Prevalence of Haemosporidian Parasites in an Arctic Breeding Seabird Species—The Red-Throated Diver (Gavia stellata)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Preparation
2.2. Analyzing the Presence-Absence, Prevalence and Lineage Richness of Haemosporida with Molecular Tools (Nested PCR and Sanger Sequencing)
2.3. Phylogenetic Analyses
3. Results
3.1. Presence–Absence, Prevalence and Parasite Richness
3.2. Lineage Diversity
3.3. Prevalence of Haemosporidian Parasites in Connection with Breeding Regions
4. Discussion
4.1. Presence–Absence of Haemosporida in Red-Throated Divers
4.2. Haemosporidian Parasite Species and Lineage Diversity Detected in Red-Throated Divers
4.3. Prevalence of Haemosporidian Parasites in Red-Throated Divers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. New Lineages Identified and Corresponding Requested GenBank Records Which Are Withheld and Will Be Added Officially after the Publication Is Accepted
Lineage Name | Sequence | GenBank Record | Parasite Genus | Host Species | Host Species ID |
---|---|---|---|---|---|
GAVSTE01 | GCAACAGGTGCTTCATTTGTATTTATTCTAACTTATTTACATATTTTAAGAGGATTAAATTATTCATATTCATATTTACCTTTATCATGGATATCTGGATTACTTATATTCTTAATATCTATAGTTACAGCTTTTATGGGTTATGTATTACCTTGGGGTCAAATGAGTTTCTGGGGTGCCACTGTAATTACTAATCTATTATATTTTATACCTGGACTTGTTTCATGGATTTATGGTGGATATCTTGTAAGTGACCCAACATTAAAAAGATTCTTTGTATTACATTTTACATTTCCATTTATAGCTTTATGTATTGTATTTATACATATATTCTTTCTACATTTACAAGGTAGCACTAATCCTTTAGGGTATGATACAGCTTTAAAAATACCCTTCTATCCAAATCTTTTAAGTCTCGATATTAAAGGATTTAATAATGTATTAGTATTATTTTTAGCACAAAGTTTATTTGGAATATT | OP007192 | Plasmodium | Gavia stellata | 146441 |
GAVSTE02 | TCAACAGGTGCATCATTTGTATTTATATTAACATACTTACATATCTTAAGAGGATTAAATTATTCTTTTACTTACTTACCTCTATCATGGATAAGTGGTTTAGCACTATTCTTAATATTTATTGTAACTGCTTTTATGGGTTATGTCTTACCATGGTGTCAAATGAGTTTTTGGGGAGCTACTGTTATCACTAATCTATTATATTTTATTCCTGGATTAATAAATTGGGTTTGTGGTGGATTTATTATCAATGACCCAACTCTAAAAAGATTCTTTGTATTACATTTTATATTCCCATTTGTAGCTCTAGCTATTGTATTTATACATATATTCTTCTTACATATTCAAGGTAGCACTAATCCTTTAGGGTATGATACACCTTTAAAAATACCATTCTATCCAAATCTATTAACTTTAGATGTTAAAGGATTTAATTATGTATTAGTATTATTCCTATTTCAAAGTTTATTTGGAATTGC | OP007193 | Leucocytozoon | Gavia stellata | 146445 |
GAVSTE02 | TCAACAGGTGCATCATTTGTATTTATATTAACATACTTACATATCTTAAGAGGATTAAATTATTCTTTTACTTACTTACCTCTATCATGGATAAGTGGTTTAGCACTATTCTTAATATTTATTGTAACTGCTTTTATGGGTTATGTCTTACCATGGTGTCAAATGAGTTTTTGGGGAGCTACTGTTATCACTAATCTATTATATTTTATTCCTGGATTAATAAATTGGGTTTGTGGTGGATTTATTATCAATGACCCAACTCTAAAAAGATTCTTTGTATTACATTTTATATTCCCATTTGTAGCTCTAGCTATTGTATTTATACATATATTCTTCTTACATATTCAAGGTAGCACTAATCCTTTAGGGTATGATACACCTTTAAAAATACCATTCTATCCAAATCTATTAACTTTAGATGTTAAAGGATTTAATTATGTATTAGTATTATTCCTATTTCAAAGTTTATTTGGAATTGC | OP007194 | Leucocytozoon | Gavia stellata | 146449 |
Host Species | Host Species ID | Host Status | Sample Location: Country | Sample Location: Region | Sample Location: Site Name | Sample Location: Latitude | Sample Location: Longitude | Sample Location: Altitude |
---|---|---|---|---|---|---|---|---|
Gavia stellata | 146441 | migratory | Germany | Schleswig Holstein | German Bight North Sea | 54°47.028′ | 07°39.8262′ | 0 |
