coal and Metal Mines. Water Air Soil Pollut. Focus 2003, 3, 47–66. [Google Scholar] [CrossRef]
- Sheoran, A.; Sheoran, V. Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Miner. Eng. 2006, 19, 105–116. [Google Scholar] [CrossRef]
- US EPA (United States Environmental Protection Agency). Reference Guide to Treatment Technologies for Mining-Influenced Water. EPA 542-R-14-001; 2014; p. 94. Available online: https://www.epa.gov/sites/default/files/2015-08/documents/reference_guide_to_treatment_technologies_for_miw.pdf. (accessed on 12 September 2022).
- Ngure, V.; Davies, T.; Kinuthia, G.; Sitati, N.; Shisia, S.; Oyoo-Okoth, E. Concentration levels of potentially harmful elements from gold mining in Lake Victoria Region, Kenya: Environmental and health implications. J. Geochem. Explor. 2014, 144, 511–516. [Google Scholar] [CrossRef]
- Mulopo, J. Continuous pilot scale assessment of the alkaline barium calcium desalination process for acid mine drainage treatment. J. Environ. Chem. Eng. 2015, 3, 1295–1302. [Google Scholar] [CrossRef]
- Luptáková, A.; Bálintová, M.; Jenčárová, J.; Mačingová, E.; Praščáková, M. Metals recovery from acid mine drainage. Nova Biotechnol. Chim. 2021, 10, 23–32. [Google Scholar] [CrossRef]
- Ye, J.; Zhang, P.; Hoffmann, E.; Zeng, G.; Tang, Y.; Dresely, J.; Liu, Y. Comparison of Response Surface Methodology and Artificial Neural Network in Optimization and Prediction of Acid Activation of Bauxsol for Phosphorus Adsorption. Water Air Soil Pollut. 2014, 225, 2225. [Google Scholar] [CrossRef]
- Liu, Z.; Li, H. Metallurgical process for valuable elements recovery from red mud—A review. Hydrometallurgy 2015, 155, 29–43. [Google Scholar] [CrossRef]
- Lima, M.S.S.; Thives, L.P.; Haritonovs, V.; Bajars, K. Red mud application in construction industry: Review of benefits and possibilities. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012033. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y. The neutralization and recycling of red mud—A review. J. Phys. Conf. Ser. 2021, 1759, 012004. [Google Scholar] [CrossRef]
- Hind, A.R.; Bhargava, S.K.; Grocott, S.C. The surface chemistry of Bayer process solids: A review. Colloids Surfaces A Physicochem. Eng. Asp. 1999, 146, 359–374. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Wang, X.; Wang, B.; Luan, Z. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation. Phys. C Supercond. 2011, 471, 91–96. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. A review of the use of red mud as adsorbent for the removal of toxic pollutants from waterand wastewater. Environ. Technol. 2011, 32, 231–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Naidu, R.; Ming, H. Red mud as an amendment for pollutants in solid and liquid phases. Geoderma 2011, 163, 1–12. [Google Scholar] [CrossRef]
- Lei, C.; Sun, Y.; Tsang, D.C.W.; Lin, D. Environmental transformations and ecological effects of iron-based nanoparticles. Environ. Pollut. 2018, 232, 10–30. [Google Scholar] [CrossRef]
- Salim, N.A.M.; Ajit, A.; Naila, A.; Sulaiman, A.Z. Potential of red mud as an adsorbent for nitrogen and phosphorous removal in the petrochemical industry wastewater. Int. J. Water Wastewater Treat. 2018, 4, 8. [Google Scholar] [CrossRef]
- Gupta, V.K.; Ali, I.; Saini, V.K. Removal of Chlorophenols from Wastewater Using Red Mud: An Aluminum Industry Waste. Environ. Sci. Technol. 2004, 38, 4012–4018. [Google Scholar] [CrossRef]
- López, E.; Soto, B.; Arias, M.; Núñez, A.; Rubinos, D.; Barral, M. Adsorbent properties of red mud and its use for wastewater treatment. Water Res. 1998, 32, 1314–1322. [Google Scholar] [CrossRef]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment and Reuse, 4th ed.; McGraw Hill Companies: New York, NY, USA, 2003. [Google Scholar]
