Bidirectional Functional Effects of Staphylococcus on Carcinogenesis
Abstract
:1. Introduction
2. Staphylococcus and Cancer-Related Clinical Reports
2.1. Breast Cancer
2.2. Skin Cancer
2.3. Bladder Cancer
2.4. Colon Cancer
2.5. Oral Cancer
2.6. Others
3. Staphylococcal Nuclease and Cancer
3.1. Structural Characteristics
3.2. Staphylococcal Nuclease Activity
3.3. SND1 and Cancer
4. Staphylococcus and Cancer Treatment
4.1. Surface Adhesion Molecules
4.2. α-hemolysin
4.3. Panton-Valentine leukocidin
4.4. Staphylococcal Superantigens
4.4.1. Staphylococcus Aureus Enterotoxin A
4.4.2. Staphylococcus Aureus Enterotoxin B
4.4.3. Staphylococcus Aureus Enterotoxin C
4.4.4. Toxic Shock Syndrom Toxin-1
4.4.5. Staphylococcal Protein A
4.5. Others
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cvetnić, L.; Samardžija, M.; Duvnjak, S.; Habrun, B.; Cvetnić, M.; Jaki Tkalec, V.; Đuričić, D.; Benić, M. Multi Locus Sequence Typing and spa Typing of Staphylococcus Aureus Isolated from the Milk of Cows with Subclinical Mastitis in Croatia. Microorganisms 2021, 9, 725. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis—The ‘accidental’ pathogen. Nat. Reviews. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Raz, R.; Colodner, R.; Kunin, C.M. Who are you—Staphylococcus saprophyticus? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2005, 40, 896–898. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Saidi, R.; Kaidi, R.; Khelef, D.; Solmaz, H.; Ergun, Y.; Mimoune, N.; Cantekin, Z. Investigation of the presence of slime production, VanA gene and antiseptic resistance genes in staphylococci isolated from bovine mastitis in Algeria. Vet. Stanica 2020, 52, 57–63. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, e00020-18. [Google Scholar] [CrossRef] [Green Version]
- Wei, G.; He, Y. Antibacterial and Antibiofilm Activities of Novel Cyclic Peptides against Methicillin-Resistant Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 8029. [Google Scholar] [CrossRef]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Reviews. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Tam, K.; Torres, V.J. Staphylococcus aureus Secreted Toxins and Extracellular Enzymes. Microbiol. Spectr. 2019, 7, 1–34. [Google Scholar] [CrossRef]
- Foster, T.J.; Geoghegan, J.A.; Ganesh, V.K.; Höök, M. Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Reviews. Microbiol. 2014, 12, 49–62. [Google Scholar] [CrossRef]
- Speziale, P.; Pietrocola, G. The Multivalent Role of Fibronectin-Binding Proteins A and B (FnBPA and FnBPB) of Staphylococcus aureus in Host Infections. Front. Microbiol. 2020, 11, 2054. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, Y.J.; Wann, E.R.; Fowler, T.; Duffield, E.; Höök, M.; McIntyre, B.W. Fibronectin binding protein A of Staphylococcus aureus can mediate human T lymphocyte adhesion and coactivation. J. Immunol. 2001, 166, 5129–5138. [Google Scholar] [CrossRef] [Green Version]
- Geoghegan, J.A.; Foster, T.J. Cell Wall-Anchored Surface Proteins of Staphylococcus aureus: Many Proteins, Multiple Functions. Curr. Top. Microbiol. Immunol. 2017, 409, 95–120. [Google Scholar] [CrossRef]
- von Hoven, G.; Qin, Q.; Neukirch, C.; Husmann, M.; Hellmann, N. Staphylococcus aureus α-toxin: Small pore, large consequences. Biol. Chem. 2019, 400, 1261–1276. [Google Scholar] [CrossRef] [PubMed]