Gavia stellata | 146445 | migratory | Germany | Schleswig Holstein | German Bight North Sea | 54°50.2569′ | 07°39.16704′ | 0 |
Gavia stellata | 146449 | migratory | Germany | Schleswig Holstein | German Bight North Sea | 54°53.35668′ | 07°49.63914′ | 0 |
ID (ARGOS ID) | Breeding Region | Blood Parasite Genus | Similarity GenBank | Closest Lineage (MalAvi) | MalAvi Hit (bp) |
---|---|---|---|---|---|
146441 | n.a. | Leucocytozoon | 100% | CIAE02 | 479/479 |
146445 | n.a. | Leucocytozoon | 99% | GAVIM01 | 474/475 |
146449 | Norway | Leucocytozoon | 99% | GAVIM01 | 474/475 |
146441 | n.a. | Plasmodium | 99% | TURDUS1 | 478/479 |
158325 | Arctic Russia | Leucocytozoon | 95% | n.a. | n.a. |
57332 | Arctic Russia | Leucocytozoon | 100% | AMO02 | 479/479 |
References
- Valkiunas, G. Avian Malaria Parasites and Other Haemosporidia, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Bensch, S.; Hellgren, O.; Pérez-Tris, J. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009, 9, 1353–1358. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.J.; Clegg, S.M.; Lima, M.R. A review of global diversity in avian haemosporidians (Plasmodium and Haemoproteus: Haemosporida): New insights from molecular data. Int. J. Parasitol. 2014, 44, 329–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanstreels, R.E.T.; Kolesnikovas, C.K.M.; Sandri, S.; Silveira, P.; Belo, N.O.; Junior, F.C.F.; Epiphanio, S.; Steindel, M.; Braga, M.; Catão-Dias, J.L. Outbreak of Avian Malaria Associated to Multiple Species of Plasmodium in Magellanic Penguins Undergoing Rehabilitation in Southern Brazil. PLoS ONE 2014, 9, e94994. [Google Scholar] [CrossRef] [Green Version]
- Scheuerlein, A.; Ricklefs, R.E. Prevalence of blood parasites in European passeriform birds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004, 271, 1363–1370. [Google Scholar] [CrossRef] [Green Version]
- Wood, M.J.; Cosgrove, C.L.; Wilkin, T.A.; Knowles, S.C.; Day, K.P.; Sheldon, B.C. Within-population variation in prevalence and lineage distribution of avian malaria in blue tits, Cyanistes caeruleus. Mol. Ecol. 2007, 16, 3263–3273. [Google Scholar] [CrossRef]
- Jenkins, T.; Owens, I.P. Biogeography of avian blood parasites (Leucocytozoon spp.) in two resident hosts across Europe: Phylogeographic structuring or the abundance–occupancy relationship? Mol. Ecol. 2011, 20, 3910–3920. [Google Scholar] [CrossRef]
- Quillfeldt, P.; Arriero, E.; Martínez, J.; Masello, J.F.; Merino, S. Prevalence of blood parasites in seabirds-a review. Front. Zool. 2011, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.F.; Montgomerie, R.; Seutin, G. Scarcity of Haematozoa in Birds Breeding on the Arctic Tundra of North America. Condor 1992, 94, 289–292. [Google Scholar] [CrossRef]
- Reed JASexson, M.G.; Smith, M.M.; Schmutz, J.A.; Ramey, A.M. Evidence for haemosporidian parasite infections in Spectacled Eiders (Somateria fischeri) sampled in Alaska, USA during the breeding season. J. Wildl. Dis. 2018, 54, 877–880. [Google Scholar] [CrossRef]
- Garamszegi, L.Z. Climate change increases the risk of malaria in birds. Glob. Chang. Biol. 2011, 17, 1751–1759. [Google Scholar] [CrossRef]