- Lombi, E.; Zhao, F.-J.; Wieshammer, G.; Zhang, G.; McGrath, S.P. In situ fixation of metals in soils using bauxite residue: Biological effects. Environ. Pollut. 2001, 118, 445–452. [Google Scholar] [CrossRef]
- Liu, W.; Yang, J.; Xiao, B. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J. Hazard. Mater. 2009, 161, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Bratby, J. Coagulation and Flocculation in Water and Wastewater Treatment, 2nd ed.; IWA Publishing: London, UK, 2006. [Google Scholar]
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.-J.; van Loosdrecht, M.C.M. The Relevance of Phosphorus and Iron Chemistry to the Recovery of Phosphorus from Wastewater: A Review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef] [PubMed]
- Weelink, S.A.B.; van Eekert, M.H.A.; Stams, A.J.M. Degradation of BTEX by anaerobic bacteria: Physiology and application. Rev. Environ. Sci. Bio/Technol. 2010, 9, 359–385. [Google Scholar] [CrossRef]
- Mbadinga, S.M.; Wang, L.-Y.; Zhou, L.; Liu, J.-F.; Gu, J.-D.; Mu, B.-Z. Microbial communities involved in anaerobic degradation of alkanes. Int. Biodeterior. Biodegrad. 2011, 65, 1–13. [Google Scholar] [CrossRef]
- Jiménez, N.; Richnow, H.H.; Vogt, C.; Treude, T.; Krüger, M. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies. Microb. Physiol. 2016, 26, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Rabus, R.; Boll, M.; Heider, J.; Meckenstock, R.U.; Buckel, W.; Einsle, O.; Ermler, U.; Golding, B.T.; Gunsalus, R.P.; Kroneck, P.M.; et al. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment. Microb. Physiol. 2016, 26, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Abbasian, F.; Lockington, R.; Mallavarapu, M.; Naidu, R. A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Appl. Biochem. Biotechnol. 2015, 176, 670–699. [Google Scholar] [CrossRef]
- Foght, J. Anaerobic Biodegradation of Aromatic Hydrocarbons: Pathways and Prospects. Microb. Physiol. 2008, 15, 93–120. [Google Scholar] [CrossRef]
- Meckenstock, R.U.; Safinowski, M.; Griebler, C. Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol. 2004, 49, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Gieg, L.M.; Toth, C.R.A. Signature metabolite analysis to determine in situ anaerobic hydrocarbon biodegradation. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. In Handbook of Hydrocarbon and Lipid Microbiology; Boll, M., Ed.; Springer: Cham, Switzerland, 2017; pp. 1–30. [Google Scholar]
- Tremblay, P.L.; Zhang, T. Functional genomics of metal-reducing microbes degrading hydrocarbons. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. In Handbook of Hydrocarbon and Lipid Microbiology; Boll, M., Ed.; Springer: Cham, Switzerland, 2017; pp. 1–21. [Google Scholar]
- von Netzer, F.; Granitsiotis, M.S.; Szalay, A.R.; Lueders, T. Next-generation sequencing of functional marker genes for anaerobic degraders of petroleum hydrocarbons in contaminated environments. Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. In Handbook of Hydrocarbon and Lipid Microbiology; Boll, M., Ed.; Springer: Cham, Switzerland, 2017; pp. 257–276. [Google Scholar]
- Grossi, V.; Cravo-Laureau, C.; Guyoneaud, R.; Ranchou-Peyruse, A.; Hirschler-Réa, A. Metabolism of n-alkanes and n-alkenes by anaerobic bacteria: A summary. Org. Geochem. 2008, 39, 1197–1203. [Google Scholar] [CrossRef]
- Rabus, R.; Jarling, R.; Lahme, S.; Kühner, S.; Heider, J.; Widdel, F.; Wilkes, H. Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria. Environ. Microbiol. 2011, 13, 2576–2586. [Google Scholar] [CrossRef] [PubMed]
- Dolfing, J.; Larter, S.; Head, I. Thermodynamic constraints on methanogenic crude oil biodegradation. ISME J. 2007, 2, 442–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gieg, L.M.; Fowler, S.J.; Berdugo-Clavijo, C. Syntrophic biodegradation of hydrocarbon contaminants. Curr. Opin. Biotechnol. 2014, 27, 21–29. [Google Scholar] [CrossRef]
