Bacilli in the International Space Station
Abstract
:1. Introduction
- Bacillus anthracis is found in soil and it causes the anthrax disease in ungulates;
- Bacillus cereus that is a soil inhabitant, can be isolated from foods, such as grains and spices, and can occasionally cause food-borne intoxications in humans;
- Bacillus thuringiensis is distinguished from B. cereus or B. anthracis by its pathogenicity for Lepidopteran insects. The different members of this group share chromosomal features, with few differences to distinguish them (i.e., loss of function mutation of the PlcR gene in the B. anthracis strains), so are essentially distinguished by species-specific plasmids; as an example, the pathogenicity of B. anthracis relies on the presence of both the pOX1 and pOX2 plasmids, pXO1 codes for the tripartite toxin and pXO2 codes for the polyglutamate capsule, needed to circumvent the immune system avoiding the phagocytosis of macrophages [17]. Anthrax is a disease observed in animals (ungulates); humans become infected only incidentally if they come into contact with infected animals. The most common form of the disease in humans is cutaneous anthrax, acquired when B. anthracis (or its spores) comes in contact with injured skin; in the site the spores germinate, bacteria multiply, and a gelatinous edema develops and results into a necrotic ulcer from which infection may disseminate. The intestinal anthrax is caused by poorly cooked meat ingestion of infected animals. Another form of the disease, inhalation anthrax, results from inhalation of spore-containing dust where animal hair or hides are present [18], the Bacillus anthracis spores survive for many years [10].
2. Materials and Methods
2.1. Phylogenetic Analysis of ISS Bacillus Isolates Relative to Other Bacilli
2.2. Differences between Genomes and Predicted Protein Products of ISS Isolates
2.3. Synteny-Matrix (Dot-Plot) Analyses of Nucleotide Sequences
3. Results and Discussion
3.1. The ISS Bacillus Strains Are Close Related to B. cereus Biovar Anthracis and to B. cereus Human Pathogenic Strains
- the U.S. segment Harmony Node 2, from air HEPA filters used 40 months (returned with flight STS-134/ULF6, 2011);
- the Kibo Japanese experimental module, from air diffuser samples collected with a surface sample kit (Expedition 19, 2009);
- the Russian segment Zvezda Service Module (DOS-8), from surface samples collected with a Swab Rinse Kit tube (ESA Delta mission expedition 8, 2004 and expedition 11, 2005).
3.2. Natural Evolution of Bacilli in the ISS
3.3. ISS Bacillus Plasmids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Afshinnekoo, E.; Scott, R.T.; MacKay, M.J.; Pariset, E.; Cekanaviciute, E.; Barker, R.; Gilroy, S.; Hassane, D.; Smith, S.M.; Zwart, S.R.; et al. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration. Cell 2020, 183, 1162–1184. [Google Scholar] [CrossRef] [PubMed]
- Crucian, B.; Babiak-Vazquez, A.; Johnston, S.; Pierson, D.L.; Ott, C.M.; Sams, C. Incidence of clinical symptoms during long-duration orbital spaceflight. Int. J. Gen. Med. 2016, 9, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Rooney, B.V.; Crucian, B.E.; Pierson, D.L.; Laudenslager, M.L.; Mehta, S.K. Herpes Virus Reactivation in Astronauts During Spaceflight and Its Application on Earth. Front. Microbiol. 2019, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Wotring, V.E. Medication use by U.S. crewmembers on the International Space Station. FASEB J. 2015, 29, 4417–4423. [Google Scholar] [CrossRef] [Green Version]