- Loiseau, C.; Harrigan, R.J.; Cornel, A.J.; Guers, S.L.; Dodge, M.; Marzec, T.; Carlson, J.S.; Seppi, B.; Sehgal, R. First Evidence and Predictions of Plasmodium Transmission in Alaskan Bird Populations. PLoS ONE 2012, 7, e44729. [Google Scholar] [CrossRef]
- Zamora-Vilchis, I.; Williams, S.; Johnson, C. Environmental Temperature Affects Prevalence of Blood Parasites of Birds on an Elevation Gradient: Implications for Disease in a Warming Climate. PLoS ONE 2012, 7, e39208. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, C.T.; Thomas, N.J.; Hunter, D.B. Parasitic Diseases of Wild Birds; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Ciloglu, A.; Yildirim, A.; Duzlu, O.; Onder, Z.; Dogan, Z.; Inci, A. Investigation of avian haemosporidian parasites from raptor birds in Turkey, with molecular characterisation and microscopic confirmation. Folia Parasitol. 2016, 63, 023. [Google Scholar] [CrossRef] [Green Version]
- Warner, R.E. The Role of Introduced Diseases in the Extinction of the Endemic Hawaiian Avifauna. Ornithol. Appl. 1968, 70, 101–120. [Google Scholar] [CrossRef]
- Herman, C.M.; Barrow, J.H.; Tarshis, I.B. Leucocytozoonosis in Canada geese at the seney national wildlife refuge. J. Wildl. Dis. 1975, 11, 404–411. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.G.; Howe, L.; Gartrell, B.D.; Alley, M.R. Prevalence of Leucocytozoon spp, in the endangered yellow-eyed penguin Megadyptes antipodes. Parasitology 2010, 137, 1477–1485. [Google Scholar] [CrossRef]
- Allander, K.; Bennett, G.F. Prevalence and Intensity of Haematozoan Infection in a Population of Great Tits Parus major from Gotland, Sweden. J. Avian Biol. 1994, 25, 69. [Google Scholar] [CrossRef]
- Martínez -Abraín, A.; Esparza, B.; Oro, D. Lack of blood parasites in bird species: Does absence of blood parasite vectors explain it all? Ardeola 2004, 51, 225–232. [Google Scholar]
- Marzal, A.; de Lope, F.; Navarro, C.; Møller, A.P. Malarial parasites decrease reproductive success: An experimental study in a passerine bird. Oecologia 2005, 142, 541–545. [Google Scholar] [CrossRef]
- Dunning, J.B., Jr. Avian Body Masses, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Barbosa, A.; Palacios, M.J. Health of Antarctic birds: A review of their parasites, pathogens and diseases. Polar Biol. 2009, 32, 1095. [Google Scholar] [CrossRef]
- Sorci, G.; Møller, A.P. Comparative evidence for a positive correlation between haematozoan prevalence and mortality in waterfowl. J. Evol. Biol. 1997, 10, 731–741. [Google Scholar] [CrossRef]
- Sol, D.; Jovani, R.; Torres, J. Parasite mediated mortality and host immune response explain age-related differences in blood parasitism in birds. Oecologia 2003, 135, 542–547. [Google Scholar] [CrossRef]
- Møller, A.P.; Nielsen, J.T. Malaria and risk of predation: A comparative study of birds. Ecology 2007, 88, 871–881. [Google Scholar] [CrossRef]
- Knowles, S.C.; Palinauskas, V.; Sheldon, B.C. Chronic malaria infections increase family inequalities and reduce parental fit-ness: Experimental evidence from a wild bird population. J. Evol. Biol. 2010, 23, 557–569. [Google Scholar] [CrossRef]
