TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Culture Media and Strains of Bacteria
2.2. Preparation of Antimicrobial Agents
2.3. Characterization of TA-AgNPs
2.4. Agar Well Diffusion Assessment
2.5. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Determination by Broth Microdilution Assay
2.6. Minimum Biofilm Eradication Concentration (MBEC) Assay
2.7. Preparation of TA-AgNPs-Containing Alginate Gels
2.8. Antibacterial Activity Test of Antimicrobial Hydrogels
2.9. Biofilm Cells Inhibiting test of TA-AgNPs/Alginate Hydrogels Using Duckworth Biofilm Flow Device (DBD)
2.10. Biofilm Recovery Assessment by Total Viable Counts (TVCs)
2.11. Statistical Analysis
3. Results
3.1. Characterization of TA-AgNPs
3.2. TA-AgNPs Exhibited Antibacterial Activity against Bacteria Causing Wound Infection
3.3. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) Values of TA-AgNPs against Wound Bacteria
3.4. TA-AgNPs Could Reduce Biofilm Formation and Inhibit the Planktonic Bacterial Growth
3.5. Antibacterial Activity of Antimicrobial TA-AgNPs/Alginate Hydrogels
3.6. Polymicrobial Biofilms Development in the DBD Model
3.7. Effectiveness of TA-AgNPs/Alginate Hydrogel against a Three-Species Biofilm
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care (New Rochelle) 2019, 8, 39–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Percival, S.L.; McCarty, S.M. Silver and Alginates: Role in Wound Healing and Biofilm Control. Adv. Wound Care (New Rochelle) 2015, 4, 407–414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogoşanu, G.D.; Grumezescu, A.M. Natural and Synthetic Polymers for Wounds and Burns Dressing. Int. J. Pharm. 2014, 463, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Asadi, L.; Mokhtari, J.; Abbasi, M. An Alginate–PHMB–AgNPs Based Wound Dressing Polyamide Nanocomposite with Improved Antibacterial and Hemostatic Properties. J. Mater. Sci. Mater. Med. 2021, 32, 7. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hu, H. A Review on Antimicrobial Silver Absorbent Wound Dressings Applied to Exuding Wounds. J. Microb. Biochem. Technol. 2015, 7, 228–233. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Hu, H.; Luo, A. The Conversion of Calcium Alginate Fibers into Alginic Acid Fibers and Sodium Alginate Fibers. J. Appl. Polym. Sci. 2006, 101, 4216–4221. [Google Scholar] [CrossRef]
- Singla, R.; Soni, S.; Kulurkar, P.M.; Kumari, A.; Mahesh, S.; Patial, V.; Padwad, Y.S.; Yadav, S.K. In Situ Functionalized Nanobiocomposites Dressings of Bamboo Cellulose Nanocrystals and Silver Nanoparticles for Accelerated Wound Healing. Carbohydr. Polym. 2017, 155, 152–162. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Mijakovic, I. Antibacterial Effect of Silver Nanoparticles Is Stronger If the Production Host and the Targeted Pathogen Are Closely Related. Biomedicines 2022, 10, 628. [Google Scholar] [CrossRef]
- Siritongsuk, P.; Hongsing, N.; Thammawithan, S.; Daduang, S.; Klaynongsruang, S.; Tuanyok, A.; Patramanon, R. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia pseudomallei. PLoS ONE 2016, 11, e0168098. [Google Scholar] [CrossRef] [PubMed]
- Shehabeldine, A.M.; Salem, S.S.; Ali, O.M.; Abd-Elsalam, K.A.; Elkady, F.M.; Hashem, A.H. Multifunctional Silver Nanoparticles Based on Chitosan: Antibacterial, Antibiofilm, Antifungal, Antioxidant, and Wound-Healing Activities. J. Fungi 2022, 8, 612. [Google Scholar] [CrossRef] [PubMed]
