Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Preparation
2.2. Isolation, Morphological Characterization, and Genetic Identification
2.3. Minimum Inhibitory Concentration, PGP Attributes, Drought Tolerance and Antibiotic Sensitivity Test
2.4. Carrier Characterization, Biofertilizer Preparation, and Survival Test of Strain TF16a
2.5. Seedling Growth Test and Plant Development Assay
2.6. Physiological and Biochemical Parameters
2.7. Statistical Analyses
3. Results and Discussion
3.1. Chemical Properties and Heavy Metal Content in Rhizospheric Soil and Biochar
3.2. Bacterial Identification and Characterization
3.3. Minimum Inhibitory Concentration, PGP Attributes, and Drought Resistance of Selected Strains
3.4. Biometric Growth Parameters and Copper Accumulation
3.4.1. Seedling Growth Test
3.4.2. Pot Scale Experiment
3.5. Plant Physiological and Biochemical Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ajmal, A.W.; Yasmin, H.; Hassan, M.N.; Khan, N.; Jan, B.L.; Mumtaz, S. Heavy Metal-Resistant Plant Growth-Promoting Citrobacter werkmanii Strain WWN1 and Enterobacter cloacae Strain JWM6 Enhance Wheat (Triticum aestivum L.) Growth by Modulating Physiological Attributes and Some Key Antioxidants Under Multi-Metal Stress. Front. Microbiol. 2022, 13, 815704. [Google Scholar] [CrossRef] [PubMed]
- Tripti; Kumar, A.; Kumar, V.; Bruno, L.B.; Rajkumar, M. Synergism of Industrial and Agricultural Waste as a Suitable Carrier Material for Developing Potential Biofertilizer for Sustainable Agricultural Production of Eggplant. Horticulturae 2022, 8, 444. [Google Scholar] [CrossRef]
- Ma, Y.; Oliveira, R.S.; Nai, F.; Rajkumar, M.; Luo, Y.; Rocha, I.; Freitas, H. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J. Environ. Manag. 2015, 156, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Tripti; Kumar, A.; Usmani, Z.; Kumar, V. Biochar and flyash inoculated with plant growth promoting rhizobacteria act as potential biofertilizer for luxuriant growth and yield of tomato plant. J. Environ. Manag. 2017, 190, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Tripti; Raj, D.; Maiti, S.K.; Maleva, M.; Borisova, G. Soil Pollution and Plant Efficiency Indices for Phytoremediation of Heavy Metal(loid)s: Two-Decade Study (2002–2021). Metals 2022, 12, 1330. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Gong, Y.; Liu, Q.; Yang, S.; Ma, J.; Zhao, L.; Hou, H. Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere 2020, 244, 125516. [Google Scholar] [CrossRef]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef]
- Gülser, F.; Erdoǧan, E. The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environ. Monit. Assess. 2008, 145, 127–133. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Arora, N.K.; Chauhan, R. Heavy metal toxicity and sustainable interventions for their decontamination. Environ. Sustain. 2021, 4, 1–3. [Google Scholar] [CrossRef]
- Vardhan, K.H.; Kumar, P.S.; Panda, R.C. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J. Mol. Liq. 2019, 290, 111197. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Li, Z.; Teng, Y.; Christie, P.; Luo, Y. Effects of long-term fertilizer applications on peanut yield and quality and plant and soil heavy metal accumulation. Pedosphere 2020, 30, 555–562. [Google Scholar] [CrossRef]
- Latef, A.A.A.H.; Zaid, A.; Abo-Baker, A.B.A.E.; Salem, W.; Abu Alhmad, M.F. Mitigation of Copper Stress in Maize by Inoculation with Paenibacillus polymyxa and Bacillus circulans. Plants 2020, 9, 1513. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Kumar, A.; Tripti; Voropaeva, O.; Maleva, M.; Panikovskaya, K.; Borisova, G.; Rajkumar, M.; Bruno, L.B. Bioaugmentation with copper tolerant endophyte Pseudomonas lurida strain EOO26 for improved plant growth and copper phytoremediation by Helianthus annuus. Chemosphere 2021, 266, 128983. [Google Scholar] [CrossRef]