- Marzal, A.; Bensch, S.; Reviriego, M.I.; Balbontin, J.; De Lope, F. Effects of malaria double infection in birds: One plus one is not two. J. Evol. Biol. 2008, 21, 979–987. [Google Scholar] [CrossRef]
- Hegemann, A.; Abril, P.A.; Muheim, R.; Sjöberg, S.; Alerstam, T.; Nilsson, J.; Hasselquist, D. Immune function and blood parasite infections impact stopover ecology in passerine birds. Oecologia 2018, 188, 1011–1024. [Google Scholar] [CrossRef] [Green Version]
- Reimchen, T.E.; Douglas, S.; Wischusen, E.W.; Kennedy, R.S.; Gast, S.E. Feeding Schedule and Daily Food Consumption in Red-Throated Loons (Gavia stellata) over the Prefledging Period. Auk 1984, 101, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Burger, C.; Schubert, A.; Heinänen, S.; Dorsch, M.; Kleinschmidt, B.; Žydelis, R.; Morkūnas, J.; Quillfeldt, P.; Nehls, G. A novel approach for assessing effects of ship traffic on distributions and movements of seabirds. J. Environ. Manag. 2019, 251, 109511. [Google Scholar] [CrossRef]
- Fliessbach, K.L.; Borkenhagen, K.; Guse, N.; Markones, N.; Schwemmer, P.; Garthe, S. A Ship Traffic Disturbance Vulnerability Index for Northwest European Seabirds as a Tool for Marine Spatial Planning. Front. Mar. Sci. 2019, 6, 192. [Google Scholar] [CrossRef] [Green Version]
- Mendel, B.; Schwemmer, P.; Peschko, V.; Müller, S.; Schwemmer, H.; Mercker, M.; Garthe, S. Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.). J. Environ. Manag. 2019, 231, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Weinandt, M.L. Conservation Implications of Common Loon (Gavia immer) Parasites: Black Flies, Haematozoans, and the Role of Mercury. Master Thesis, Northern Michigan University, Marquette, MI, USA, 2006. [Google Scholar]
- Weinandt, M.L.; Meyer, M.; Strand, M.; Lindsay, A.R. Cues used by the black fly, Simulium annulus, for attraction to the common loon (Gavia immer). J. Vector Ecol. 2012, 37, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Vilela, R.; Burger, C.; Diederichs, A.; Bachl, F.E.; Szostek, L.; Freund, A.; Braasch, A.; Bellebaum, J.; Beckers, B.; Piper, W.; et al. Use of an INLA Latent Gaussian Modeling Approach to Assess Bird Population Changes Due to the Development of Offshore Wind Farms. Front. Mar. Sci. 2021, 8, 701332. [Google Scholar] [CrossRef]
- Martinsen, E.S.; Sidor, I.F.; Flint, S.; Cooley, J.; Pokras, M.A. Documentation of malaria parasite (Plasmodium spp.) infection and associated mortality in a common loon (Gavia immer). J. Wildl. Dis. 2017, 53, 859–863. [Google Scholar] [CrossRef]
- Dorsch, M.; Burger, C.; Heinänen, S.; Kleinschmidt, B.; Morkūnas, J.; Nehls, G.; Quillfeldt, P.; Schubert, A.; Žydelis, R. DIVER–Ger Man Tracking Study of Seabirds in Areas of Planned Ofshore Wind Farms at the Example of Divers. Final Report on the Joint Project DIVER, FKZ 0325747A/B, Funded by the Federal Ministry of Economics and Energy (BMWi) on the Basis of a Decision by the German Bundestag. 2019. Available online: https://bioconsult-sh.de/en/about-us/documents (accessed on 14 March 2022).
