Mannheimia haemolytica Negatively Affects Bovine Herpesvirus Type 1.1 Replication Capacity In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Viral and Bacterial Strains
2.3. Co-Infection of MDBK or BT Cells with BoHV-1 and M. haemolytica
2.4. Viral Titration
2.5. MTT Cell Viability Assay
2.6. Bromophenol Blue Exclusion Viability Assay
2.7. Spent Supernatant and LPS Assay
2.8. Statistical Analysis
3. Results
3.1. Bacterial Replication Negatively Impacts BoHV-1 Replication in Cultured Bovine Cells
3.2. Timing of Bacterial Infection Influences the Anti-Viral Effect
3.3. Cell Viability
3.4. Low pH Negatively Affects BoHV-1 Replication
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yates, W.D. A Review of Infectious Bovine Rhinotracheitis, Shipping Fever Pneumonia and Viral-Bacterial Synergism in Respiratory Disease of Cattle. Can. J. Comp. Med. 1982, 46, 225–263. [Google Scholar] [PubMed]
- Wang, M.; Schneider, L.G.; Hubbard, K.J.; Smith, D.R. Cost of Bovine Respiratory Disease in Preweaned Calves on US Beef Cow–Calf Operations (2011–2015). J. Am. Vet. Med. Assoc. 2018, 253, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Schneider, L.G.; Hubbard, K.J.; Grotelueschen, D.M.; Daly, R.F.; Stokka, G.S.; Smith, D.R. Beef Producer Survey of the Cost to Prevent and Treat Bovine Respiratory Disease in Preweaned Calves. J. Am. Vet. Med. Assoc. 2018, 253, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Overton, M.W. Economics of Respiratory Disease in Dairy Replacement Heifers. Anim. Health Res. Rev. 2020, 21, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, P.D.; Aich, P.; Stookey, J.; Popowych, Y.; Potter, A.; Babiuk, L.; Griebel, P.J. Stress Significantly Increases Mortality Following a Secondary Bacterial Respiratory Infection. Vet. Res. 2012, 43, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holman, D.B.; Timsit, E.; Amat, S.; Abbott, D.W.; Buret, A.G.; Alexander, T.W. The Nasopharyngeal Microbiota of Beef Cattle before and after Transport to a Feedlot. BMC Microbiol. 2017, 17, 70. [Google Scholar] [CrossRef] [Green Version]
- Buhler, V.M.; Cash, K.R.; Hurley, D.J.; Credille, B.C. Characterization and Comparison of Cell-Mediated Immune Responses Following Ex Vivo Stimulation with Viral and Bacterial Respiratory Pathogens in Stressed and Unstressed Beef Calves. J. Anim. Sci. 2019, 97, 2739–2749. [Google Scholar] [CrossRef]
- Bringhenti, L.; Pallu, M.; Silva, J.; Tomazi, T.; Tomazi, A.C.; Rodrigues, M.X.; Duarte, L.M.; Bilby, T.R.; Bicalho, R.C. Effect of Metaphylactic Administration of Tildipirosin on the Incidence of Pneumonia and Otitis and on the Upper Respiratory Tract and Fecal Microbiome of Preweaning Holstein Calves. J. Dairy Sci. 2021, 104, 6020–6038. [Google Scholar] [CrossRef]
- Pratelli, A.; Cirone, F.; Capozza, P.; Trotta, A.; Corrente, M.; Balestrieri, A.; Buonavoglia, C. Bovine Respiratory Disease in Beef Calves Supported Long Transport Stress: An Epidemiological Study and Strategies for Control and Prevention. Res. Vet. Sci. 2021, 135, 450–455. [Google Scholar] [CrossRef]
- Brodersen, B.W. Bovine Respiratory Syncytial Virus. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 323–333. [Google Scholar] [CrossRef]