- Gray, N.D.; Sherry, A.; Grant, R.J.; Rowan, A.K.; Hubert, C.R.J.; Callbeck, C.M.; Aitken, C.M.; Jones, D.M.; Adams, J.J.; Larter, S.R.; et al. The quantitative significance of Syntrophaceae and syntrophic partnerships in methanogenic degradation of crude oil alkanes. Environ. Microbiol. 2011, 13, 2957–2975. [Google Scholar] [CrossRef] [Green Version]
- Lovley, D.R.; Ueki, T.; Zhang, T.; Malvankar, N.S.; Shrestha, P.M.; Flanagan, K.A.; Aklujkar, M.; Butler, J.E.; Giloteaux, L.; Rotaru, A.E.; et al. Geobacter: The microbe electric’s physiology, ecology, and practical applications. Adv. Microb. Physiol. 2011, 59, 1–100. [Google Scholar]
- Vogt, C.; Lueders, T.; Richnow, H.H.; Krüger, M.; von Bergen, M.; Seifert, J. Stable Isotope Probing Approaches to Study Anaerobic Hydrocarbon Degradation and Degraders. Microb. Physiol. 2016, 26, 195–210. [Google Scholar] [CrossRef] [Green Version]
- Coates, J.D.; Lonergan, D.J.; Philips, E.J.P.; Jenter, H.; Lovley, D.R. Desulfuromonas palmitatis sp. nov., A marine dissimilatory Fe(III) reducer that can oxidize long-chain fatty acids. Arch. Microbiol. 1995, 164, 406–413. [Google Scholar] [CrossRef]
- Coates, J.D.; Ellis, D.J.; Gaw, C.V.; Lovley, D.R. Geothrix fermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Evol. Microbiol. 1999, 49, 1615–1622. [Google Scholar] [CrossRef] [Green Version]
- Aburto-Medina, A.; Ball, A. Microorganisms involved in anaerobic benzene degradation. Ann. Microbiol. 2014, 65, 1201–1213. [Google Scholar] [CrossRef]
- Holmes, D.E.; Risso, C.; Smith, J.; Lovley, D.R. Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus. Appl. Environ. Microbiol. 2011, 77, 5926–5933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Bain, T.S.; Nevin, K.P.; Barlett, M.A.; Lovley, D.R. Anaerobic Benzene Oxidation by Geobacter Species. Appl. Environ. Microbiol. 2012, 78, 8304–8310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Tremblay, P.-L.; Chaurasia, A.K.; Smith, J.A.; Bain, T.S.; Lovley, D.R. Anaerobic Benzene Oxidation via Phenol in Geobacter metallireducens. Appl. Environ. Microbiol. 2013, 79, 7800–7806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovley, D.R.; Lonergan, D.J. Anaerobic oxidation of toluene, phenol, and para-cresol by the dissimilatory iron-reducing organism. GS-15. Appl. Environ. Microb. 1990, 56, 1858–1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovley, D.R.; Giovannoni, S.J.; White, D.C.; Champine, J.E.; Phillips, E.J.P.; Gorby, Y.A.; Goodwin, S. Geobacter metallireducens gen. nov. sp. nov., A microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 1993, 159, 336–344. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.D.; Bhupathiraju, V.K.; Achenbach, L.A.; Mclnerney, M.J.; Lovley, D.R. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol. Microbiol. 2001, 51, 581–588. [Google Scholar] [CrossRef] [Green Version]
- Winderl, C.; Schaefer, S.; Lueders, T. Detection of anaerobic toluene and hydrocarbon degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ. Microbiol. 2007, 9, 1035–1046. [Google Scholar] [CrossRef]
- Kunapuli, U.; Jahn, M.K.; Lueders, T.; Geyer, R.; Heipieper, H.J.; Meckenstock, R.U. Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int. J. Syst. Evol. Microbiol. 2010, 60, 686–695. [Google Scholar] [CrossRef]
- Weelink, S.A.B.; van Doesburg, W.; Saia, F.T.; Rijpstra, W.I.; Röling, W.F.M.; Smidt, H.; Stams, A.J.M. A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. Degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol. Ecol. 2009, 70, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Zhang, Y.; Wu, H.; Yang, M.; Zhang, H.; Hao, Z.; Jiang, H. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation. RSC Adv. 2017, 7, 46690–46698. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Guo, H.; Sun, J.; Gong, X.; Wang, C.; Wang, H. Exploration of the biotransformation processes in the biodegradation of phenanthrene by a facultative anaerobe, strain PheF2, with Fe(III) or O2 as an electron acceptor. Sci. Total Environ. 2020, 750, 142245. [Google Scholar] [CrossRef] [PubMed]