- Kleinschmidt, B.; Burger, C.; Dorsch, M.; Nehls, G.; Heinänen, S.; Morkūnas, J.; Žydelis, R.; Moorhouse-Gann, R.J.; Hipperson, H.; Symondson, W.O.C.; et al. The diet of red-throated divers (Gavia stellata) overwintering in the German Bight (North Sea) analysed using molecular diagnostics. Mar. Biol. 2019, 166, 77. [Google Scholar] [CrossRef]
- Kleinschmidt, B.; Burger, C.; Bustamante, P.; Dorsch, M.; Heinänen, S.; Morkūnas, J.; Nehls, G.; Žydelis, R.; Quillfeldt, P. Annual movements of a migratory seabird—The NW European red-throated diver (Gavia stellata)—Reveals high indi-vidual repeatability but low migratory connectivity. Mar. Biol. 2022, 169, 114. [Google Scholar] [CrossRef]
- Heinänen, S.; Žydelis, R.; Kleinschmidt, B.; Dorsch, M.; Burger, C.; Morkūnas, J.; Quillfeldt, P.; Nehls, G. Satellite telemetry and digital aerial surveys show strong displacement of red-throated divers (Gavia stellata) from offshore wind farms. Mar. Environ. Res. 2020, 160, 104989. [Google Scholar] [CrossRef] [PubMed]
- Available online: www.divertracking.com (accessed on 23 April 2019).
- Whitworth, D.L.; Takekawa, J.Y.; Carter, H.R.; Mciver, W.R. A night-lighting technique for at-sea capture of Xantus’ Murrelets. Colonial Waterbirds 1997, 20, 525–531. [Google Scholar] [CrossRef]
- Ronconi, R.A.; Swaim, Z.T.; Lane, H.A.; Hunnewell, R.W.; Westgate, A.J.; Koopman, H.N. Modified hoop-net techniques for cap-turing birds at sea and comparison with other capture methods. Mar. Ornithol. 2010, 38, 23–29. [Google Scholar]
- Martínez, J.; Vasquez, R.A.; Venegas, C.; Merino, S. Molecular characterisation of haemoparasites in forest birds from Robinson Crusoe Island: Is the Austral Thrush a potential threat to endemic birds? Bird Conserv. Int. 2015, 25, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Knowles, S.C.L.; Wood, M.J.; Alves, R.; Wilkin, T.A.; Bensch, S.; Sheldon, B.C. Molecular epidemiology of malaria prevalence and parasitaemia in a wild bird population. Mol. Ecol. 2010, 20, 1062–1076. [Google Scholar] [CrossRef]
- Herrera, J.; Nunn, C.L. Behavioural ecology and infectious disease: Implications for conservation of biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180054. [Google Scholar] [CrossRef]
- Hellgren, O.; Waldenström, J.; Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 2004, 90, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput.-Tional Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef]
- Chagas, C.R.F.; Valkiunas, G.; Guimaraes, L.d.O.; Monteiro, E.F.; Guida, F.J.V.; Simoes, R.F.; Rodrigues, P.T.; Luna, E.J.d.A.; Kirchgatter, K. Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian meg-alopolis. Malar. J. 2017, 16, 83. [Google Scholar] [CrossRef] [PubMed]
- Quillfeldt, P.; Martínez, J.; Bugoni, L.; Mancini, P.L.; Merino, S. Blood parasites in noddies and boobies from Brazilian offshore islands–differences between species and influence of nesting habitat. Parasitology 2014, 141, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J. FigTree, a Graphical Viewer of Phylogenetic Trees. 2007. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 23 April 2019).
- Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 23 April 2019).
- BirdLife International. Species factsheet: Gavia stellata. BirdLife International: The IUCN Red List of Threatened Species URL. Available online: http://www.birdlife.org (accessed on 12 June 2022).
- Wetlands International. Waterbird Population Estimates. Available online: http//wpe.wetlands.org (accessed on 23 April 2019).
