Distribution Patterns of Antibiotic Resistance Genes and Their Bacterial Hosts in a Manure Lagoon of a Large-Scale Swine Finishing Facility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site, Sampling, and Physicochemical Parameters Measurements
2.2. Sequencing of the 16S rRNA Gene Fragments and Bioinformatics Analysis of Microbial Community Composition
2.3. Metagenomic Sequencing and Identification of ARG
3. Results
3.1. Composition of Tom2 Manure Slurry Microbiome Revealed by 16S rRNA Gene Profiling
3.2. Composition of Tom3 Manure Slurry Microbiome
3.3. Characterization of the Tom2 Manure Resistome
3.4. Diversity of ARG from the Tom3 Manure Sample
3.5. Multidrug Resistant Strains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hamscher, G.; Pawelzick, H.T.; Höper, H.; Nau, H. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ. Toxicol. Chem. 2005, 24, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Innes, G.K.; Randad, P.R.; Korinek, A.; Davis, M.F.; Price, L.B.; So, A.D.; Heaney, C.D. External societal costs of antimicrobial resistance in humans attributable to antimicrobial use in livestock. Annu. Rev. Public Health 2020, 41, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Bassitta, R.; Nottensteiner, A.; Bauer, J.; Straubinger, R.K.; Hölzel, C.S. Spread of antimicrobial resistance genes via pig manure from organic and conventional farms in the presence or absence of antibiotic use. J. Appl. Microbiol. 2022, 133, 2457–2465. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Xiao, D.; Xie, L.; Yang, J.; Zhao, R.; Hao, J.; Huo, Z.; Zeng, Z.; Xiong, W. Swine manure facilitates the spread of antibiotic resistome including tigecycline-resistant tet(X) variants to farm workers and receiving environment. Sci. Total Environ. 2022, 808, 152157. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Hu, H.W.; Gou, M.; Wang, J.T.; Chen, D.; He, J.Z. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 2017, 231 Pt 2, 1621–1632. [Google Scholar] [CrossRef]
- Hölzel, C.; Harms, K.; Küchenhoff, H.; Kunz, A.; Müller, C.; Meyer, K.; Schwaiger, K.; Bauer, J. Phenotypic and genotypic bacterial antimicrobial resistance in liquid pig manure is variously associated with contents of tetracyclines and sulfonamides. J. Appl. Microbiol. 2010, 108, 1642–1656. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Li, H.; Li, S.; Li, C.; Li, J.; Ma, Y. The presence of tetracyclines and sulfonamides in swine feeds and feces: Dependence on the antibiotic type and swine growth stages. Environ. Sci. Pollut. Res. Int. 2020, 27, 43093–43102. [Google Scholar] [CrossRef] [PubMed]
- Stange, C.; Sidhu, J.P.S.; Tiehm, A.; Toze, S. Antibiotic resistance and virulence genes in coliform water isolates. Int. J. Hyg. Environ. Health 2016, 219, 823–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, H.; Török, M.E. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb. Genom. 2018, 4, e000197. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, M.; Achmon, Y.; Cao, Y.; Liang, X.; Chen, L.; Wang, H.; Siame, B.A.; Leung, K.Y. Distribution of antibiotic resistance genes in the environment. Environ. Pollut. 2021, 285, 117402. [Google Scholar] [CrossRef]
- Wallace, M.J.; Fishbein, S.R.S.; Dantas, G. Antimicrobial resistance in enteric bacteria: Current state and next-generation solutions. Gut. Microbes 2020, 12, 1799654. [Google Scholar] [CrossRef]
- Baquero, F.; Martínez, J.L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Karnachuk, O.V.; Rusanov, I.I.; Panova, I.A.; Grigoriev, M.A.; Zyusman, V.S.; Latygolets, E.A.; Kadyrbaev, M.K.; Gruzdev, E.V.; Beletsky, A.V.; Mardanov, A.V.; et al. Microbial sulfate reduction by Desulfovibrio is an important source of hydrogen sulfide from a large swine finishing facility. Sci. Rep. 2021, 11, 10720. [Google Scholar] [CrossRef]