- Sugita, T.; Yamazaki, T.; Makimura, K.; Cho, O.; Yamada, S.; Ohshima, H.; Mukai, C. Comprehensive analysis of the skin fungal microbiota of astronauts during a half-year stay at the International Space Station. Med. Mycol. 2016, 54, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Turroni, S.; Rampelli, S.; Biagi, E.; Consolandi, C.; Severgnini, M.; Peano, C.; Quercia, S.; Soverini, M.; Carbonero, F.G.; Bianconi, G.; et al. Temporal dynamics of the gut microbiota in people sharing a confined environment, a 520-day ground-based space simulation, MARS500. Microbiome 2017, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Voorhies, A.A.; Mark Ott, C.; Mehta, S.; Pierson, D.L.; Crucian, E.B.; Feiveson, A.; Oubre, C.M.; Torralba, M.; Moncera, K.; Zhang, Y.; et al. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci. Rep. 2019, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ceuppens, S.; Boon, N.; Uyttendaele, M. Diversity of Bacillus cereus group strains is reflected in their broad range of pathogenicity and diverse ecological lifestyles. FEMS Microbiol. Ecol. 2013, 84, 433–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durlik, K.; Żarnowiec, P.; Piwowarczyk, R.; Kaca, W. Culturable endophytic bacteria from Phelipanche ramosa (Orobanchaceae) seeds. Seed Sci. Res. 2020, 31, 69–75. [Google Scholar] [CrossRef]
- Manchee, R.J.; Broster, M.G.; Stagg, A.J.; Hibbs, E.S. Formaldehyde Solution Effectively Inactivates Spores of Bacillus anthracis on the Scottish Island of Gruinard. Appl. Environ. Microbiol. 1994, 60, 4167–4171. [Google Scholar] [CrossRef]
- Majed, R.; Faille, C.; Kallassy, M.; Gohar, M. Bacillus cereus Biofilms—Same, Only Different. Front. Microbiol. 2016, 7, 1054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, R.A.; Beno, S.M.; Kent, D.J.; Carroll, L.M.; Martin, N.H.; Boor, K.J.; Kovac, J. Bacillus wiedmannii sp. nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. Int. J. Syst. Evol. Microbiol. 2016, 66, 4744–4753. [Google Scholar] [CrossRef] [PubMed]
- Jessberger, N.; Dietrich, R.; Granum, P.E.; Märtlbauer, E. The Bacillus cereus Food Infection as Multifactorial Process. Toxins 2020, 12, 701. [Google Scholar] [CrossRef] [PubMed]
- Tuipulotu, D.E.; Mathur, A.; Ngo, C.; Man, S.M. Bacillus cereus: Epidemiology, Virulence Factors, and Host–Pathogen Interactions. Trends Microbiol. 2021, 29, 458–471. [Google Scholar] [CrossRef] [PubMed]
- Bartoszewicz, M.; Marjańska, P.S. Milk-originated Bacillus cereus sensu lato strains harbouring Bacillus anthracis- like plasmids are genetically and phenotypically diverse. Food Microbiol. 2017, 67, 23–30. [Google Scholar] [CrossRef]
- Hall, C.W.; Mah, T.F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol. Rev. 2017, 41, 276–301. [Google Scholar] [CrossRef] [Green Version]
- Pilo, P.; Frey, J. Pathogenicity, population genetics and dissemination of Bacillus anthracis. Infect. Genet. Evol. 2018, 64, 115–125. [Google Scholar] [CrossRef]
- Moayeri, M.; Leppla, S.H.; Vrentas, C.; Pomerantsev, A.P.; Liu, S. Anthrax Pathogenesis. Annu. Rev. Microbiol. 2015, 69, 185–208. [Google Scholar] [CrossRef]
- Helgason, E.; Økstad, O.A.; Caugant, S.A.; Johansen, H.A.; Fouet, A.; Mock, M.; Hegna, I.; Kolstø, A.B. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis—One Species on the Basis of Genetic Evidence. Appl. Environ. Microbiol. 2000, 66, 2627–2630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasko, D.A.; Ravel, J.; Økstad, O.A.; Helgason, E.; Cer, R.Z.; Jiang, L.; Shores, K.A.; Fouts, D.E.; Tourasse, N.J.; Angiuoli, S.V.; et al. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res. 2004, 32, 977–988. [Google Scholar] [CrossRef]
- Böhm, M.E.; Huptas, C.; Krey, V.M.; Scherer, S. Massive horizontal gene transfer, strictly vertical inheritance and ancient duplications differentially shape the evolution of Bacillus cereus enterotoxin operons hbl, cytK and nhe. BMC Evol. Biol. 2015, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Van der Auwera, G.; Timmery, S.; Zhu, L.; Mahillon, J. Distribution, Diversity, and Potential Mobility of Extrachromosomal Elements Related to the Bacillus anthracis pXO1 and pXO2 Virulence Plasmids. Appl. Environ. Microbiol. 2009, 75, 3016–3028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminska, P.S.; Yernazarova, A.; Drewnowska, J.M.; Zambrowski, G.; Swiecicka, I. The worldwide distribution of genetically and phylogenetically diverse Bacillus cereus isolates harbouring Bacillus anthracis-like plasmids. Environ. Microbiol. Rep. 2015, 7, 738–745. [Google Scholar] [CrossRef]