- Ridpath, J. The Contribution of Infections with Bovine Viral Diarrhea Viruses to Bovine Respiratory Disease. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, J.; Uhlenbruck, S.; Goris, K.; Keil, G.M.; Herrler, G. Three Viruses of the Bovine Respiratory Disease Complex Apply Different Strategies to Initiate Infection. Vet. Res. 2014, 45, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, D.; Chengappa, M.M.; Kuszak, J.; McVey, D.S. Bacterial Pathogens of the Bovine Respiratory Disease Complex. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 381–394. [Google Scholar] [CrossRef]
- Jones, C.; Chowdhury, S. Bovine Herpesvirus Type 1 (BHV-1) Is an Important Cofactor in the Bovine Respiratory Disease Complex. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 303–321. [Google Scholar] [CrossRef]
- Makoschey, B.; Berge, A.C. Review on Bovine Respiratory Syncytial Virus and Bovine Parainfluenza–Usual Suspects in Bovine Respiratory Disease—A Narrative Review. BMC Vet. Res. 2021, 17, 261. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, L.; Eckard, L.; Epperson, W.B.; Long, L.-P.; Smith, D.; Huston, C.; Genova, S.; Webby, R.; Wan, X.-F. Influenza D Virus Infection in Mississippi Beef Cattle. Virology 2015, 486, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitra, N.; Cernicchiaro, N.; Torres, S.; Li, F.; Hause, B.M. Metagenomic Characterization of the Virome Associated with Bovine Respiratory Disease in Feedlot Cattle Identified Novel Viruses and Suggests an Etiologic Role for Influenza D Virus. J. Gen. Virol. 2016, 97, 1771–1784. [Google Scholar] [CrossRef] [PubMed]
- Frucchi, A.P.S.; Agnol, A.M.D.; Bronkhorst, D.E.; Beuttemmuller, E.A.; Alfieri, A.A.; Alfieri, A.F. Bovine Coronavirus Co-Infection and Molecular Characterization in Dairy Calves with or Without Clinical Respiratory Disease. Front. Vet. Sci. 2022, 9, 895492. [Google Scholar] [CrossRef] [PubMed]
- Rahe, M.C.; Magstadt, D.R.; Groeltz-Thrush, J.; Gauger, P.C.; Zhang, J.; Schwartz, K.J.; Siepker, C.L. Bovine Coronavirus in the Lower Respiratory Tract of Cattle with Respiratory Disease. J. Vet. Diagn. Investig. 2022, 34, 482–488. [Google Scholar] [CrossRef]
- Jones, C.; Chowdhury, S. A Review of the Biology of Bovine Herpesvirus Type 1 (BHV-1), Its Role as a Cofactor in the Bovine Respiratory Disease Complex and Development of Improved Vaccines. Anim. Health Res. Rev. 2008, 8, 187–205. [Google Scholar] [CrossRef]
- Muylkens, B.; Thiry, J.; Kirten, P.; Schynts, F.; Thiry, E. Bovine Herpesvirus 1 Infection and Infectious Bovine Rhinotracheitis. Vet. Res. 2007, 38, 181–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkler, M.T.; Doster, A.; Jones, C. Persistence and Reactivation of Bovine Herpesvirus 1 in the Tonsils of Latently Infected Calves. J. Virol. 2000, 74, 5337–5346. [Google Scholar] [CrossRef] [PubMed]
- Workman, A.; Eudy, J.; Smith, L.; da Silva, L.F.; Sinani, D.; Bricker, H.; Cook, E.; Doster, A.; Jones, C. Cellular Transcription Factors Induced in Trigeminal Ganglia during Dexamethasone-Induced Reactivation from Latency Stimulate Bovine Herpesvirus 1 Productive Infection and Certain Viral Promoters. J. Virol. 2012, 86, 2459–2473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, J.A.; Carrasco-Medina, L.; Hodgins, D.C.; Shewen, P.E. Mannheimia Haemolytica and Bovine Respiratory Disease. Anim. Health Res. Rev. 2008, 8, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Cozens, D.; Sutherland, E.; Lauder, M.; Taylor, G.; Berry, C.C.; Davies, R.L. Pathogenic Mannheimia Haemolytica Invades Differentiated Bovine Airway Epithelial Cells. Infect. Immun. 2019, 87, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Dabo, S.M.; Taylor, J.D.; Confer, A.W. Pasteurella Multocida and Bovine Respiratory Disease. Anim. Health Res. Rev. 2008, 8, 129–150. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Ritchey, J.W.; Confer, A.W. Mannheimia Haemolytica: Bacterial-Host Interactions in Bovine Pneumonia. Vet. Pathol. 2011, 48, 338–348. [Google Scholar] [CrossRef] [Green Version]