- Abdurrahman, G.; Schmiedeke, F.; Bachert, C.; Bröker, B.M.; Holtfreter, S. Allergy-A New Role for T Cell Superantigens of Staphylococcus aureus? Toxins 2020, 12, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spaulding, A.R.; Salgado-Pabón, W.; Kohler, P.L.; Horswill, A.R.; Leung, D.Y.; Schlievert, P.M. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [Google Scholar] [CrossRef] [Green Version]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- Marr, J.C.; Lyon, J.D.; Roberson, J.R.; Lupher, M.; Davis, W.C.; Bohach, G.A. Characterization of novel type C staphylococcal enterotoxins: Biological and evolutionary implications. Infect. Immun. 1993, 61, 4254–4262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Qin, C.; Zhang, X.; Zhu, Y.; Li, A.; Wang, M.; Tang, Y.; Kreiswirth, B.N.; Chen, L.; Zhang, H.; et al. The tst gene associated Staphylococcus aureus pathogenicity island facilitates its pathogenesis by promoting the secretion of inflammatory cytokines and inducing immune suppression. Microb. Pathog. 2020, 138, 103797. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, R.; Shi, X.; Kang, M.; Wang, H.; Chen, H. Two thermostable nucleases coexisted in Staphylococcus aureus: Evidence from mutagenesis and in vitro expression. FEMS Microbiol. Lett. 2008, 284, 176–183. [Google Scholar] [CrossRef]
- Hu, Y.; Xie, Y.; Tang, J.; Shi, X. Comparative expression analysis of two thermostable nuclease genes in Staphylococcus aureus. Foodborne Pathog. Dis. 2012, 9, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Bronner, S.; Monteil, H.; Prévost, G. Regulation of virulence determinants in Staphylococcus aureus: Complexity and applications. FEMS Microbiol. Rev. 2004, 28, 183–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caudy, A.A.; Ketting, R.F.; Hammond, S.M.; Denli, A.M.; Bathoorn, A.M.; Tops, B.B.; Silva, J.M.; Myers, M.M.; Hannon, G.J.; Plasterk, R.H. A micrococcal nuclease homologue in RNAi effector complexes. Nature 2003, 425, 411–414. [Google Scholar] [CrossRef]
- Ponting, C.P. P100, a transcriptional coactivator, is a human homologue of staphylococcal nuclease. Protein Sci. A Publ. Protein Soc. 1997, 6, 459–463. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Beltran, E.; Denisenko, T.V.; Zhivotovsky, B.; Bozhkov, P.V. Tudor staphylococcal nuclease: Biochemistry and functions. Cell Death Differ. 2016, 23, 1739–1748. [Google Scholar] [CrossRef]
- Shaw, N.; Zhao, M.; Cheng, C.; Xu, H.; Saarikettu, J.; Li, Y.; Da, Y.; Yao, Z.; Silvennoinen, O.; Yang, J.; et al. The multifunctional human p100 protein ‘hooks’ methylated ligands. Nat. Struct. Mol. Biol. 2007, 14, 779–784. [Google Scholar] [CrossRef]
- Li, C.L.; Yang, W.Z.; Chen, Y.P.; Yuan, H.S. Structural and functional insights into human Tudor-SN, a key component linking RNA interference and editing. Nucleic. Acids Res. 2008, 36, 3579–3589. [Google Scholar] [CrossRef] [Green Version]
- Välineva, T.; Yang, J.; Palovuori, R.; Silvennoinen, O. The transcriptional co-activator protein p100 recruits histone acetyltransferase activity to STAT6 and mediates interaction between the CREB-binding protein and STAT6. J. Biol. Chem. 2005, 280, 14989–14996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Välineva, T.; Hong, J.; Bu, T.; Yao, Z.; Jensen, O.N.; Frilander, M.J.; Silvennoinen, O. Transcriptional co-activator protein p100 interacts with snRNP proteins and facilitates the assembly of the spliceosome. Nucleic. Acids research 2007, 35, 4485–4494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Zhao, X.; Zhu, Y.; He, J.; Shao, J.; Su, C.; Zhang, Y.; Zhang, W.; Saarikettu, J.; Silvennoinen, O.; et al. Tudor staphylococcal nuclease (Tudor-SN) participates in small ribonucleoprotein (snRNP) assembly via interacting with symmetrically dimethylated Sm proteins. J. Biol. Chem. 2012, 287, 18130–18141. [Google Scholar] [CrossRef]