- Shehabeldine, A.M.; Elbahnasawy, M.A.; Hasaballah, A.I. Green Phytosynthesis of Silver Nanoparticles Using Echinochloa Stagnina Extract with Reference to Their Antibacterial, Cytotoxic, and Larvicidal Activities. Bionanoscience 2021, 11, 526–538. [Google Scholar] [CrossRef]
- Hetta, H.F.; Al-Kadmy, I.M.S.; Khazaal, S.S.; Abbas, S.; Suhail, A.; El-Mokhtar, M.A.; Ellah, N.H.A.; Ahmed, E.A.; Abd-ellatief, R.B.; El-Masry, E.A.; et al. Antibiofilm and Antivirulence Potential of Silver Nanoparticles against Multidrug-Resistant Acinetobacter Baumannii. Sci. Rep. 2021, 11, 10751. [Google Scholar] [CrossRef]
- Siddique, M.H.; Aslam, B.; Imran, M.; Ashraf, A.; Nadeem, H.; Hayat, S.; Khurshid, M.; Afzal, M.; Malik, I.R.; Shahzad, M.; et al. Effect of Silver Nanoparticles on Biofilm Formation and EPS Production of Multidrug-Resistant Klebsiella Pneumoniae. Biomed. Res. Int. 2020, 2020, 6398165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentry, H.; Cope, S. Using Silver to Reduce Catheter-Associated Urinary Tract Infections. Nurs. Stand. 2005, 19, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Srichaiyapol, O.; Thammawithan, S.; Siritongsuk, P.; Nasompag, S.; Daduang, S.; Klaynongsruang, S.; Kulchat, S.; Patramanon, R. Tannic Acid-Stabilized Silver Nanoparticles Used in Biomedical Application as an Effective Antimelioidosis and Prolonged Efflux Pump Inhibitor against Melioidosis Causative Pathogen. Molecules 2021, 26, 1004. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.K.; Chakraborty, R.; Basu, T. Mechanism of Antibacterial Activity of Copper Nanoparticles. Nanotechnology 2014, 25, 13501. [Google Scholar] [CrossRef]
- Mishra, M.; Kumar, S.; Majhi, R.K.; Goswami, L.; Goswami, C.; Mohapatra, H. Antibacterial Efficacy of Polysaccharide Capped Silver Nanoparticles Is Not Compromised by AcrAB-TolC Efflux Pump. Front. Microbiol. 2018, 9, 823. [Google Scholar] [CrossRef]
- Nallathamby, P.D.; Lee, K.J.; Desai, T.; Xu, X.N. Study of the Multidrug Membrane Transporter of Single Living Pseudomonas Aeruginosa Cells Using Size-Dependent Plasmonic Nanoparticle Optical Probes. Biochemistry 2010, 49, 5942–5953. [Google Scholar] [CrossRef]
- Nowak, M.; Barańska-Rybak, W. Nanomaterials as a Successor of Antibiotics in Antibiotic-Resistant, Biofilm Infected Wounds? Antibiotics 2021, 10, 941. [Google Scholar] [CrossRef] [PubMed]
- Yeasmin, S.; Datta, H.K.; Chaudhuri, S.; Malik, D.; Bandyopadhyay, A. In-Vitro Anti-Cancer Activity of Shape Controlled Silver Nanoparticles (AgNPs) in Various Organ Specifc Cell Lines. J. Mol. Liq. 2017, 242, 757–766. [Google Scholar] [CrossRef]
- Skóra, B.; Krajewska, U.; Nowak, A.; Dziedzic, A.; Barylyak, A.; Kus-Liśkiewicz, M. Noncytotoxic Silver Nanoparticles as a New Antimicrobial Strategy. Sci. Rep. 2021, 11, 13451. [Google Scholar] [CrossRef] [PubMed]
- Senthil, B.; Devasena, T.; Prakash, B.; Rajasekar, A. Non-Cytotoxic Effect of Green Synthesized Silver Nanoparticles and Its Antibacterial Activity. J. Photochem. Photobiol. B 2017, 177, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, P.F.; Rowlands, R.S.; Barbour, M.E.; Maddocks, S.E. A Novel Flow-System to Establish Experimental Biofilms for Modelling Chronic Wound Infection and Testing the Efficacy of Wound Dressings. Microbiol. Res. 2018, 215, 141–147. [Google Scholar] [CrossRef]