- Avashia, S.B.; Riggins, W.S.; Lindley, C.; Hoffmaster, A.; Drumgoole, R.; Nekomoto, T.; Jackson, P.J.; Hill, K.K.; Williams, K.; Lehman, L.; et al. Fatal Pneumonia among Metalworkers Due to Inhalation Exposure to Bacillus cereus Containing Bacillus anthracis Toxin Genes. Clin. Infect. Dis. 2007, 44, 414–416. [Google Scholar] [CrossRef]
- Baldwin, V.M. You Can’t B. cereus—A Review of Bacillus cereus Strains That Cause Anthrax-Like Disease. Front. Microbiol. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Hoffmaster, A.R.; Ravel, J.; Rasko, A.D.; Chapman, G.D.; Chute, M.D.; Marston, C.K.; De, B.K.; Sacchi, C.T.; Fitzgerald, C.; Mayer, L.W.; et al. Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax. Proc. Natl. Acad. Sci. USA 2004, 101, 8449–8454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmaster, A.R.; Hill, K.K.; Gee, E.J.; Marston, C.K.; De, B.K.; Popovic, T.; Sue, D. Characterization of Bacillus cereus Isolates Associated with Fatal Pneumonias: Strains Are Closely Related to Bacillus anthracis and Harbor B. anthracis Virulence Genes. J. Clin. Microbiol. 2006, 44, 3352–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, C.S.; Xie, G.; Challacombe, J.F.; Altherr, M.R.; Bhotika, S.S.; Bruce, D.; Campbell, C.S.; Campbell, M.L.; Chen, J.; Chertkov, O.; et al. Pathogenomic Sequence Analysis of Bacillus cereus and Bacillus thuringiensis Isolates Closely Related to Bacillus anthracis. J. Bacteriol. 2006, 188, 3382–3390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludovici, G.M.; Cenciarelli, O.; Carestia, M.; Malizia, A.; Tamburrini, A.; Gabbarini, V.; Sassolini, A.; Di Giovanni, D.; Mancinelli, S.; Palombi, L.; et al. The importance of forensic microbiology in the CBRNe investigation. Technol. Res. Inst. Def. 2015, 8, 153–161. [Google Scholar]
- Marston, C.K.; Ibrahim, H.; Lee, F.; Churchwell, G.; Gumke, M.; Stanek, D.; Gee, J.E.; Boyer, A.E.; Gallegos-Candela, M.; Barr, J.R.; et al. Anthrax Toxin-Expressing Bacillus cereus Isolated from an Anthrax-Like Eschar. PLoS ONE 2016, 11, e0156987. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.Y.; Budzik, J.M.; Garufi, G.; Schneewind, O. Two capsular polysaccharides enable Bacillus cereus G9241 to cause anthrax-like disease. Mol. Microbiol. 2011, 80, 455–470. [Google Scholar] [CrossRef]
- Shahcheraghi, S.H.; Ayatollahi, J. pXO1-and pXO2-like Plasmids in Bacillus cereus and B. thuringiensis. Jundishapur J. Microbiol. 2013, 6, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Goel, A.K. Anthrax: A disease of biowarfare and public health importance. World J. Clin. Cases 2015, 3, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Relman, D.A. Microbial threat lists: Obstacles in the quest for biosecurity? Nat. Rev. Microbiol. 2010, 8, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Klee, S.R.; Brzuszkiewicz, E.B.; Nattermann, H.; Brüggemann, H.; Dupke, S.; Wollherr, A.; Franz, T.; Pauli, G.; Appel, B.; Liebl, W.; et al. The Genome of a Bacillus Isolate Causing Anthrax in Chimpanzees Combines Chromosomal Properties of B. cereus with B. anthracis Virulence Plasmids. PLoS ONE 2010, 5, e10986. [Google Scholar] [CrossRef] [Green Version]
- Antonation, K.S.; Grützmacher, K.; Dupke, S.; Mabon, P.; Zimmermann, F.; Lankester, F.; Peller, T.; Feistner, A.; Todd, A.; Herbinger, I.; et al. Bacillus cereus Biovar Anthracis Causing Anthrax in Sub-Saharan Africa—Chromosomal Monophyly and Broad Geographic Distribution. PLOS Negl. Trop. Dis. 2016, 10, e0004923. [Google Scholar] [CrossRef] [Green Version]
- Romero-Alvarez, D.; Peterson, A.T.; Salzer, O.S.; Pittiglio, C.; Shadomy, S.; Traxler, R.; Vieira, A.R.; Bower, A.W.; Walke, H.; Campbell, L.P. Potential distributions of Bacillus anthracis and Bacillus cereus biovar anthracis causing anthrax in Africa. PLOS Negl. Trop. Dis. 2020, 14, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cataldi, A.; Mock, M.; Bentancor, L. Characterization of Bacillus anthracis strains used for vaccination. J. Appl. Microbiol. 2000, 88, 648–654. [Google Scholar] [CrossRef]