- Su, C.; Zhang, C.; Tecle, A.; Fu, X.; He, J.; Song, J.; Zhang, W.; Sun, X.; Ren, Y.; Silvennoinen, O.; et al. Tudor staphylococcal nuclease (Tudor-SN), a novel regulator facilitating G1/S phase transition, acting as a co-activator of E2F-1 in cell cycle regulation. J. Biol. Chem. 2015, 290, 7208–7220. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Shi, X.; Fu, X.; Ge, L.; Zhang, Y.; Su, C.; Yang, X.; Silvennoinen, O.; Yao, Z.; He, J.; et al. Human Tudor staphylococcal nuclease (Tudor-SN) protein modulates the kinetics of AGTR1-3’UTR granule formation. FEBS Lett. 2014, 588, 2154–2161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Fu, X.; Song, J.; Zhang, Y.; Cui, X.; Su, C.; Ge, L.; Shao, J.; Xin, L.; Saarikettu, J.; et al. Poly(A)(+) mRNA-binding protein Tudor-SN regulates stress granules aggregation dynamics. FEBS J. 2015, 282, 874–890. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, X.; Liu, M.; Zhao, C.; Zhang, N.; Ren, Y.; Su, C.; Zhang, W.; Sun, X.; He, J.; et al. A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors. Genomics 2020, 112, 3958–3967. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, N.; Rajasekaran, D.; Srivastava, J.; Gredler, R.; Akiel, M.A.; Robertson, C.L.; Emdad, L.; Fisher, P.B.; Sarkar, D. Role of the staphylococcal nuclease and tudor domain containing 1 in oncogenesis (review). Int. J. Oncol. 2015, 46, 465–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balian, A.; Hernandez, F.J. Nucleases as molecular targets for cancer diagnosis. Biomark. Res. 2021, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, N.; Mendoza, R.G.; Garcia, D.; Lai, Z.; Subler, M.A.; Windle, J.J.; Mukhopadhyay, N.D.; Fisher, P.B.; Chen, Y.; Sarkar, D. Posttranscriptional Inhibition of Protein Tyrosine Phosphatase Nonreceptor Type 23 by Staphylococcal Nuclease and Tudor Domain Containing 1: Implications for Hepatocellular Carcinoma. Hepatol. Commun. 2019, 3, 1258–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newell, K.A.; Ellenhorn, J.D.; Bruce, D.S.; Bluestone, J.A. In vivo T-cell activation by staphylococcal enterotoxin B prevents outgrowth of a malignant tumor. Proc. Natl. Acad. Sci. USA 1991, 88, 1074–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dohlsten, M.; Hedlund, G.; Akerblom, E.; Lando, P.A.; Kalland, T. Monoclonal antibody-targeted superantigens: A different class of anti-tumor agents. Proc. Natl. Acad. Sci. USA 1991, 88, 9287–9291. [Google Scholar] [CrossRef] [Green Version]
- Jobbins, J.; Bagg, J.; Parsons, K.; Finlay, I.; Addy, M.; Newcombe, R.G. Oral carriage of yeasts, coliforms and staphylococci in patients with advanced malignant disease. J. Oral. Pathol. Med. 1992, 21, 305–308. [Google Scholar] [CrossRef]
- Dohlsten, M.; Lando, P.A.; Björk, P.; Abrahmsén, L.; Ohlsson, L.; Lind, P.; Kalland, T. Immunotherapy of human colon cancer by antibody-targeted superantigens. Cancer Immunol. Immunother. 1995, 41, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, H.; Takeuchi, H.; Nishitani, N.; Yamanaka, H.; Suzuki, K.; Kurusu, M.; Suganuma, M. Carcinogenic potential of tobacco tar-resistant Staphylococcus aureus in buccal cavity. J. Cancer Res. Clin. Oncol. 2004, 130, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Perabo, F.G.; Willert, P.L.; Wirger, A.; Schmidt, D.H.; Von Ruecker, A.; Mueller, S.C. Superantigen-activated mononuclear cells induce apoptosis in transitional cell carcinoma. Anticancer. Res. 2005, 25, 3565–3573. [Google Scholar] [PubMed]