- Nedelea, A.-G.; Plant, R.L.; Robins, L.I.; Maddocks, S.E. Testing the Efficacy of Topical Antimicrobial Treatments Using a Two- and Five-Species Chronic Wound Biofilm Model. J. Appl. Microbiol. 2022, 132, 715–724. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Charannya, S.; Duraivel, D.; Padminee, K.; Poorni, S.; Nishanthine, C.; Srinivasan, M.R. Comparative Evaluation of Antimicrobial Efficacy of Silver Nanoparticles and 2% Chlorhexidine Gluconate When Used Alone and in Combination Assessed Using Agar Diffusion Method: An In Vitro Study. Contemp. Clin. Dent. 2018, 9, S204–S209. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 20th ed.; CLSI: Wayne, PA, USA, 2011. [Google Scholar]
- Sengyee, S.; Saiprom, N.; Paksanont, S.; Limmathurotsakul, D.; Wuthiekanun, V.; Chantratita, N. Susceptibility of Clinical Isolates of Burkholderia Pseudomallei to a Lipid A Biosynthesis Inhibitor. Am. J. Trop. Med. Hyg. 2017, 97, 62–67. [Google Scholar] [CrossRef]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Duttae, S. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Silver Nanoparticles against Staphylococcus Aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef]
- Perumal, S.; Mahmud, R. Chemical Analysis, Inhibition of Biofilm Formation and Biofilm Eradication Potential of Euphorbia hirta L. against Clinical Isolates and Standard Strains. BMC Complement. Altern. Med. 2013, 13, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birkenhauer, E.; Neethirajan, S.; Weese, J.S. Collagen and Hyaluronan at Wound Sites Influence Early Polymicrobial Biofilm Adhesive Events. BMC Microbiol. 2014, 14, 191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-P.; Liu, X.-Y.; Bai, J.-R.; Xie, H.-C.; Ye, S.-L.; Zhong, K.; Huang, Y.-N.; Gao, H. Inhibitory Effect of a Natural Phenolic Compound, 3-p-Trans-Coumaroyl-2-Hydroxyquinic Acid against the Attachment Phase of Biofilm Formation of Staphylococcus Aureus through Targeting Sortase A. RSC Adv. 2019, 9, 32453–32461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabino, H.A.C.; Valera, F.C.P.; Santos, D.V.; Fantucci, M.Z.; Titoneli, C.C.; Martinez, R.; Anselmo-Lima, W.T.; Tamashiro, E. Biofilm and Planktonic Antibiotic Resistance in Patients With Acute Exacerbation of Chronic Rhinosinusitis. Front. Cell Infect. Microbiol. 2021, 11, 813076. [Google Scholar] [CrossRef]
- Porter, G.C.; Schwass, D.R.; Tompkins, G.R.; Bobbala, S.K.R.; Medlicott, N.J.; Meledandri, C.J. AgNP/Alginate Nanocomposite Hydrogel for Antimicrobial and Antibiofilm Applications. Carbohydr. Polym. 2021, 251, 117017. [Google Scholar] [CrossRef]
- Mekkawy, A.I.; El-Mokhtar, M.A.; Nafady, N.A.; Yousef, N.; Hamad, M.A.; El-Shanawany, S.M.; Ibrahim, E.H.; Elsabahy, M. In Vitro and in Vivo Evaluation of Biologically Synthesized Silver Nanoparticles for Topical Applications: Effect of Surface Coating and Loading into Hydrogels. Int. J. Nanomed. 2017, 12, 759–777. [Google Scholar] [CrossRef] [Green Version]
- Metcalf, D.G.; Bowler, P.G. Clinician Perceptions of Wound Biofilm. Int. Wound J. 2016, 13, 717–725. [Google Scholar] [CrossRef]
- Versey, Z.; da Cruz Nizer, W.S.; Russell, E.; Zigic, S.; DeZeeuw, K.G.; Marek, J.E.; Overhage, J.; Cassol, E. Biofilm-Innate Immune Interface: Contribution to Chronic Wound Formation. Front. Immunol. 2021, 12, 648554. [Google Scholar] [CrossRef]