- Frey, B.; Rime, T.; Phillips, M.; Stierli, B.; Hajdas, I.; Widmer, F.; Hartmann, M. Microbial diversity in European alpine permafrost and active layers. FEMS Microbiol. Ecol. 2016, 92, fiw018. [Google Scholar] [CrossRef] [Green Version]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.M.; Luo, R.; Sadakane, K.; Lam, T.W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaumeil, P.A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2019, 36, 1925–1927. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Chuvochina, M.; Rinke, C.; Mussig, A.J.; Chaumeil, P.A.; Hugenholtz, P. GTDB: An ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 2022, 50, D785–D794. [Google Scholar] [CrossRef] [PubMed]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Gibson, M.K.; Forsberg, K.J.; Dantas, G. Improved annotation of antibiotic resistance determinants reveals microbial resistomes cluster by ecology. ISME J. 2015, 9, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Pehrsson, E.C.; Tsukayama, P.; Patel, S.; Mejía-Bautista, M.; Sosa-Soto, G.; Navarrete, K.M.; Calderon, M.; Cabrera, L.; Hoyos-Arango, W.; Bertoli, M.T. Interconnected microbiomes and resistomes in low-income human habitats. Nature 2016, 533, 212–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, P.; Ng, K.L.; Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 2016, 7, 11257. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gong, J.; Li, J.; Xin, Y.; Hao, Z.; Chen, C.; Li, H.; Wang, B.; Ding, M.; Li, W.; et al. Insights into bacterial diversity in compost: Core microbiome and prevalence of potential pathogenic bacteria. Sci. Total Environ. 2020, 718, 137304. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Cui, X.; Stinner, W.; Zhang, L.; Ju, X.; Guo, J.; Dong, R. Ensiling excessively wilted maize stover with biogas slurry: Effects on storage performance and subsequent biogas potential. Bioresour. Technol. 2020, 305, 123042. [Google Scholar] [CrossRef]
- Wu, N.; Xie, S.; Zeng, M.; Xu, X.; Li, Y.; Liu, X.; Wang, X. Impacts of pile temperature on antibiotic resistance, metal resistance and microbial community during swine manure composting. Sci. Total Environ. 2020, 744, 140920. [Google Scholar] [CrossRef]
- Yin, Y.; Gu, J.; Wang, X.; Tuo, X.; Zhang, K.; Zhang, L.; Guo, A.; Zhang, X. Effects of copper on the composition and diversity of microbial communities in laboratory-scale swine manure composting. Can. J. Microbiol. 2018, 64, 409–419. [Google Scholar] [CrossRef]
- Xie, C.; Teng, J.; Wang, X.; Xu, B.; Niu, Y.; Ma, L.; Yan, X. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. Anim. Nutr. 2021, 9, 84–99. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.T.; Chen, C.Y.; Young, C.W.; Chao, W.L.; Li, M.H.; Liu, Y.H.; Lin, C.M.; Ying, C. Prevalence of sulfonamide-resistant bacteria, resistance genes and integron-associated horizontal gene transfer in natural water bodies and soils adjacent to a swine feedlot in northern Taiwan. J. Hazard. Mater. 2014, 277, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Jin, H.; Ye, X.; Liu, W.; Li, D.; Shah, G.G.M.; Zhu, Y. Fate and driving factors of antibiotic resistance genes in an integrated swine wastewater treatment system: From wastewater to soil. Sci. Total Environ. 2020, 721, 137654. [Google Scholar] [CrossRef]