- Edey, A.J.; Bentley, P.G.; Garrett, J.P.; Liebmann, R.D. Ductal breast carcinoma presenting with methicillin-resistant Staphylococcus aureus mastitis. Breast J. 2005, 11, 491–492. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Wang, H.R.; Li, H.P.; Hao, H.J.; Zheng, Y.L.; Gu, J. Targeting of hepatoma cell and suppression of tumor growth by a novel 12mer peptide fused to superantigen TSST-1. Mol. Med. 2006, 12, 81–87. [Google Scholar] [CrossRef]
- Schneider, D.; Liaw, L.; Daniel, C.; Athanasopoulos, A.N.; Herrmann, M.; Preissner, K.T.; Nawroth, P.P.; Chavakis, T. Inhibition of breast cancer cell adhesion and bone metastasis by the extracellular adherence protein of Staphylococcus aureus. Biochem. Biophys. Res. Commun. 2007, 357, 282–288. [Google Scholar] [CrossRef] [Green Version]
- Napeñas, J.J.; Brennan, M.T.; Bahrani-Mougeot, F.K.; Fox, P.C.; Lockhart, P.B. Relationship between mucositis and changes in oral microflora during cancer chemotherapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 103, 48–59. [Google Scholar] [CrossRef]
- Noguchi, N.; Ohashi, T.; Shiratori, T.; Narui, K.; Hagiwara, T.; Ko, M.; Watanabe, K.; Miyahara, T.; Taira, S.; Moriyasu, F.; et al. Association of tannase-producing Staphylococcus lugdunensis with colon cancer and characterization of a novel tannase gene. J. Gastroenterol. 2007, 42, 346–351. [Google Scholar] [CrossRef]
- Szabados, F.; Kleine, B.; Anders, A.; Kaase, M.; Sakinç, T.; Schmitz, I.; Gatermann, S. Staphylococcus saprophyticus ATCC 15305 is internalized into human urinary bladder carcinoma cell line 5637. FEMS Microbiol. Lett. 2008, 285, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Johansson, D.; Johansson, A.; Behnam-Motlagh, P. alpha-Toxin of Staphylococcus aureus overcomes acquired cisplatin-resistance in malignant mesothelioma cells. Cancer Lett. 2008, 265, 67–75. [Google Scholar] [CrossRef]
- Kalita, O.; Kala, M.; Svebisova, H.; Ehrmann, J.; Hlobilkova, A.; Trojanec, R.; Hajduch, M.; Houdek, M. Glioblastoma multiforme with an abscess: Case report and literature review. J. Neurooncol. 2008, 88, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Kullander, J.; Forslund, O.; Dillner, J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol. Biomark. Prev. 2009, 18, 472–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Tian, R.; Xiu, B.; Yan, J.; Jia, R.; Zhang, L.; Chang, A.E.; Song, H.; Li, Q. Antitumor activity of T cells generated from lymph nodes draining the SEA-expressing murine B16 melanoma and secondarily activated with dendritic cells. Int. J. Biol. Sci. 2009, 5, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Walenkamp, A.M.; Boer, I.G.; Bestebroer, J.; Rozeveld, D.; Timmer-Bosscha, H.; Hemrika, W.; van Strijp, J.A.; de Haas, C.J. Staphylococcal superantigen-like 10 inhibits CXCL12-induced human tumor cell migration. Neoplasia 2009, 11, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Huang, Y.; Xie, W.; Guo, A.; Wu, W. Bacteria peptidoglycan promoted breast cancer cell invasiveness and adhesiveness by targeting toll-like receptor 2 in the cancer cells. PLoS ONE 2010, 5, e10850. [Google Scholar] [CrossRef] [Green Version]