- Dorer, C.; Vogt, C.; Neu, T.R.; Stryhanyuk, H.; Richnow, H.-H. Characterization of toluene and ethylbenzene biodegradation under nitrate-, iron(III)- and manganese(IV)-reducing conditions by compound-specific isotope analysis. Environ. Pollut. 2016, 211, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Lovley, D.R.; Coates, J.D.; Blunt-Harris, E.L.; Phillips, E.J.P.; Woodward, J.C. Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, 445–448. [Google Scholar] [CrossRef]
- So, C.M.; Young, L.Y. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions. Environ. Toxicol. Chem. 2001, 20, 473–478. [Google Scholar] [CrossRef]
- Rizoulis, A.; Al Lawati, W.M.; Pancost, R.D.; Polya, D.A.; van Dongen, B.E.; Lloyd, J.R. Microbially mediated reduction of FeIII and AsV in Cambodian sediments amended with 13C-labelled hexadecane and kerogen. Environ. Chem. 2014, 11, 538–546. [Google Scholar] [CrossRef]
- Anderson, R.T.; Rooney-Varga, J.N.; Gaw, C.V.; Lovley, D.R. Anaerobic Benzene Oxidation in the Fe(III) Reduction Zone of Petroleum-Contaminated Aquifers. Environ. Sci. Technol. 1998, 32, 1222–1229. [Google Scholar] [CrossRef]
- Anderson, R.T.; Lovley, D.R. Naphthalene and Benzene Degradation under Fe(III)-Reducing Conditions in Petroleum-Contaminated Aquifers. Bioremediation J. 1999, 3, 121–135. [Google Scholar] [CrossRef]
- Lovley, D.R.; Woodward, J.C.; Chapelle, F.H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 1994, 370, 128–131. [Google Scholar] [CrossRef]
- Lovley, D.R.; Holmes, D.E.; Nevin, K.P. Dissimilatory Fe(III) and Mn(IV) Reduction In Advances in Microbial Physiology; Academic Press: Cambridge, MA, USA, 2004; Volume 49, pp. 219–286. [Google Scholar]
- Rooney-Varga, J.N.; Anderson, R.T.; Fraga, J.L.; Ringelberg, D.; Lovley, D.R. Microbial Communities Associated with Anaerobic Benzene Degradation in a Petroleum-Contaminated Aquifer. Appl. Environ. Microbiol. 1999, 65, 3056–3063. [Google Scholar] [CrossRef] [Green Version]
- Farkas, M.; Szoboszlay, S.; Benedek, T.; Révész, F.; Veres, P.G.; Kriszt, B.; Táncsics, A. Enrichment of dissimilatory Fe(III)-reducing bacteria from groundwater of the Siklós BTEX-contaminated site (Hungary). Folia Microbiol. 2016, 62, 63–71. [Google Scholar] [CrossRef]
- Kunapuli, U.; Lueders, T.; Meckenstock, R.U. The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J. 2007, 1, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovley, D.R.; Woodward, J.C.; Chapelle, F.H. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 1996, 62, 288–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazumi, J.; Caldwell, M.E.; Suflita, J.M.; Lovley, A.D.R.; Young, L.Y. Anaerobic Degradation of Benzene in Diverse Anoxic Environments. Environ. Sci. Technol. 1997, 31, 813–818. [Google Scholar] [CrossRef]
- Pilloni, G.; Von Netzer, F.; Engel, M.; Lueders, T. Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol. Ecol. 2011, 78, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villatoro-Monzón, W.; Mesta-Howard, A.; Razo-Flores, E. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. Water Sci. Technol. 2003, 48, 125–131. [Google Scholar] [CrossRef]
- Jahn, M.K.; Haderlein, S.B.; Meckenstock, R.U. Anaerobic degradation of benzene, toluene, ethylbenzene, and o-xylene in sediment-free iron-reducing enrichment cultures. Appl. Environ. Microbiol. 2005, 71, 3355–3358. [Google Scholar] [CrossRef] [Green Version]
- Botton, S.; Parsons, J.R. Degradation of BTEX compounds under iron-reducing conditions in contaminated aquifer microcosms. Environ. Toxicol. Chem. 2006, 25, 2630–2638. [Google Scholar] [CrossRef]
- Botton, S.; Parsons, J.R. Degradation of BTX by dissimilatory iron-reducing cultures. Biogeochemistry 2006, 18, 371–381. [Google Scholar] [CrossRef]