- Maheswary, T.; Nurul, A.A.; Fauzi, M.B. The Insights of Microbes’ Roles in Wound Healing: A Comprehensive Review. Pharmaceutics 2021, 13, 981. [Google Scholar] [CrossRef]
- Puca, V.; Marulli, R.Z.; Grande, R.; Vitale, I.; Niro, A.; Molinaro, G.; Prezioso, S.; Muraro, R.; Di Giovanni, P. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics 2021, 10, 1162. [Google Scholar] [CrossRef]
- DeLeon, S.; Clinton, A.; Fowler, H.; Everett, J.; Horswill, A.R.; Rumbaugh, K.P. Synergistic Interactions of Pseudomonas Aeruginosa and Staphylococcus Aureus in an In Vitro Wound Model. Infect. Immun. 2014, 82, 4718–4728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paladini, F.; Pollini, M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials 2019, 12, 2540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, M.; Adibhesami, M. The Effect of Silver Nanoparticles on Wounds Contaminated with Pseudomonas Aeruginosa in Mice: An Experimental Study. Iran. J. Pharm. Res. 2017, 16, 661–669. [Google Scholar] [PubMed]
- Wali, N.; Shabbir, A.; Wajid, N.; Abbas, N.; Naqvi, S.Z.H. Synergistic Efficacy of Colistin and Silver Nanoparticles Impregnated Human Amniotic Membrane in a Burn Wound Infected Rat Model. Sci. Rep. 2022, 12, 6414. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, N.; Jahan, N.; Khalil-ur-Rahman; Anwar, T.; Qureshi, H. Green Synthesized Silver Nanoparticles: Optimization, Characterization, Antimicrobial Activity, and Cytotoxicity Study by Hemolysis Assay. Front. Chem. 2022, 10, 952006. [Google Scholar] [CrossRef] [PubMed]
- Anders, H.-J.; Leposavic, G.; Desai, J.; Krzyzowska, M.; Orlowski, P.; Tomaszewska, E.; Ranoszek-Soliwoda, K.; Gniadek, M.; Labedz, O.; Malewski, T.; et al. Tannic Acid-Modified Silver and Gold Nanoparticles as Novel Stimulators of Dendritic Cells Activation. Front. Immunol. 2018, 9, 1115. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Ge, C.; Zhang, Y.; Ma, W.; Su, X.; Chen, L.; Li, S.; Wang, L.; Mu, X.; Xu, Y. Tannic Acid-Modified Silver Nanoparticles for Enhancing Anti-Biofilm Activities and Modulating Biofilm Formation. Biomater. Sci. 2020, 8, 4852–4860. [Google Scholar] [CrossRef]
- Singh, P.; Pandit, S.; Jers, C.; Joshi, A.S.; Garnæs, J.; Mijakovic, I. Silver Nanoparticles Produced from Cedecea Sp. Exhibit Antibiofilm Activity and Remarkable Stability. Sci. Rep. 2021, 11, 12619. [Google Scholar] [CrossRef]
- Königs, A.M.; Flemming, H.C.; Wingender, J. Nanosilver Induces a Non-Culturable but Metabolically Active State in Pseudomonas Aeruginosa. Front. Microbiol. 2015, 6, 395. [Google Scholar] [CrossRef]
- Han, G.; Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017, 34, 599–610. [Google Scholar] [CrossRef]
- Sun, J.; Tan, H. Alginate-Based Biomaterials for Regenerative Medicine Applications. Materials 2013, 6, 1285–1309. [Google Scholar] [CrossRef] [PubMed]
- Rescignano, N.; Hernandez, R.; Lopez, L.D.; Calvillo, I.; Kenny, J.M.; Mijangos, C. Preparation of Alginate Hydrogels Containing Silver Nanoparticles: A Facile Approach for Antibacterial Applications. Polym. Int. 2016, 65, 921–926. [Google Scholar] [CrossRef]