- Taft, S.J.; Rosenfield, R.N.; Seegar, W.S.; Maechtle, T.L. Paucity of hematozoa in Peregrine Falcons (Falco peregrinus) in West Greenland and coastal Texas. J.-Helminthol. Soc. Wash. 1999, 65, 111–113. [Google Scholar]
- Wojczulanis-Jakubas, K.; Svoboda, A.; Kruszewicz, A.; Johnsen, A. No Evidence of Blood Parasites in Little Auks (Alle alle) Breeding on Svalbard. J. Wildl. Dis. 2010, 46, 574–578. [Google Scholar] [CrossRef]
- Martínez, J.; Merino, S.; Badás, E.P.; Almazán, L.; Moksnes, A.; Barbosa, A. Hemoparasites and immunological parameters in Snow Bunting (Plectrophenax nivalis) nestlings. Polar Biol. 2018, 41, 1855–1866. [Google Scholar] [CrossRef]
- Hellgren, O. The occurrence of haemosporidian parasites in the Fennoscandian bluethroat (Luscinia svecica) population. J. Ornithol. 2005, 146, 55–60. [Google Scholar] [CrossRef]
- Ramey, A.M.; Schmutz, J.A.; Reed, J.A.; Fujita, G.; Scotton, B.D.; Casler, B.; Fleskes, J.P.; Konishi, K.; Uchida, K.; Yabsley, M.J. Evidence for intercontinental parasite exchange through molecular detection and characterization of haematozoa in northern pintails (Anas acuta) sampled throughout the North Pacific Basin. Int. J. Parasitol. Parasites Wildl. 2015, 4, 11–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramey, A.M.; Buchheit, R.M.; Uher-Koch, B.D.; Reed, J.A.; Pacheco, M.A.; Escalante, A.A.; Schmutz, J.A. Negligible evidence for detrimental effects of Leucocytozoon infections among Emperor Geese (Anser canagicus) breeding on the Yu-kon-Kuskokwim Delta, Alaska. Int. J. Parasitol. Parasites Wildl. 2021, 16, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Oakgrove, K.S.; Harrigan, R.J.; Loiseau, C.; Guers, S.; Seppi, B.; Sehgal, R.N. Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. Int. J. Parasitol. 2014, 44, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Reeves, A.B.; Smith, M.M.; Meixell, B.W.; Fleskes, J.P.; Ramey, A.M. Genetic Diversity and Host Specificity Varies across Three Genera of Blood Parasites in Ducks of the Pacific Americas Flyway. PLoS ONE 2015, 10, e0116661. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.M.; Van Hemert, C.; Merizon, R. Haemosporidian parasite infections in grouse and ptarmigan: Prevalence and genetic diversity of blood parasites in resident Alaskan birds. Int. J. Parasitol. Parasites Wildl. 2016, 5, 229–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusupova, D. Avian Haemosporidae Parasites in the Russian Arctic. Master’s Thesis, Ludwig Maximilian University of Munich, Munich, Germany, 2022. [Google Scholar]
- Haas, M.; Lukan, M.; Kisková, J.; Hrehová, Z. Occurrence of blood parasites and intensity of infection in Prunella modularis in the montane and subalpine zone in the Slovak Carpathians. Acta Parasitol. 2012, 57, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Rooyen, J.; Lalubin, F.; Glaizot, O.; Christe, P. Altitudinal variation in haemosporidian parasite distribution in great tit populations. Parasites Vectors 2013, 6, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vardeh, S.; Schumm, Y.R.; Kleinschmidt, B.; Engelhardt, K.; Pollet, I.; Loshchagina, J.; Glazov, P.; Kondratyev, A.; Sokolov, A.; Sokolov, V. Genetic evidence for blood and gastro-intestinal parasites of sea ducks breeding in the Russian Arctic. 2022; Unpublished work. [Google Scholar]
- Wilson, M.; Cheke, R.; Flasse, S.P.J.; Grist, S.; Osei-Ateweneboana, M.; Tetteh-Kumah, A.; Fiasorgbor, G.; Jolliffe, F.; Boakye, D.; Hougard, J.-M.; et al. Deforestation and the spatio-temporal distribution of savannah and forest members of the Simulium damnosum complex in southern Ghana and south-western Togo. Trans. R. Soc. Trop. Med. Hyg. 2002, 96, 632–639. [Google Scholar] [CrossRef]