- Chen, Y.D.; Barker, J.F.; Gui, L. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: A microcosm study. J. Contam. Hydrol. 2008, 96, 17–31. [Google Scholar] [CrossRef]
- Jun, D.; Xiaolan, M.; Jingjie, L. Removal of aromatic hydrocarbons from aquifers by oxidation coupled with dissimilatory bacterial reduction of iron. Chem. Technol. Fuels Oils 2013, 49, 70–80. [Google Scholar] [CrossRef]
- Ramsay, J.A.; Robertson, K.; Acay, N.; Ramsay, B.A. Enhancement of PAH biomineralization rates by cyclodextrins under Fe(III)-reducing conditions. Chemosphere 2005, 61, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Kleemann, R.; Meckenstock, R.U. Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol. Ecol. 2011, 78, 488–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Wang, C.; He, J.; Wang, H. Anaerobic phenanthrene biodegradation with four kinds of electron acceptors enriched from the same mixed inoculum and exploration of metabolic pathways. Front. Environ. Sci. Eng. 2019, 13, 80. [Google Scholar] [CrossRef]
- Abu Laban, N.; Selesi, D.; Rattei, T.; Tischler, P.; Meckenstock, R.U. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ. Microbiol. 2010, 12, 2783–2796. [Google Scholar] [CrossRef]
- Kim, S.-J.; Park, S.-J.; Cha, I.-T.; Min, D.; Kim, J.-S.; Chung, W.-H.; Chae, J.-C.; Jeon, C.O.; Rhee, S.-K. Metabolic versatility of toluene-degrading, iron-reducing bacteria in tidal flat sediment, characterized by stable isotope probing-based metagenomic analysis. Environ. Microbiol. 2013, 16, 189–204. [Google Scholar] [CrossRef]
- Coates, J.D.; Anderson, R.T.; Woodward, J.C.; Phillips, A.E.J.P.; Lovley, D.R. Anaerobic Hydrocarbon Degradation in Petroleum-Contaminated Harbor Sediments under Sulfate-Reducing and Artificially Imposed Iron-Reducing Conditions. Environ. Sci. Technol. 1996, 30, 2784–2789. [Google Scholar] [CrossRef]
- Li, C.-H.; Wong, Y.-S.; Tam, N.F.-Y. Anaerobic biodegradation of polycyclic aromatic hydrocarbons with amendment of iron(III) in mangrove sediment slurry. Bioresour. Technol. 2010, 101, 8083–8092. [Google Scholar] [CrossRef]
- Cozzarelli, I.M.; Bekins, B.A.; Eganhouse, R.P.; Warren, E.; Essaid, H.I. In situ measurements of volatile aromatic hydrocarbon biodegradation rates in groundwater. J. Contam. Hydrol. 2010, 111, 48–64. [Google Scholar] [CrossRef]
- Langenhoff, A.; Zehnder, A.J.B.; Schraa, G. Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biogeochemistry 1996, 7, 267–274. [Google Scholar] [CrossRef]
- Zheng, Z.; Aagaard, P.; Breedveld, G.D. Intrinsic biodegradation of toluene coupled to the microbial reduction of ferric iron: Laboratory column experiments. Environ. Earth Sci. 2002, 42, 649–656. [Google Scholar] [CrossRef]
- Yan, Z.; Song, N.; Cai, H.; Tay, J.-H.; Jiang, H. Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. J. Hazard. Mater. 2012, 199, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Tian, J.; Feng, L. Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community. J. Hazard. Mater. 2017, 336, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Bekins, B.; Godsy, E.; Warren, E. Distribution of Microbial Physiologic Types in an Aquifer Contaminated by Crude Oil. Microb. Ecol. 1999, 37, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.B.; Ramos, D.T.; Larose, C.; Fernandes, M.; Lazzarin, H.S.; Vogel, T.M.; Corseuil, H.X. Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater. J. Hazard. Mater. 2017, 326, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Bjerg, P.L.; Riigge, K.; Cortsen, J.; Nielsen, P.H.; Christensen, T.H. Degradation of Aromatic and Chlorinated Aliphatic Hydrocarbons in the Anaerobic Part of the Grindsted Landfill Leachate Plume: In Situ Microcosm and Laboratory Batch Experiments. Ground Water 1999, 37, 113–121. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Albrechtsen, H.-J.; Heron, G.; Christensen, T.H. In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume, 1. Experimental conditions and fate of phenolic compounds. J. Contam. Hydrol. 1995, 20, 27–50. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Bjarnadóttir, H.; Winter, P.L.; Christensen, T.H. In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume, 2. Fate of aromatic and chlorinated aliphatic compounds. J. Contam. Hydrol. 1995, 20, 51–56. [Google Scholar] [CrossRef]