- Whiteley, L.O.; Maheswaran, S.K.; Weiss, D.J.; Ames, T.R.; Kannan, M.S. Pasteurella Haemolytica A1 and Bovine Respiratory Disease: Pathogenesis. J. Vet. Intern. Med. 1992, 6, 11–22. [Google Scholar] [CrossRef]
- Thumbikat, P.; Dileepan, T.; Kannan, M.S.; Maheswaran, S.K. Characterization of Mannheimia (Pasteurella) Haemolytica Leukotoxin Interaction with Bovine Alveolar Macrophage Beta2 Integrins. Vet. Res. 2005, 36, 771–786. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Confer, A.W.; Hope, J.C.; Rizzi, T.; Wyckoff, J.H.; Weng, H.-Y.; Ritchey, J.W. Cytotoxicity and Cytokine Production by Bovine Alveolar Macrophages Challenged with Wild Type and Leukotoxin-Deficient Mannheimia Haemolytica. Vet. J. 2011, 188, 221–227. [Google Scholar] [CrossRef]
- Oppermann, T.; Busse, N.; Czermak, P. Mannheimia Haemolytica Growth and Leukotoxin Production for Vaccine Manufacturing—A Bioprocess Review. Electron. J. Biotechnol. 2017, 28, 95–100. [Google Scholar] [CrossRef]
- McClenahan, D.; Hellenbrand, K.; Atapattu, D.; Aulik, N.; Carlton, D.; Kapur, A.; Czuprynski, C. Effects of Lipopolysaccharide and Mannheimia Haemolytica Leukotoxin on Bovine Lung Microvascular Endothelial Cells and Alveolar Epithelial Cells. Clin. Vaccine Immunol. 2008, 15, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gershwin, L.J.; Berghaus, L.J.; Arnold, K.; Anderson, M.L.; Corbeil, L.B. Immune Mechanisms of Pathogenetic Synergy in Concurrent Bovine Pulmonary Infection with Haemophilus Somnus and Bovine Respiratory Syncytial Virus. Vet. Immunol. Immunopathol. 2005, 107, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Agnes, J.T.; Zekarias, B.; Shao, M.; Anderson, M.L.; Gershwin, L.J.; Corbeil, L.B. Bovine Respiratory Syncytial Virus and Histophilus Somni Interaction at the Alveolar Barrier. Infect. Immun. 2013, 81, 2592–2597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodgson, P.D.; Aich, P.; Manuja, A.; Hokamp, K.; Roche, F.M.; Brinkman, F.S.L.; Potter, A.; Babiuk, L.A.; Griebel, P.J. Effect of Stress on Viral-Bacterial Synergy in Bovine Respiratory Disease: Novel Mechanisms to Regulate Inflammation. Comp. Funct. Genom. 2005, 6, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Leite, F.; Kuckleburg, C.; Atapattu, D.; Schultz, R.; Czuprynski, C.J. BHV-1 Infection and Inflammatory Cytokines Amplify the Interaction of Mannheimia Haemolytica Leukotoxin with Bovine Peripheral Blood Mononuclear Cells in Vitro. Vet. Immunol. Immunopathol. 2004, 99, 193–202. [Google Scholar] [CrossRef]
- N’jai, A.U.; Rivera, J.; Atapattu, D.N.; Owusu-Ofori, K.; Czuprynski, C.J. Gene Expression Profiling of Bovine Bronchial Epithelial Cells Exposed in Vitro to Bovine Herpesvirus 1 and Mannheimia Haemolytica. Vet. Immunol. Immunopathol. 2013, 155, 182–189. [Google Scholar] [CrossRef]
- Sudaryatma, P.E.; Nakamura, K.; Mekata, H.; Sekiguchi, S.; Kubo, M.; Kobayashi, I.; Subangkit, M.; Goto, Y.; Okabayashi, T. Bovine Respiratory Syncytial Virus Infection Enhances Pasteurella Multocida Adherence on Respiratory Epithelial Cells. Vet. Microbiol. 2018, 220, 33–38. [Google Scholar] [CrossRef]