- Græsbøll, K.; Damborg, P.; Mellerup, A.; Herrero-Fresno, A.; Larsen, I.; Holm, A.; Nielsen, J.P.; Christiansen, L.E.; Angen, Ø.; Ahmed, S.; et al. Effect of tetracycline dose and treatment mode on selection of resistant coliform bacteria in nursery pigs. Appl. Environ. Microbiol. 2017, 83, e00538-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharkey, L.K.; Edwards, T.A.; O’Neill, A.J. ABC-F proteins mediate antibiotic resistance through ribosomal protection. mBio 2016, 7, e01975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.S.; Yang, S.H.; Kim, B.S.; Lee, E.Y. Comparison of microbial communities in swine manure at various temperatures and storage times. Asian-Australas J. Anim. Sci. 2018, 31, 1373–1380. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Dong, Q.; Wu, L.; Yang, Y.; Hale, L.; Qin, Z.; Xie, C.; Zhang, Q.; Van Nostrand, J.D.; Zhou, J. Environmental antibiotics drives the genetic functions of resistome dynamics. Environ. Int. 2020, 135, 105398. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, Z.; Zhang, Y. Evolution of physicochemical properties and bacterial community in aerobic composting of swine manure based on a patent compost tray. Bioresour. Technol. 2022, 343, 126136. [Google Scholar] [CrossRef] [PubMed]
- Jagtap, C.B.; Ram, R.M.; Tiwari, O.K.; Titus, S.; Lodha, T. Genome sequence of an obligate hydrocarbonoclastic bacterium Alcanivorax marinus NMRL4 isolated from oil polluted seawater of the Arabian Sea. Mar. Genom. 2021, 60, 100875. [Google Scholar] [CrossRef] [PubMed]
- Korajkic, A.; Wanjugi, P.; Brooks, L.; Cao, Y.; Harwood, V.J. Persistence and decay of fecal microbiota in aquatic habitats. Microbiol. Mol. Biol. Rev. 2019, 83, e00005-19. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Shimamoto, T. Molecular characterization of multidrug-resistant Shigella spp. of food origin. Int. J. Food Microbiol. 2015, 194, 78–82. [Google Scholar] [CrossRef]
- DeLappe, N.; O’Halloran, F.; Fanning, S.; Corbett-Feeney, G.; Cheasty, T.; Cormican, M. Antimicrobial resistance and genetic diversity of Shigella sonnei isolates from western Ireland, an area of low incidence of infection. J. Clin. Microbiol. 2003, 41, 1919–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, J.C.; Ye, R.; Meng, D.M.; Zhang, W.; Wang, H.Q.; Liu, K.Z. Molecular characteristics of class 1 and class 2 integrons and their relationships to antibiotic resistance in clinical isolates of Shigella sonnei and Shigella flexneri. J. Antimicrob. Chemother. 2006, 58, 288–296. [Google Scholar] [CrossRef] [Green Version]
- Farrar, W.E., Jr.; Eidson, M. Antibiotic resistance in Shigella mediated by R factors. J. Infect. Dis. 1971, 123, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, J.; Kundu, M. Molecular characterization of the SHV-11 beta-lactamase of Shigella dysenteriae. Antimicrob. Agents Chemother. 1999, 43, 2081–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bian, F.; Yao, M.; Fu, H.; Yuan, G.; Wu, S.; Sun, Y. Resistance characteristics of CTX-M type Shigella flexneri in China. Biosci. Rep. 2019, 39, BSR20191741. [Google Scholar] [CrossRef] [Green Version]
- Huang, C. Extensively drug-resistant Alcaligenes faecalis infection. BMC Infect. Dis. 2020, 20, 833. [Google Scholar] [CrossRef]
- Adesoji, A.T.; Ogunjobi, A.A.; Olatoye, I.O.; Call, D.R. Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria. Ann. Clin. Microbiol. Antimicrob. 2015, 14, 35. [Google Scholar] [CrossRef] [Green Version]
- Majewski, P.; Majewska, P.; Gutowska, A.; Piszcz, J.; Sacha, P.; Wieczorek, P.; Żebrowska, A.; Radziwon, P.; Tryniszewska, E. Molecular characterisation of clinical pandrug-resistant Alcaligenes faecalis strain MUB14. Int. J. Antimicrob. Agents 2020, 55, 105939. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; Li, Y.; Yang, W.; Dong, R.; Liang, Y.; Liu, J.; Chen, L.; Wang, W.; Ji, B.; Tian, G.; et al. Genomic and resistome analysis of Alcaligenes faecalis strain PGB1 by Nanopore MinION and Illumina Technologies. BMC Genom. 2022, 23, 316. [Google Scholar] [CrossRef]