- Maheshwari, D.K.; Dubey, R.C.; Agarwal, M.; Dheeman, S.; Aeron, A.; Bajpai, V.K. Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecol. Eng. 2015, 81, 272–277. [Google Scholar] [CrossRef]
- Mourato, M.P.; Moreira, I.N.; Leitão, I.; Pinto, F.R.; Sales, J.R.; Louro Martins, L. Effect of Heavy Metals in Plants of the Genus Brassica. Int. J. Mol. Sci. 2015, 16, 17975–17998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiti, S.K. Ecorestoration of the Coalmine Degraded Lands; Springer: New York, NY, USA, 2013; p. 361. [Google Scholar]
- Bergey, D.H.; Holt, J.G.; Krieg, P.; Sneath, P.H. Bergey’s Manual of Determinative Bacteriology; Williams and Wilkins: Baltimore, MD, USA, 1994. [Google Scholar]
- Bric, J.M.; Bostock, R.M.; Silverstone, S.E. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Schwyn, B.; Neilands, J.B. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 1987, 160, 47–56. [Google Scholar] [CrossRef]
- Feng, L.; Roughley, R.J.; Copeland, L. Morphological Changes of Rhizobia in Peat Cultures. Appl. Environ. Microbiol. 2002, 68, 1064–1070. [Google Scholar] [CrossRef]
- Wijewardana, C.; Reddy, K.R.; Krutz, L.J.; Gao, W.; Bellaloui, N. Drought stress has transgenerational effects on soybean seed germination and seedling vigor. PLoS ONE 2019, 14, e0214977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic membranes. Method. Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Maleva, M.; Borisova, G.; Filimonova, E.; Lukina, N.; Chukina, N.; Ermoshin, A.; Tugbaeva, A.; Voropaeva, O. Adaptive Redox Reactions Promote Naturalization of Rare Orchid Epipactis atrorubens on Serpentine Dumps Post Asbestos Mining. Horticulturae 2022, 8, 603. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Zhang, Y.F.; He, L.Y.; Chen, Z.J.; Wang, Q.Y.; Qian, M.; Sheng, X.F. Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 2011, 83, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Shiryaev, G.I.; Maleva, M.G.; Borisova, G.G.; Kumar, A. Parameters of rape seed growth when adding biochar in different concentration. In The State of the Environment, Environmental Problems and Ways to Solve Them, Proceedings of the All-Russian Scientific-practical Conference, Ust-Ilimsk, Russia, 20–21 December 2021; BSU Publishing House: Irkutsk, Russia, 2022; pp. 95–101. (In Russian) [Google Scholar]
- Dabrowska, G.; Hrynkiewicz, K.; Trejgell, A.; Baum, C. The effect of plant growth-promoting rhizobacteria on the phytoextraction of Cd and Zn by Brassica napus L. Int. J. Phytorem. 2017, 19, 597–604. [Google Scholar] [CrossRef]
- Borisova, G.; Maleva, M.; Atambire, A.; Davydova, D.; Tripti. Wood Biochar as an Amendment for Enhanced Growth of Phacelia tanacetifolia. AIP Conf. Proceed. 2021, 2388, 040007. [Google Scholar] [CrossRef]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Abbaszadeh-Dahaji, P.; Omidvari, M.; Ghorbanpour, M. Plant-Microbe Interaction: An Approach to Sustainable Agriculture. Increasing Phytoremediation Efficiency of Heavy Metal-Contaminated Soil Using PGPR for Sustainable Agriculture; Choudhary, D.K., Varma, A., Tuteja, N., Eds.; Springer: Singapore, 2016; pp. 187–204. [Google Scholar]
- Mwamba, T.M.; Ali, S.; Ali, B.; Lwalaba, J.L.; Liu, H.; Farooq, M.A.; Shou, J.; Zhou, W. Interactive effects of cadmium and copper on metal accumulation, oxidative stress, and mineral composition in Brassica napus. Int. J. Environ. Sci. Technol. 2016, 13, 2163–2174. [Google Scholar] [CrossRef]
- Aust, S.D.; Morehouse, L.A.; Thomas, C.E. Role of metals in oxygen radical reactions. J. Free Radi. Biol. Med. 1985, 1, 3–25. [Google Scholar] [CrossRef]
- Kanoun-Boulé, M.; Vicente, J.A.F.; Nabais, C.; Prasad, M.N.V.; Freitas, H. Ecophysiological tolerance of duckweeds exposed to copper. Aquat. Toxicol. 2009, 91, 1–9. [Google Scholar] [CrossRef] [Green Version]