- Yoo, B.K.; Santhekadur, P.K.; Gredler, R.; Chen, D.; Emdad, L.; Bhutia, S.; Pannell, L.; Fisher, P.B.; Sarkar, D. Increased RNA-induced silencing complex (RISC) activity contributes to hepatocellular carcinoma. Hepatology 2011, 53, 1538–1548. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, P.; Tsantsaridou, A.; Papasotiriou, I.; Toloudi, M.; Chatziioannou, M.; Giamouzis, G. Bacterial and fungal microflora in surgically removed lung cancer samples. J. Cardiothorac. Surg. 2011, 6, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panghal, M.; Kaushal, V.; Kadayan, S.; Yadav, J.P. Incidence and risk factors for infection in oral cancer patients undergoing different treatments protocols. BMC Oral Health 2012, 12, 22. [Google Scholar] [CrossRef] [Green Version]
- Reis, L.O.; Ferreira, U.; Billis, A.; Cagnon, V.H.; Fávaro, W.J. Anti-angiogenic effects of the superantigen staphylococcal enterotoxin B and bacillus Calmette-Guérin immunotherapy for nonmuscle invasive bladder cancer. J. Urol. 2012, 187, 438–445. [Google Scholar] [CrossRef]
- Gu, L.; Yue, J.; Zheng, Y.; Zheng, X.; Wang, J.; Wang, Y.; Li, J.; Jiang, Y.; Jiang, H. Evaluation of a recombinant double mutant of staphylococcal enterotoxin B (SEB-H32Q/K173E) with enhanced antitumor activity effects and decreased pyrexia. PLoS ONE 2013, 8, e55892. [Google Scholar] [CrossRef]
- Alreshidi, M.A.; Alsalamah, A.A.; Hamat, R.A.; Neela, V.; Alshrari, A.S.; Atshan, S.S.; Alajlan, H.H.; Nor Shamsudin, M. Genetic variation among methicillin-resistant Staphylococcus aureus isolates from cancer patients in Saudi Arabia. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2013, 32, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Hao, L.; Chen, M.; Hu, J.; Shi, Z.; Zhang, Z.; Dong, B.; Fu, Y.; Pei, C.; Wu, Y. Target expression of Staphylococcus enterotoxin A from an oncolytic adenovirus suppresses mouse bladder tumor growth and recruits CD3+ T cell. Tumour. Biol. 2013, 34, 2863–2869. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, X.; Lu, L.; Zheng, J.B.; Tian, Y.; Wang, W. Cytotoxicity of lymphocytes activated by superantigen toxic-shock-syndrome toxin-1 against colorectal cancer LoVo cells. Mol. Cell. Biochem. 2013, 376, 1–9. [Google Scholar] [CrossRef]
- Memmel, E.; Homann, A.; Oelschlaeger, T.A.; Seibel, J. Metabolic glycoengineering of Staphylococcus aureus reduces its adherence to human T24 bladder carcinoma cells. Chem. Commun. 2013, 49, 7301–7303. [Google Scholar] [CrossRef] [PubMed]
- Bu, S.; Xie, Q.; Chang, W.; Huo, X.; Chen, F.; Ma, X. LukS-PV induces mitochondrial-mediated apoptosis and G0/G1 cell cycle arrest in human acute myeloid leukemia THP-1 cells. Int. J. Biochem. Cell Biol. 2013, 45, 1531–1537. [Google Scholar] [CrossRef] [PubMed]
- Terman, D.S.; Serier, A.; Dauwalder, O.; Badiou, C.; Dutour, A.; Thomas, D.; Brun, V.; Bienvenu, J.; Etienne, J.; Vandenesch, F.; et al. Staphylococcal entertotoxins of the enterotoxin gene cluster (egcSEs) induce nitrous oxide- and cytokine dependent tumor cell apoptosis in a broad panel of human tumor cells. Front. Cell. Infect. Microbiol. 2013, 3, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Liu, L.; Xu, M.; Zhang, H.; Zhang, Y.; Zhang, C. T-cell proliferation and antitumour activities of a truncated mutant of staphylococcal enterotoxin C2 with decreased cytokine secretion. J. Med. Microbiol. 2013, 62, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St Jean, A.T.; Swofford, C.A.; Panteli, J.T.; Brentzel, Z.J.; Forbes, N.S. Bacterial delivery of Staphylococcus aureus alpha-hemolysin causes regression and necrosis in murine tumors. Mol. Ther. 2014, 22, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Krejsgaard, T.; Willerslev-Olsen, A.; Lindahl, L.M.; Bonefeld, C.M.; Koralov, S.B.; Geisler, C.; Wasik, M.A.; Gniadecki, R.; Kilian, M.; Iversen, L.; et al. Staphylococcal enterotoxins stimulate lymphoma-associated immune dysregulation. Blood 2014, 124, 761–770. [Google Scholar] [CrossRef]