- Winderl, C.; Anneser, B.; Griebler, C.; Meckenstock, R.U.; Lueders, T. Depth-Resolved Quantification of Anaerobic Toluene Degraders and Aquifer Microbial Community Patterns in Distinct Redox Zones of a Tar Oil Contaminant Plume. Appl. Environ. Microbiol. 2008, 74, 792–801. [Google Scholar] [CrossRef] [Green Version]
- Bauer, R.D.; Maloszewski, P.; Zhang, Y.; Meckenstock, R.U.; Griebler, C. Mixing-controlled biodegradation in a toluene plume—Results from two-dimensional laboratory experiments. J. Contam. Hydrol. 2008, 96, 150–168. [Google Scholar] [CrossRef]
- Azama, H.M.; Finneran, K.T. Ferric iron amendment increases Fe(III)-reducing microbial diversity and carbon oxidation in on-site wastewater systems. Chemosphere 2013, 90, 1435–1443. [Google Scholar] [CrossRef]
- Li, Z.; Brian, A.; Wrenn, B.A.; Mukherjee, B.; Lee, K.; Venosa, A.D. Impacts of iron, nutrients, and mineral fines on anaerobic biodegradation of canola oil in freshwater sediments. Soil Sediment Contam. 2010, 19, 244–259. [Google Scholar] [CrossRef]
- Cavaleiro, A.; Guedes, A.; Silva, S.; Arantes, A.; Sequeira, J.; Salvador, A.; Sousa, D.; Stams, A.; Alves, M. Effect of Sub-Stoichiometric Fe(III) Amounts on LCFA Degradation by Methanogenic Communities. Microorganisms 2020, 8, 1375. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Li, Y.; Zhang, M.; Xiong, P.; Liu, L.; Bao, Y.; Zhao, Z. Link between characteristics of Fe(III) oxides and critical role in enhancing anaerobic methanogenic degradation of complex organic compounds. Environ. Res. 2021, 194, 110498. [Google Scholar] [CrossRef]
- Li, Y.; Ren, C.; Zhao, Z.; Yu, Q.; Zhao, Z.; Liu, L.; Zhang, Y.; Feng, Y. Enhancing anaerobic degradation of phenol to methane via solubilizing Fe(III) oxides for dissimilatory iron reduction with organic chelates. Bioresour. Technol. 2019, 291, 121858. [Google Scholar] [CrossRef] [PubMed]
- Marozava, S.; Mouttaki, H.; Müller, H.; Abu Laban, N.; Probst, A.J.; Meckenstock, R.U. Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture. Biogeochemistry 2017, 29, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Siegert, M.; Cichocka, D.; Herrmann, S.; Gründger, F.; Feisthauer, S.; Richnow, H.-H.; Springael, D.; Krüger, M. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions. FEMS Microbiol. Lett. 2010, 315, 6–16. [Google Scholar] [CrossRef] [Green Version]
- Van Bodegom, P.M.; Scholten, J.C.; Stams, A. Direct inhibition of methanogenesis by ferric iron. FEMS Microbiol. Ecol. 2004, 49, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Rotaru, A.-E.; Yee, M.O.; Musat, F. Microbes trading electricity in consortia of environmental and biotechnological significance. Curr. Opin. Biotechnol. 2021, 67, 119–129. [Google Scholar] [CrossRef]
- Xu, H.; Chang, J.; Wang, H.; Liu, Y.; Zhang, X.; Liang, P.; Huang, X. Enhancing direct interspecies electron transfer in syntrophic-methanogenic associations with (semi)conductive iron oxides: Effects and mechanisms. Sci. Total Environ. 2019, 695, 133876. [Google Scholar] [CrossRef]
- Hao, X.; Wei, J.; van Loosdrecht, M.C.; Cao, D. Analysing the mechanisms of sludge digestion enhanced by iron. Water Res. 2017, 117, 58–67. [Google Scholar] [CrossRef]
- Ma, S.; Wang, J.; Han, Y.; Yang, F.; Gu, C.; Wang, F. Enhancement of tribromophenol removal in a sequencing batch reactor via submicron magnetite. Bioprocess Biosyst. Eng. 2020, 43, 851–861. [Google Scholar] [CrossRef]