- Yasuoka, J.; Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 2007, 76, 450–460. [Google Scholar] [CrossRef] [Green Version]
- Zagalska-Neubauer, M.; Bensch, S. High prevalence of Leucocytozoon parasites in fresh water breeding gulls. J. Ornithol. 2016, 157, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Lapointe, D.A.; Goff, M.L.; Atkinson, C.T. Thermal Constraints to the Sporogonic Development and Altitudinal Distribution of Avian Malaria Plasmodium relictum in Hawai’i. J. Parasitol. 2016, 96, 318–324. [Google Scholar] [CrossRef]
- Fallis, A.M.; Desser, S.S.; Khan, R.A. On species of Leucocytozoon. Adv. Parasitol. 1974, 12, 1–67. [Google Scholar] [PubMed]
- Atkinson, C.T.; Greiner, E.C.; Forrester, D.J. Pre-Erythrocytic Development and Associated Host Responses to Haemoproteus meleagridis (Haemosporina: Haemoproteidae) in Experimentally Infected Domestic Turkeys. J. Protozool. 1986, 33, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Waldenström, J.; Bensch, S.; Kiboi, S.; Hasselquist, D.; Ottosson, U. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Mol. Ecol. 2002, 11, 1545–1554. [Google Scholar] [CrossRef] [Green Version]
- Beadell, J.S.; Gering, E.; Austin, J.; Dumbacher, J.P.; Peirce, M.A.; Pratt, T.K.; Atkinson, C.T.; Fleischer, R.C. Prevalence and differential host-specificity of two avian blood parasite genera in the Australo-Papuan region. Mol. Ecol. 2004, 13, 3829–3844. [Google Scholar] [CrossRef]
- Dimitrov, D.; Zehtindjiev, P.; Bensch, S. Genetic diversity of avian blood parasites in SE Europe: Cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Bulgaria. Acta Parasitol. 2010, 55, 201–209. [Google Scholar] [CrossRef]
- Kimura, M.; Darbro, J.M.; Harrington, L.C. Avian Malaria Parasites Share Congeneric Mosquito Vectors. J. Parasitol. 2010, 96, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Adler, P.H. The Black Flies (Simuliidae) of North America; Cornell University Press in association with Royal Ontario Museum: Ithaca, NY, USA, 2004. [Google Scholar]
- Hellgren, O.; Bensch, S.; Malmqvist, B. Bird hosts, blood parasites and their vectors—Associations uncovered by molecular analyses of blackfly blood meals. Mol. Ecol. 2008, 17, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Quillfeldt, P.; Martínez, J.; Hennicke, J.; Ludynia, K.; Gladbach, A.; Masello, J.F.; Riou, S.; Merino, S. Hemosporidian blood parasites in seabirds—A comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 2010, 97, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Khan, J.S.; Provencher, J.F.; Forbes, M.R.; Mallory, M.L.; Lebarbenchon, C.; McCoy, K.D. Parasites of seabirds: A survey of effects and ecological implications. Adv. Mar. Biol. 2019, 82, 1–50. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.O.G.; Blomqvist, D.; Hake, M.; Johansson, O.C. Parental feeding in the Red-throated Diver Gavia stellata. Ibis 1990, 132, 1–13. [Google Scholar] [CrossRef]
- Rizzolo, D.J.; Schmutz, J.A.; Speakman, J.R. Fast and efficient: Postnatal growth and energy expenditure in an Arctic-breeding waterbird, the Red-throated Loon (Gavia stellata). Ornithology 2015, 132, 657–670. [Google Scholar] [CrossRef] [Green Version]
- Mendes, L.; Piersma, T.; Lecoq, M.; Spaans, B.; Ricklefs, R.E. Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 2005, 109, 396–404. [Google Scholar] [CrossRef]