- Yang, Q.; Tian, T.; Niu, T.; Wang, P. Molecular characterization of antibiotic resistance in cultivable multidrug-resistant bacteria from livestock manure. Environ. Pollut. 2017, 229, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Agersø, Y.; Sandvang, D. Class 1 integrons and tetracycline resistance genes in Alcaligenes, Arthrobacter, and Pseudomonas spp. isolated from pigsties and manured soil. Appl. Environ. Microbiol. 2005, 71, 7941–7947. [Google Scholar] [CrossRef] [PubMed]
AMR Gene Family | Drug Class | Resistance Mechanism | Number of Genes in MAG-8 | Number of Genes in MAG-42 |
---|---|---|---|---|
ABC antibiotic efflux pump | various | efflux | 3 | 0 |
MFS antibiotic efflux pump | various | efflux | 12 | 1 |
RND antibiotic efflux pump | various | efflux | 22 | 0 |
General bacterial porin with reduced permeability to beta-lactams | beta-lactams | reduced permeability | 3 | 0 |
ampC-type beta-lactamase | cephalosporin; penam | inactivation | 1 | 0 |
EC beta-lactamase | cephalosporin | inactivation | 2 | 0 |
Pmrphosphoethanolamine transferase | peptide antibiotics | target alteration | 2 | 0 |
Undecaprenyl pyrophosphate related proteins | peptide antibiotics | target alteration | 1 | 0 |
ANT(6) | aminoglycosides | inactivation | 0 | 1 |
ANT(9) | aminoglycosides | inactivation | 0 | 1 |
APH(2″) | aminoglycosides | inactivation | 0 | 1 |
APH(3″) | aminoglycosides | inactivation | 0 | 1 |
Trimethoprim resistant dihydrofolate reductase | diaminopyrimidine | target replacement | 0 | 2 |
Lincosamidenucleotidyltransferase | lincosamide | inactivation | 0 | 1 |
Non-erm 23S ribosomal RNA methyltransferase | macrolide- lincosamide-streptogramin | target alteration | 0 | 2 |
Erm 23S ribosomal RNA methyltransferase | macrolide- lincosamide-streptogramin | target alteration | 0 | 5 |
Tetracycline-resistant ribosomal protection protein | tetracycline | target protection | 0 | 3 |
Total | 46 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begmatov, S.; Beletsky, A.V.; Gruzdev, E.V.; Mardanov, A.V.; Glukhova, L.B.; Karnachuk, O.V.; Ravin, N.V. Distribution Patterns of Antibiotic Resistance Genes and Their Bacterial Hosts in a Manure Lagoon of a Large-Scale Swine Finishing Facility. Microorganisms 2022, 10, 2301. https://doi.org/10.3390/microorganisms10112301
Begmatov S, Beletsky AV, Gruzdev EV, Mardanov AV, Glukhova LB, Karnachuk OV, Ravin NV. Distribution Patterns of Antibiotic Resistance Genes and Their Bacterial Hosts in a Manure Lagoon of a Large-Scale Swine Finishing Facility. Microorganisms. 2022; 10(11):2301. https://doi.org/10.3390/microorganisms10112301
Chicago/Turabian StyleBegmatov, Shahjahon, Alexey V. Beletsky, Eugeny V. Gruzdev, Andrey V. Mardanov, Lubov B. Glukhova, Olga V. Karnachuk, and Nikolai V. Ravin. 2022. "Distribution Patterns of Antibiotic Resistance Genes and Their Bacterial Hosts in a Manure Lagoon of a Large-Scale Swine Finishing Facility" Microorganisms 10, no. 11: 2301. https://doi.org/10.3390/microorganisms10112301
APA StyleBegmatov, S., Beletsky, A. V., Gruzdev, E. V., Mardanov, A. V., Glukhova, L. B., Karnachuk, O. V., & Ravin, N. V. (2022). Distribution Patterns of Antibiotic Resistance Genes and Their Bacterial Hosts in a Manure Lagoon of a Large-Scale Swine Finishing Facility. Microorganisms, 10(11), 2301. https://doi.org/10.3390/microorganisms10112301