- Diniz, F.R.; Maia, R.C.A.P.; Rannier, L.; Andrade, L.N.; Chaud, M.V.; da Silva, C.F.; Corrêa, C.B.; de Albuquerque Junior, R.L.C.; da Costa, L.P.; Shin, S.R.; et al. Silver Nanoparticles-Composing Alginate/Gelatine Hydrogel Improves Wound Healing in Vivo. Nanomaterials 2020, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Slade, E.A.; Thorn, R.M.S.; Young, A.; Reynolds, D.M. An in Vitro Collagen Perfusion Wound Biofilm Model; with Applications for Antimicrobial Studies and Microbial Metabolomics. BMC Microbiol. 2019, 19, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lacerda Coriolano, D.; de Souza, J.B.; Bueno, E.V.; Medeiros, S.M.; dos Santos Medeiros, S.M.d.F.R.; Cavalcanti, I.D.L.; Cavalcanti, I.M.F. Antibacterial and Antibiofilm Potential of Silver Nanoparticles against Antibiotic-Sensitive and Multidrug-Resistant Pseudomonas Aeruginosa Strains. Braz. J. Microbiol. 2021, 52, 267–278. [Google Scholar] [CrossRef] [PubMed]
Agent (μg/mL) | Diameter of Zone of Inhibition (mm) | ||
---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | ||
S. pyogenes | S. aureus | P. aeruginosa | |
128 μg/mL TA-AgNPs | 12.00 ± 0.93 | 9.25 ± 0.99 | 8.67 ± 0.52 |
256 μg/mL TA-AgNPs | 12.88 ± 0.64 | 10.58 ± 0.80 | 10.25 ± 0.42 |
8 μg/mL Ciprofloxacin | 13.40 ± 1.34 | 18.33 ± 0.98 | n.t. 1 |
64 μg/mL Polymyxin B | n.t. | n.t. | 12.92 ± 0.80 |
256 μg/mL Tannic acid | n.d. 2 | n.d. | n.d. |
Sterile deionized water (DI) | n.d. | n.d. | n.d. |
Agent (μg/mL) | Gram-Positive Bacteria | Gram-Negative Bacteria | ||||
---|---|---|---|---|---|---|
S. pyogenes | S. aureus | P. aeruginosa | ||||
MIC 1 | MBC 2 | MIC | MBC | MIC | MBC | |
TA-AgNPs | 4 | 8 | 32 | 64 | 64 | 128 |
Ciprofloxacin | 0.25 | 0.5 | <0.25 | 0.25 | n.t. 3 | n.t. |
Polymyxin B | n.t. | n.t. | n.t. | n.t. | 4 | 8 |
Agent (μg/mL) | Gram-Positive Bacteria | Gram-Negative Bacteria | |
---|---|---|---|
S. pyogenes | S. aureus | P. aeruginosa | |
TA-AgNPs | >16 | >64 | 128 |
Ciprofloxacin 1 | >16 | >16 | n.t. 3 |
Polymyxin B 2 | n.t. | n.t. | 8 |
Agent (μg/mL) | Diameter of Zone of Inhibition (mm) | ||
---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | ||
S. pyogenes | S. aureus | P. aeruginosa | |
1% alginate gel control | n.d. 2 | n.d. | n.d. |
Antibiotic ointment (Neosporin®) 1 | 16.08 ± 0.66 | 20.07 ± 1.10 | 19.75 ± 1.44 |
512 μg/mL TA-AgNPs gel | 10.67 ± 0.41 | 12.36 ± 0.85 | 13.00 ± 0.71 |
512 μg/mL TA-AgNPs/Alginate gel | 9.75 ± 0.27 | 11.21 ± 0.70 | 10.75 ± 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srichaiyapol, O.; Maddocks, S.E.; Thammawithan, S.; Daduang, S.; Klaynongsruang, S.; Patramanon, R. TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model. Microorganisms 2022, 10, 2279. https://doi.org/10.3390/microorganisms10112279
Srichaiyapol O, Maddocks SE, Thammawithan S, Daduang S, Klaynongsruang S, Patramanon R. TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model. Microorganisms. 2022; 10(11):2279. https://doi.org/10.3390/microorganisms10112279
Chicago/Turabian StyleSrichaiyapol, Oranee, Sarah E. Maddocks, Saengrawee Thammawithan, Sakda Daduang, Sompong Klaynongsruang, and Rina Patramanon. 2022. "TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model" Microorganisms 10, no. 11: 2279. https://doi.org/10.3390/microorganisms10112279
APA StyleSrichaiyapol, O., Maddocks, S. E., Thammawithan, S., Daduang, S., Klaynongsruang, S., & Patramanon, R. (2022). TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model. Microorganisms, 10(11), 2279. https://doi.org/10.3390/microorganisms10112279