- Shan, W.; Bu, S.; Zhang, C.; Zhang, S.; Ding, B.; Chang, W.; Dai, Y.; Shen, J.; Ma, X. LukS-PV, a component of Panton-Valentine leukocidin, exerts potent activity against acute myeloid leukemia in vitro and in vivo. Int. J. Biochem. Cell Biol. 2015, 61, 20–28. [Google Scholar] [CrossRef]
- Boer, J.C.; van Marion, D.M.; Joseph, J.V.; Kliphuis, N.M.; Timmer-Bosscha, H.; van Strijp, J.A.; de Vries, E.G.; den Dunnen, W.F.; Kruyt, F.A.; Walenkamp, A.M. Microenvironment involved in FPR1 expression by human glioblastomas. J. Neurooncol. 2015, 123, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbieri, R.; Pesce, M.; Franchelli, S.; Baldelli, I.; De Maria, A.; Marchese, A. Phenotypic and genotypic characterization of staphylococci causing breast peri-implant infections in oncologic patients. BMC Microbiol. 2015, 15, 26. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Serrano, F.; Mut-Salud, N.; Cruz-Bustos, T.; Gomez-Samblas, M.; Carrasco, E.; Garrido, J.M.; López-Jaramillo, F.J.; Santoyo-Gonzalez, F.; Osuna, A. Functionalized immunostimulating complexes with protein A via lipid vinyl sulfones to deliver cancer drugs to trastuzumab-resistant HER2-overexpressing breast cancer cells. Int. J. Nanomed. 2016, 11, 4777–4785. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.T.; Meng, Z.B. Treatment of advanced breast cancer with a combination of highly agglutinative staphylococcin and vinorelbine-based chemotherapy. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 3465–3468. [Google Scholar] [PubMed]
- Mu, P.; Dong, B.; Liang, P.; Yu, X.; Su, L.; Zhang, J. Clinical research on ultrasonically guided intrahepatic injections of HAS in interventional treatment of liver carcinomas. J. BU ON Off. J. Balk. Union Oncol. 2016, 21, 1394–1397. [Google Scholar]
- Almeida, J.F.; Breyner, N.M.; Mahi, M.; Ahmed, B.; Benbouziane, B.; Boas, P.C.; Miyoshi, A.; Azevedo, V.; Langella, P.; Bermúdez-Humarán, L.G.; et al. Expression of fibronectin binding protein A (FnBPA) from Staphylococcus aureus at the cell surface of Lactococcus lactis improves its immunomodulatory properties when used as protein delivery vector. Vaccine 2016, 34, 1312–1318. [Google Scholar] [CrossRef]
- Hassan, Z.; Mustafa, S.; Rahim, R.A.; Isa, N.M. Anti-breast cancer effects of live, heat-killed and cytoplasmic fractions of Enterococcus faecalis and Staphylococcus hominis isolated from human breast milk. In Vitro Cell. Dev. Biol. Anim. 2016, 52, 337–348. [Google Scholar] [CrossRef]
- Urbaniak, C.; Gloor, G.B.; Brackstone, M.; Scott, L.; Tangney, M.; Reid, G. The Microbiota of Breast Tissue and Its Association with Breast Cancer. Appl. Environ. Microbiol. 2016, 82, 5039–5048. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Johani, K.; Almatroudi, A.; Vickery, K.; Van Natta, B.; Kadin, M.E.; Brody, G.; Clemens, M.; Cheah, C.Y.; Lade, S.; et al. Bacterial Biofilm Infection Detected in Breast Implant-Associated Anaplastic Large-Cell Lymphoma. Plast. Reconstr. Surg. 2016, 137, 1659–1669. [Google Scholar] [CrossRef]