- Sudaryatma, P.E.; Saito, A.; Mekata, H.; Kubo, M.; Fahkrajang, W.; Mazimpaka, E.; Okabayashi, T. Bovine Respiratory Syncytial Virus Enhances the Adherence of Pasteurella Multocida to Bovine Lower Respiratory Tract Epithelial Cells by Upregulating the Platelet-Activating Factor Receptor. Front. Microbiol. 2020, 11, 1676. [Google Scholar] [CrossRef]
- Lin, C.; Agnes, J.T.; Behrens, N.; Shao, M.; Tagawa, Y.; Gershwin, L.J.; Corbeil, L.B. Histophilus Somni Stimulates Expression of Antiviral Proteins and Inhibits BRSV Replication in Bovine Respiratory Epithelial Cells. PLoS ONE 2016, 11, e0148551. [Google Scholar] [CrossRef]
- Boukahil, I.; Czuprynski, C.J. Mutual Antagonism between Mannheimia Haemolytica and Pasteurella Multocida When Forming a Bio Fi Lm on Bovine Bronchial Epithelial Cells in Vitro. Vet. Microbiol. 2018, 216, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, B.; Dickerman, A.; Lahmers, K.; Scarratt, W.K.; Inzana, T.J. Polymicrobial Biofilm Interaction Between Histophilus Somni and Pasteurella Multocida. Front. Microbiol. 2020, 11, 1561. [Google Scholar] [CrossRef] [PubMed]
- Lo, R.Y.C.; Sathiamoorthy, S.; Shewen, P.E. Analysis of in Vivo Expressed Genes in Mannheimia Haemolytica A. FEMS Microbiol. Lett. 2006, 265, 18–25. [Google Scholar] [CrossRef]
- Sathiamoorthy, S.; Hodgins, D.C.; Shewen, P.E.; Highlander, S.K.; Lo, R.Y.C. A Snap-Shot of Mannheimia Hemolytica A1 Gene Expression during Infection in the Bovine Host. FEMS Microbiol. Lett. 2011, 325, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behura, S.K.; Tizioto, P.C.; Kim, J.; Grupioni, N.V.; Seabury, C.M.; Schnabel, R.D.; Gershwin, L.J.; van Eenennaam, A.L.; Toaff-Rosenstein, R.; Neibergs, H.L.; et al. Tissue Tropism in Host Transcriptional Response to Members of the Bovine Respiratory Disease Complex. Sci. Rep. 2017, 7, 17938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tizioto, P.C.; Kim, J.; Seabury, C.M.; Schnabel, R.D.; Gershwin, L.J.; van Eenennaam, A.L.; Toaff-Rosenstein, R.; Neibergs, H.L.; Taylor, J.F. Immunological Response to Single Pathogen Challenge with Agents of the Bovine Respiratory Disease Complex: An RNA-Sequence Analysis of the Bronchial Lymph Node Transcriptome. PLoS ONE 2015, 10, e0131459. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Young, R.; Post, D.; Struck, D.K. Identification and Characterization of the Pasteurella Haemolytica Leukotoxin. Infect. Immun. 1987, 55, 2348–2354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, S.F.; Teixeira, A.G.; Higgins, C.H.; Lima, F.S.; Bicalho, R.C. The Upper Respiratory Tract Microbiome and Its Potential Role in Bovine Respiratory Disease and Otitis Media. Sci. Rep. 2016, 6, 29050. [Google Scholar] [CrossRef] [Green Version]
- Gaeta, N.C.; Lima, S.F.; Teixeira, A.G.; Ganda, E.K.; Oikonomou, G.; Gregory, L.; Bicalho, R.C. Deciphering Upper Respiratory Tract Microbiota Complexity in Healthy Calves and Calves That Develop Respiratory Disease Using Shotgun Metagenomics. J. Dairy Sci. 2017, 100, 1445–1458. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.C.; Bailey, M.; Lee, M.R.F.; Mead, A.; Morales-Aza, B.; Reynolds, R.; Vipond, B.; Finn, A.; Eisler, M.C. Insights into Pasteurellaceae Carriage Dynamics in the Nasal Passages of Healthy Beef Calves. Sci. Rep. 2019, 9, 11943. [Google Scholar] [CrossRef]
- Li, J.; Clinkenbeard, K.D.; Ritchey, J.W. Bovine CD18 Identified as a Species Specific Receptor for Pasteurella Haemolytica Leukotoxin. Vet. Microbiol. 1999, 67, 91–97. [Google Scholar] [CrossRef]