- Brézillon, C.; Haustant, M.; Dupke, S.; Corre, J.P.; Lander, A.; Franz, T.; Monot, M.; Couture-Tosi, E.; Jouvion, G.; Leendertz, F.H.; et al. Capsules, Toxins and AtxA as Virulence Factors of Emerging Bacillus cereus Biovar anthracis. PLOS Negl. Trop. Dis. 2015, 9, e0003455. [Google Scholar] [CrossRef] [Green Version]
- Husmann, L.K.; Yung, D.L.; Hollingshead, S.K.; Scott, J.R. Role of putative virulence factors of Streptococcus pyogenes in mouse models of long-term throat colonization and pneumonia. Infect. Immun. 1997, 65, 1422–1430. [Google Scholar] [CrossRef] [Green Version]
- Ashbaugh, C.D.; Albertí, S.; Wessels, M.R. Molecular Analysis of the Capsule Gene Region of Group A Streptococcus: The hasAB Genes Are Sufficient for Capsule Expression. J. Bacteriol. 1998, 180, 4955–4959. [Google Scholar] [CrossRef]
- Mazzantini, D.; Celandroni, F.; Salvetti, S.; Gueye, S.A.; Lupetti, A.; Senesi, S.; Ghelardi, E. Is Required for Swarming Motility and Full Pathogenicity of Bacillus cereus. Front. Microbiol. 2016, 7, 1644. [Google Scholar] [CrossRef] [PubMed]
- Dupke, S.; Schubert, G.; Beudjé, F.; Barduhn, A.; Pauly, M.; Couacy-Hymann, E.; Grunow, R.; Akoua-Koffi, C.; Leendertz, F.H.; Klee, S.R. Serological evidence for human exposure to Bacillus cereus biovar anthracis in the villages around Taï National Park, Côte d’Ivoire. PLOS Negl. Trop. Dis. 2020, 14, e0008292. [Google Scholar] [CrossRef]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, 606–612. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.J.; Gerdes, S.; Olsen, G.J.; Olson, R.; Pusch, G.D.; Shukla, M.; Vonstein, V.; Wattam, A.R.; Yoo, H. PATtyFams: Protein Families for the Microbial Genomes in the PATRIC Database. Front. Microbiol. 2016, 7, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic. Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.Y.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A.; Hoover, P.; Rougemont, J. A Rapid Bootstrap Algorithm for the RAxML Web Servers. Syst. Biol. 2008, 57, 758–771. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2013, 42, 206–214. [Google Scholar] [CrossRef]
- Checinska, A.; Probst, A.J.; Vaishampayan, P.; White, J.R.; Kumar, D.; Stepanov, V.G.; Fox, G.E.; Nilsson, H.R.; Pierson, D.L.; Perry, J.; et al. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome 2015, 3, 50. [Google Scholar] [CrossRef]
- van Tongeren, S.P.; Raangs, G.C.; Welling, G.W.; Harmsen, H.J.M.; Krooneman, J. Microbial detection and monitoring in advanced life support systems like the international space station. Microgravity Sci. Technol. 2006, 18, 219–222. [Google Scholar] [CrossRef]
- van Tongeren, S.P.; Roest, H.I.; Degener, J.E.; Harmsen, H.J.M. Bacillus anthracis-Like Bacteria and Other B. cereus Group Members in a Microbial Community Within the International Space Station: A Challenge for Rapid and Easy Molecular Detection of Virulent B. anthracis. PLoS ONE 2014, 9, e98871. [Google Scholar] [CrossRef] [PubMed]
- Venkateswaran, K.; Singh, N.K.; Checinska Sielaffa, A.; Pope, R.K.; Bergman, N.H.; van Tongeren, S.P.; Patel, N.B.; Lawson, P.A.; Satomi, M.; Williamson, C.H.D.; et al. Non-Toxin-Producing Bacillus cereus Strains Belonging to the B. anthracis Clade Isolated from the International Space Station. mSystems 2017, 2, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cray, J.A.; Houghton, J.D.; Cooke, L.R.; Hallsworth, J.E. A simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi. Biol. Control. 2015, 81, 93–100. [Google Scholar] [CrossRef]
- Su, L.; Zhou, L.; Liu, J.; Cen, Z.; Wu, C.; Wang, T.; Zhou, T.; Changa, D.; Guo, Y.; Fang, X.; et al. Phenotypic, genomic, transcriptomic and proteomic changes in Bacillus cereus after a short-term space flight. Adv. Space Res. 2014, 53, 18–29. [Google Scholar] [CrossRef]