- El-Meihy, R.M.; Abou-Aly, H.E.; Youssef, A.M.; Tewfike, T.A.; El-Alkshar, E.A. Efficiency of heavy metals-tolerant plant growth promoting bacteria for alleviating heavy metals toxicity on sorghum. Environ. Exp. Bot. 2019, 162, 295–301. [Google Scholar] [CrossRef]
- Kısa, D.; Elmastaş, M.; Öztürk, L.; Kayır, Ö. Responses of the phenolic compounds of Zea mays under heavy metal stress. Appl. Biol. Chem. 2016, 59, 813–820. [Google Scholar] [CrossRef]
- Foti, M.C. Antioxidant properties of phenols. J. Pharm. Pharmacol. 2007, 59, 1673–1685. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Saeed, M.S.; Sattar, S.; Sajad, S.; Sajjad, M.; Adnan, M.; Iqbal, M.; Sharif, M.T. Specific Role of Proline Against Heavy Metals Toxicity in Plants. Ind. J. Pure App. Biosci. 2017, 5, 27–34. [Google Scholar] [CrossRef]
- Kaur, G.; Asthir, B. Proline: A key player in plant abiotic stress tolerance. Biol. Plant. 2015, 59, 609–619. [Google Scholar] [CrossRef]
- Ansary, M.H.; Rahmani, H.A.; Ardakani, M.R.; Paknejad, F.; Habibi, D.; Mafakheri, S. Effect of Pseudomonas fluorescent on Proline and Phytohormonal Status of Maize (Zea mays L.) under Water Deficit Stress. Annal. Biol. Res. 2012, 3, 1054–1062. [Google Scholar]
Strain | Bacillus sp. TF16a | Arthrobacter sp. TF16b | Pseudomonas sp. TF16c |
---|---|---|---|
MIC, mg L−1 | |||
Copper | 1000 | 1750 | 750 |
Lead | 3500 | 6000 | 2500 |
Chromium | 2000 | 2000 | 1000 |
Cadmium | 750 | 1000 | 500 |
Nickel | 2250 | 2250 | 1250 |
PGP attributes | |||
Indole-3-acetic acid production, mg L−1 | 1 15.48 ± 0.56 a | 20.81 ± 2.85 a | 4.84 ± 0.45 b |
Solubilized phosphate, mg L−1 | 215.26 ± 9.45 a | 49.21 ± 4.50 c | 130.00 ± 6.55 b |
Siderophore production * | 3.00 | 1.75 | 1.71 |
Ammonia production | +++ | +++ | - |
Hydrogen cyanide production | - | - | - |
Drought tolerance, % (MPa) | |||
PEG6000 tolerance | 25% (−0.75) | 25% (−0.75) | 20% (−0.49) |
Parameter | Control | 100Cu | 5%BF | 5%BF+100Cu |
---|---|---|---|---|
Shoot length, cm | 1 11.63 ± 0.74 a 6.38 | 13.46 ± 0.93 a 6.92 | 10.76 ± 0.50 a 4.67 | 10.38 ± 0.53 a 5.09 |
Root length, cm | 6.07 ± 0.34 c 5.60 | 11.33 ± 0.93 a 8.16 | 9.25 ± 0.51 b 5.53 | 9.42 ± 0.42 b 3.40 |
Shoot FW, mg | 350.25 ± 44.50 b 12.70 | 338.38 ± 47.59 b 14.06 | 298.50 ± 37.81 b 12.67 | 423.25 ± 20.67 a 13.82 |
Root FW, mg | 20.87 ± 1.52 c 7.25 | 25.01 ± 2.10 b 8.15 | 26.16 ± 0.98 b 3.74 | 35.32 ± 2.29 a 6.47 |
Shoot DW, mg | 58.01 ± 6.11 b 10.54 | 57.91 ± 7.29 b 12.56 | 50.825 ± 6.09 b 11.97 | 75.96 ± 2.21 a 2.90 |
Root DW, mg | 3.63 ± 0.29 b 8.07 | 3.67 ± 0.35 b 9.62 | 3.69 ± 0.14 b 3.86 | 5.83 ± 0.37 a 6.29 |
Leaf area, cm2 | 4.23 ± 0.38 bc 8.85 | 4.64 ± 0.31 b 6.67 | 3.98 ±0.14 c 3.47 | 5.70 ± 0.31 a 5.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Borisova, G.; Maleva, M.; Tripti; Shiryaev, G.; Tugbaeva, A.; Sobenin, A.; Kiseleva, I. Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L. Microorganisms 2022, 10, 2164. https://doi.org/10.3390/microorganisms10112164
Kumar A, Borisova G, Maleva M, Tripti, Shiryaev G, Tugbaeva A, Sobenin A, Kiseleva I. Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L. Microorganisms. 2022; 10(11):2164. https://doi.org/10.3390/microorganisms10112164
Chicago/Turabian StyleKumar, Adarsh, Galina Borisova, Maria Maleva, Tripti, Grigory Shiryaev, Anastasia Tugbaeva, Artem Sobenin, and Irina Kiseleva. 2022. "Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L." Microorganisms 10, no. 11: 2164. https://doi.org/10.3390/microorganisms10112164
APA StyleKumar, A., Borisova, G., Maleva, M., Tripti, Shiryaev, G., Tugbaeva, A., Sobenin, A., & Kiseleva, I. (2022). Biofertilizer Based on Biochar and Metal-Tolerant Plant Growth Promoting Rhizobacteria Alleviates Copper Impact on Morphophysiological Traits in Brassica napus L. Microorganisms, 10(11), 2164. https://doi.org/10.3390/microorganisms10112164