- Wang, J.F.; Kieba, I.R.; Korostoff, J.; Guo, T.L.; Yamaguchi, N.; Rozmiarek, H.; Billings, P.C.; Shenker, B.J.; Lally, E.T. Molecular and Biochemical Mechanisms of Pasteurella Haemolytica Leukotoxin-Induced Cell Death. Microb. Pathog. 1998, 25, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Clinkenbeard, K.D.; Cudd, L.A.; Clarke, C.R.; Clinkenbeard, P.A. Correlation of Pasteurella Haemolytica Leukotoxin Binding with Susceptibility to Intoxication of Lymphoid Cells from Various Species. Infect. Immun. 1999, 67, 6264–6269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicola, A.V.; McEvoy, A.M.; Straus, S.E. Roles for Endocytosis and Low PH in Herpes Simplex Virus Entry into HeLa and Chinese Hamster Ovary Cells. J. Virol. 2003, 77, 5324–5332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pastenkos, G.; Lee, B.; Pritchard, S.M.; Nicola, A.V. Bovine Herpesvirus 1 Entry by a Low-PH Endosomal Pathway. J. Virol. 2018, 92, e00839-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weed, D.J.; Pritchard, S.M.; Gonzalez, F.; Aguilar, H.C.; Nicola, A.V. Mildly Acidic PH Triggers an Irreversible Conformational Change in the Fusion Domain of Herpes Simplex Virus 1 Glycoprotein B and Inactivation of Viral Entry. J. Virol. 2017, 91, e02123-16. [Google Scholar] [CrossRef] [Green Version]
- Zeineldin, M.; Elolimy, A.A.; Barakat, R. Meta-Analysis of Bovine Respiratory Microbiota: Link between Respiratory Microbiota and Bovine Respiratory Health. FEMS Microbiol. Ecol. 2020, 96, fiaa127. [Google Scholar] [CrossRef]
- Alexander, T.W. The Role of the Bovine Respiratory Bacterial Microbiota in Health and Disease. Anim. Health Res. Rev. 2021, 21, 168–171. [Google Scholar] [CrossRef]
- Amat, S.; Alexander, T.W.; Holman, D.B.; Schwinghamer, T.; Timsit, E. Intranasal Bacterial Therapeutics Reduce Colonization by the Respiratory Pathogen Mannheimia Haemolytica in Dairy Calves. mSystems 2020, 5, e00629-19. [Google Scholar] [CrossRef]
% Reduction in Viral Output (with Respect to BoHV-1.1) | ||
---|---|---|
↓ Microbes Involved (Dilution) | + Mannheimia haemolytica | + Pasteurella multocida |
BoHV-1.1 | -- | -- |
BoHV-1.1 + Bacteria (10−9) | 85.60% | 18.1% |
BoHV-1.1 + Bacteria (10−8) | 96.0% | 39.9% |
BoHV-1.1 + Bacteria (10−7) | 99.5% | 70.8% |
BoHV-1.1 + Bacteria (10−6) | 99.7% | 84.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cowick, C.A.; Russ, B.P.; Bales, A.R.; Nanduri, B.; Meyer, F. Mannheimia haemolytica Negatively Affects Bovine Herpesvirus Type 1.1 Replication Capacity In Vitro. Microorganisms 2022, 10, 2158. https://doi.org/10.3390/microorganisms10112158
Cowick CA, Russ BP, Bales AR, Nanduri B, Meyer F. Mannheimia haemolytica Negatively Affects Bovine Herpesvirus Type 1.1 Replication Capacity In Vitro. Microorganisms. 2022; 10(11):2158. https://doi.org/10.3390/microorganisms10112158
Chicago/Turabian StyleCowick, Caitlyn A., Brynnan P. Russ, Anna R. Bales, Bindu Nanduri, and Florencia Meyer. 2022. "Mannheimia haemolytica Negatively Affects Bovine Herpesvirus Type 1.1 Replication Capacity In Vitro" Microorganisms 10, no. 11: 2158. https://doi.org/10.3390/microorganisms10112158
APA StyleCowick, C. A., Russ, B. P., Bales, A. R., Nanduri, B., & Meyer, F. (2022). Mannheimia haemolytica Negatively Affects Bovine Herpesvirus Type 1.1 Replication Capacity In Vitro. Microorganisms, 10(11), 2158. https://doi.org/10.3390/microorganisms10112158