- Li, K.; Shi, J.; Han, Y.; Xu, C.; Han, H. Enhanced anaerobic degradation of quinoline, pyriding, and indole with polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar and analysis of microbial succession in different reactors. Bioresour. Technol. 2019, 291, 121866. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Zhang, Z.; Huang, Y.; Fang, T.; Cui, Q.; He, C.; Wang, H. Enhancing electron transfer by magnetite during phenanthrene anaerobic methanogenic degradation. Int. Biodeterior. Biodegrad. 2018, 129, 109–116. [Google Scholar] [CrossRef]
- Yan, W.; Sun, F.; Liu, J.; Zhou, Y. Enhanced anaerobic phenol degradation by conductive materials via EPS and microbial community alteration. Chem. Eng. J. 2018, 352, 1–9. [Google Scholar] [CrossRef]
- Zhuang, L.; Tang, J.; Wang, Y.; Hu, M.; Zhou, S. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. J. Hazard. Mater. 2015, 293, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Tang, Z.; Ma, J.; Yu, Z.; Wang, Y.; Tang, J. Enhanced Anaerobic Biodegradation of Benzoate Under Sulfate-Reducing Conditions With Conductive Iron-Oxides in Sediment of Pearl River Estuary. Front. Microbiol. 2019, 10, 374. [Google Scholar] [CrossRef]
- Aromokeye, D.A.; Oni, O.E.; Tebben, J.; Yin, X.; Richter-Heitmann, T.; Wendt, J.; Nimzyk, R.; Littmann, S.; Tienken, D.; Kulkarni, A.C.; et al. Crystalline iron oxides stimulate methanogenic benzoate degradation in marine sediment-derived enrichment cultures. ISME J. 2020, 15, 965–980. [Google Scholar] [CrossRef]
- Wang, D.; Han, Y.; Han, H.; Li, K.; Xu, C.; Zhuang, H. New insights into enhanced anaerobic degradation of Fischer-Tropsch wastewater with the assistance of magnetite. Bioresour. Technol. 2018, 257, 147–156. [Google Scholar] [CrossRef]
- Majone, M.; Aulenta, F.; Dionisi, D.; D’Addario, E.N.; Sbardellati, R.; Bolzonella, D.; Beccari, M. High-rate anaerobic treatment of Fischer–Tropsch wastewater in a packed-bed biofilm reactor. Water Res. 2010, 44, 2745–2752. [Google Scholar] [CrossRef]
- Hao, Z.; Wang, Q.; Yan, Z.; Jiang, H. Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment. J. Hazard. Mater. 2020, 401, 123859. [Google Scholar] [CrossRef]
- Tsui, T.-H.; Zhang, L.; Zhang, J.; Dai, Y.; Tong, Y.W. Engineering interface between bioenergy recovery and biogas desulfurization: Sustainability interplays of biochar application. Renew. Sustain. Energy Rev. 2022, 157, 112053. [Google Scholar] [CrossRef]
- Lin, C.; Wu, P.; Liu, Y.; Wong, J.W.; Yong, X.; Wu, X.; Xie, X.; Jia, H.; Zhou, J. Enhanced biogas production and biodegradation of phenanthrene in wastewater sludge treated anaerobic digestion reactors fitted with a bioelectrode system. Chem. Eng. J. 2019, 365, 1–9. [Google Scholar] [CrossRef]
- Wang, X.; Xin, J.; Mengjiao, Y.M.; Zhao, F. Electron competition and electron selectivity in abiotic, biotic, and coupled systems for dechlorinating chlorinated aliphatic hydrocarbons in groundwater: A review. Water Res. 2020, 183, 116060. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W. Nanoscale ironpParticles for environmental remediation: An overview. J. Nanoparticle Res. 2003, 5, 323–332. [Google Scholar] [CrossRef]
- Zhu, H.; Seto, P.; Parker, W.J. Enhanced dark fermentative hydrogen production under the effect of zero-valent iron shavings. Int. J. Hydrogen Energy 2014, 39, 19331–19336. [Google Scholar] [CrossRef]
- Ma, L.; Zhou, L.; Mbadinga, S.M.; Gu, J.-D.; Mu, B.-Z. Accelerated CO2 reduction to methane for energy by zero valent iron in oil reservoir production waters. Energy 2018, 147, 663–671. [Google Scholar] [CrossRef]