- Neto, J.M.; Mellinger, S.; Halupka, L.; Marzal, A.; Zehtindjiev, P.; Westerdahl, H. Seasonal dynamics of haemosporidian (Apicomplexa, Haemosporida) parasites in house sparrows Passer domesticus at four European sites: Comparison between lineages and the importance of screening methods. Int. J. Parasitol. 2020, 50, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Dierschke, V.; Exo, K.M.; Mendel, B.; Garthe, S. Gefährdung von Sterntaucher Gavia stellata und Prachttaucher G. arctica in Brut-, Zug-und Überwinterungsgebieten–eine Übersicht mit Schwerpunkt auf den deutschen Meeresgebieten. Vogelwelt 2012, 133, 163–194. [Google Scholar]
- Risely, A.; Klaassen, M.; Hoye, B.J. Migratory animals feel the cost of getting sick: A meta-analysis across species. J. Anim. Ecol. 2018, 87, 301–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, S.; Bauer, S.; Dimitrov, D.; Emmenegger, T.; Ivanova, K.; Zehtindjiev, P.; Buttemer, W.A. Low intensity blood parasite infections do not reduce the aerobic performance of migratory birds. Proc. R. Soc. B Boil. Sci. 2018, 285, 20172307. [Google Scholar] [CrossRef] [PubMed]
Primer | Primer Sequence | Target Dann |
---|---|---|
HaemNFI | 5′-CATATATTAAGAGAAITATGGAG-3′ | Haemoproteus/Plasmodium/Leucocytozoon |
HaemNR3 | 5′-ATAGAAAGATAAGAAATACCATTC-3′ | Haemoproteus/Plasmodium/Leucocytozoon |
HaemF | 5′-ATGGTGCTTTCGATATATGCATG-3′ | Haemoproteus/Plasmodium |
HaemR2 | 5′-GCATTATCTGGATGTGATAATGGT-3′ | Haemoproteus/Plasmodium |
HaemFL | 5′-ATGGTGTTTTAGATACTTACATT-3′ | Leucocytozoon |
HaemR2L | 5′-CATTATCTGGATGAGATAATGGIGC-3′ | Leucocytozoon |
Reference | Blood Parasite | MalAvi Lineage | Host and Country |
---|---|---|---|
JN164734 | Plasmodium circumflexum | TURDUS1 | Sylvia atricapilla (Spain) |
AF495576 | Plasmodium circumflexum | TURDUS1 | Turdus philomelos (Sweden) |
KC962152 | Leucocytozoon sp. | CIAE02 | Buteo buteo (Turkey) |
EF607287 | Leucocytozoon sp. | CIAE02 | Circus aeruginosus (Germany) |
EF077166 | Leucocytozoon sp. | GAVIM01 | Gavia immer (North America) |
ID (ARGOS ID) | Breeding Region | Blood Parasite Genus | Lineage |
---|---|---|---|
146441 | n.a. | Leucocytozoon | CIAE02 |
146445 | n.a. | Leucocytozoon | GAVSTE02 |
146449 | Norway | Leucocytozoon | GAVSTE02 |
146441 | n.a. | Plasmodium | GAVSTE01 |
158325 | Arctic Russia | Leucocytozoon | n.a. |
57332 | Arctic Russia | Leucocytozoon | AMO02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kleinschmidt, B.; Dorsch, M.; Heinänen, S.; Morkūnas, J.; Schumm, Y.R.; Žydelis, R.; Quillfeldt, P. Prevalence of Haemosporidian Parasites in an Arctic Breeding Seabird Species—The Red-Throated Diver (Gavia stellata). Microorganisms 2022, 10, 2147. https://doi.org/10.3390/microorganisms10112147
Kleinschmidt B, Dorsch M, Heinänen S, Morkūnas J, Schumm YR, Žydelis R, Quillfeldt P. Prevalence of Haemosporidian Parasites in an Arctic Breeding Seabird Species—The Red-Throated Diver (Gavia stellata). Microorganisms. 2022; 10(11):2147. https://doi.org/10.3390/microorganisms10112147
Chicago/Turabian StyleKleinschmidt, Birgit, Monika Dorsch, Stefan Heinänen, Julius Morkūnas, Yvonne R. Schumm, Ramūnas Žydelis, and Petra Quillfeldt. 2022. "Prevalence of Haemosporidian Parasites in an Arctic Breeding Seabird Species—The Red-Throated Diver (Gavia stellata)" Microorganisms 10, no. 11: 2147. https://doi.org/10.3390/microorganisms10112147
APA StyleKleinschmidt, B., Dorsch, M., Heinänen, S., Morkūnas, J., Schumm, Y. R., Žydelis, R., & Quillfeldt, P. (2022). Prevalence of Haemosporidian Parasites in an Arctic Breeding Seabird Species—The Red-Throated Diver (Gavia stellata). Microorganisms, 10(11), 2147. https://doi.org/10.3390/microorganisms10112147