- Dobrynin, D.; Fridman, G. Cold Plasma Inactivation of Bacillus cereus and Bacillus anthracis (Anthrax) Spores. IEEE Trans. Plasma Sci. 2010, 38, 1878–1884. [Google Scholar] [CrossRef]
- Horneck, G.; Bücker, H.; Reitz, G. Long-term survival of bacterial spores in space. Adv. Space Res. 1994, 14, 41–45. [Google Scholar] [CrossRef]
- Cortesão, M.; Fuchs, F.M.; Commichau, F.M.; Eichenberger, P.; Schuerger, A.C.; Nicholson, W.L.; Setlow, P.; Moeller, R. Bacillus subtilis Spore Resistance to Simulated Mars Surface Conditions. Front. Microbiol. 2019, 10, 333. [Google Scholar] [CrossRef] [Green Version]
- Novikova, N.; De Boever, P.; Poddubko, S.; Deshevaya, E.; Polikarpov, N.; Rakova, N.; Coninx, I.; Mergeay, M. Survey of environmental biocontamination on board the International Space Station. Microbiol. Res. 2006, 157, 5–12. [Google Scholar] [CrossRef]
- Reidt, U.; Helwig, A.; Plobner, L.; Lugmayr, V.; Treutlein, U.; Kharin, S.; Smirnov, Y.; Novikova, N.; Lenic, J.; Fetter, V.; et al. Study of Initial Colonization by Environmental Microorganisms in the Russian Segment of the International Space Station (ISS). Gravit. Space Res. 2014, 2, 46–57. [Google Scholar] [CrossRef]
- Singh, N.K.; Wood, J.M.; Karouia, F.; Venkateswaran, K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 2018, 6, 204. [Google Scholar] [CrossRef] [Green Version]
- Venkateswaran, K.; Kempf, M.; Chen, f.; Satomi, M.; Nicholson, W.; Kern, R. Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are γ-radiation resistant. Int. J. Syst. Evol. Microbiol. 2003, 53, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Mhatre, S.; Wood, J.; Checinska Sielaff, A.; Mora, M.; Duller, S.; Singh, N.K.; Karouia, F.; Moissl-Eichinger, C.; Venkateswaran, K. Assessing the Risk of Transfer of Microorganisms at the International Space Station Due to Cargo Delivery by Commercial Resupply Vehicles. Front. Microbiol. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Radnedge, L.; Agron, P.G.; Hill, K.K.; Jackson, P.J.; Ticknor, L.O.; Keim, P.; Andersen, G.L. Genome differences that distinguish Bacillus anthracis from Bacillus cereus and Bacillus thuringiensis. Appl. Environ. Microbiol. 2003, 69, 2755–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, E.; Ramisse, F.; Ducoureau, J.P.; Cruel, T.; Cavallo, J.D. Bacillus thuringiensis subsp. konkukian (Serotype H34) Superinfection: Case Report and Experimental Evidence of Pathogenicity in Immunosuppressed Mice. J. Clin. Microbiol. 1998, 36, 2138–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Auwera, G.A.; Timmery, S.; Mahillon, J. Self-transfer and mobilisation capabilities of the pXO2-like plasmid pBT9727 from Bacillus thuringiensis subsp. konkukian 97-27. Plasmid 2008, 59, 134–138. [Google Scholar] [CrossRef]
- Ibrahim, M.A.; Griko, N.; Junker, M.; Bulla, L.A. Bacillus thuringiensis: A genomics and proteomics perspective. Bioeng. Bugs 2010, 1, 31–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blaustein, R.A.; McFarland, A.G.; Maamar, S.B.; Lopez, A.; Castro-Wallace, S.; Hartmann, E.M. Pangenomic Approach To Understanding Microbial Adaptations within a Model Built Environment, the International Space Station, Relative to Human Hosts and Soil. mSystems 2019, 4, e00281-18. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quagliariello, A.; Cirigliano, A.; Rinaldi, T. Bacilli in the International Space Station. Microorganisms 2022, 10, 2309. https://doi.org/10.3390/microorganisms10122309
Quagliariello A, Cirigliano A, Rinaldi T. Bacilli in the International Space Station. Microorganisms. 2022; 10(12):2309. https://doi.org/10.3390/microorganisms10122309
Chicago/Turabian StyleQuagliariello, Andrea, Angela Cirigliano, and Teresa Rinaldi. 2022. "Bacilli in the International Space Station" Microorganisms 10, no. 12: 2309. https://doi.org/10.3390/microorganisms10122309
APA StyleQuagliariello, A., Cirigliano, A., & Rinaldi, T. (2022). Bacilli in the International Space Station. Microorganisms, 10(12), 2309. https://doi.org/10.3390/microorganisms10122309