- He, C.; Lin, W.; Zheng, X.; Wang, C.; Hu, Z.; Wang, W. Synergistic effect of magnetite and zero-valent iron on anaerobic degradation and methanogenesis of phenol. Bioresour. Technol. 2019, 291, 121874. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, W.; Wei, W.; Yang, S.; Wang, H.; Sun, Z.; Song, Y.; Li, P.; Yang, Y. Field study of chlorinated aliphatic hydrocarbon degradation in contaminated groundwater via micron zero-valent iron coupled with biostimulation. Chem. Eng. J. 2019, 384, 123349. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, H.; Cao, H.; Zhang, Y.; Sheng, Y.; Li, T.; Zhou, S.; Li, H. New insights of enhanced anaerobic degradation of refractory pollutants in coking wastewater: Role of zero-valent iron in metagenomic functions. Bioresour. Technol. 2019, 300, 122667. [Google Scholar] [CrossRef]
- Xie, Y.; Dong, H.; Zeng, G.; Tang, L.; Jiang, Z.; Zhang, C.; Deng, J.; Zhang, L.; Zhang, Y. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. J. Hazard. Mater. 2017, 321, 390–407. [Google Scholar] [CrossRef]
- Van Nooten, T.; Springael, D.; Bastiaens, L. Positive Impact of Microorganisms on the Performance of Laboratory-Scale Permeable Reactive Iron Barriers. Environ. Sci. Technol. 2008, 42, 1680–1686. [Google Scholar] [CrossRef]
- Kumari, B.; Singh, D. A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol. Eng. 2016, 97, 98–105. [Google Scholar] [CrossRef]
- Zhao, Q.; Wei, F.; Luo, Y.-B.; Ding, J.; Xiao, N.; Feng, Y.-Q. Rapid Magnetic Solid-Phase Extraction Based on Magnetic Multiwalled Carbon Nanotubes for the Determination of Polycyclic Aromatic Hydrocarbons in Edible Oils. J. Agric. Food Chem. 2011, 59, 12794–12800. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Niu, H.; Hu, Z.; Cai, Y.; Shi, Y. Preparation of carbon coated Fe3O4 nanoparticles and their application for solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A 2010, 1217, 4757–4764. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ma, R.; Wu, Q.; Wang, C.; Wang, Z. Magnetic microsphere-confined graphene for the extraction of polycyclic aromatic hydrocarbons from environmental water samples coupled with high performance liquid chromatography–fluorescence analysis. J. Chromatogr. A 2013, 1293, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, Y.; Xiao, J.; Fan, H.; Chen, C. Preparation and characterization of magnetic nanomaterial and its application for removal of polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2019, 371, 323–331. [Google Scholar] [CrossRef]
- Sarcletti, M.; Vivod, D.; Luchs, T.; Rejek, T.; Portilla, L.; Müller, L.; Dietrich, H.; Hirsch, A.; Zahn, D.; Halik, M. Superoleophilic Magnetic Iron Oxide Nanoparticles for Effective Hydrocarbon Removal from Water. Adv. Funct. Mater. 2019, 29, 1805742. [Google Scholar] [CrossRef]
- Pavía-Sanders, A.; Zhang, S.; Flores, J.A.; Sanders, J.E.; Raymond, J.E.; Wooley, K.L. Robust Magnetic/Polymer Hybrid Nanoparticles Designed for Crude Oil Entrapment and Recovery in Aqueous Environments. ACS Nano 2013, 7, 7552–7561. [Google Scholar] [CrossRef]
- Beller, H.R.; Grbić-Galić, D.; Reinhard, M. Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Appl. Environ. Microbiol. 1992, 58, 786–793. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro, A.R.; Martins, G.; Salvador, A.F.; Cavaleiro, A.J. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms 2022, 10, 2142. https://doi.org/10.3390/microorganisms10112142
Castro AR, Martins G, Salvador AF, Cavaleiro AJ. Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms. 2022; 10(11):2142. https://doi.org/10.3390/microorganisms10112142
Chicago/Turabian StyleCastro, Ana R., Gilberto Martins, Andreia F. Salvador, and Ana J. Cavaleiro. 2022. "Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review" Microorganisms 10, no. 11: 2142. https://doi.org/10.3390/microorganisms10112142
APA StyleCastro, A. R., Martins, G., Salvador, A. F., & Cavaleiro, A. J. (2022). Iron Compounds in Anaerobic Degradation of Petroleum Hydrocarbons: A Review. Microorganisms, 10(11), 2142. https://doi.org/10.3390/microorganisms10112142