- Akbari, A.; Farahnejad, Z.; Akhtari, J.; Abastabar, M.; Mobini, G.R.; Mehbod, A.S. Staphylococcus aureus Enterotoxin B Down-Regulates the Expression of Transforming Growth Factor-Beta (TGF-β) Signaling Transducers in Human Glioblastoma. Jundishapur. J. Microbiol. 2016, 9, e27297. [Google Scholar] [CrossRef] [Green Version]
- Nesher, L.; Tarrand, J.; Chemaly, R.F.; Rolston, K.V. Staphylococcus lugdunensis infections, filling in the gaps: A 3-year retrospective review from a comprehensive cancer center. Support. Care Cancer 2017, 25, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Altemus, J.; Niazi, F.; Green, H.; Calhoun, B.C.; Sturgis, C.; Grobmyer, S.R.; Eng, C. Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 2017, 8, 88122–88138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattar, K.; Reinert, C.P.; Sibelius, U.; Gökyildirim, M.Y.; Subtil, F.S.B.; Wilhelm, J.; Eul, B.; Dahlem, G.; Grimminger, F.; Seeger, W.; et al. Lipoteichoic acids from Staphylococcus aureus stimulate proliferation of human non-small-cell lung cancer cells in vitro. Cancer Immunol. Immunother. 2017, 66, 799–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jariwala, N.; Rajasekaran, D.; Mendoza, R.G.; Shen, X.N.; Siddiq, A.; Akiel, M.A.; Robertson, C.L.; Subler, M.A.; Windle, J.J.; Fisher, P.B.; et al. Oncogenic Role of SND1 in Development and Progression of Hepatocellular Carcinoma. Cancer Res. 2017, 77, 3306–3316. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Zhang, G.; Zhao, J.; Chen, J.; Chen, Y.; Huang, W.; Zhong, J.; Zeng, J. Profiling the Urinary Microbiota in Male Patients With Bladder Cancer in China. Front. Cell. Infect. Microbiol. 2018, 8, 167. [Google Scholar] [CrossRef]
- Mathews, J.; Patel, M. Bacterial endotoxins and microorganisms in the oral cavities of patients on cancer therapy. Microb Pathog 2018, 123, 190–195. [Google Scholar] [CrossRef]
- Villafuerte, K.R.V.; Martinez, C.J.H.; Dantas, F.T.; Carrara, H.H.A.; Dos Reis, F.J.C.; Palioto, D.B. The impact of chemotherapeutic treatment on the oral microbiota of patients with cancer: A systematic review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 125, 552–566. [Google Scholar] [CrossRef] [Green Version]
- Nakatsuji, T.; Chen, T.H.; Butcher, A.M.; Trzoss, L.L.; Nam, S.J.; Shirakawa, K.T.; Zhou, W.; Oh, J.; Otto, M.; Fenical, W.; et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv. 2018, 4, eaao4502. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, N.; Fukuzawa, M.; Wajima, T.; Yokose, K.; Suzuki, M.; Nakaminami, H.; Kawai, T.; Moriyasu, F.; Sasatsu, M. Specific clones of Staphylococcus lugdunensis may be associated with colon carcinoma. J. Infect. Public Health 2018, 11, 39–42. [Google Scholar] [CrossRef]
- Walker, J.N.; Hanson, B.M.; Pinkner, C.L.; Simar, S.R.; Pinkner, J.S.; Parikh, R.; Clemens, M.W.; Hultgren, S.J.; Myckatyn, T.M. Insights into the Microbiome of Breast Implants and Periprosthetic Tissue in Breast Implant-Associated Anaplastic Large Cell Lymphoma. Sci. Rep. 2019, 9, 10393. [Google Scholar] [CrossRef] [Green Version]
- Shehata, M.M.K.; Radwan, S.M.; Ali, S.A.M. Effects of gamma-irradiation on antibiotic resistance and diagnostic molecular markers of methicillin-resistant Staphylococcus aureus in Egyptian cancer patients. Int. J. Radiat. Biol. 2019, 95, 1728–1743. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, J.; Fang, S.; Zhang, M.; Liu, S.; Tian, Y.; Ma, M.; Liu, F.; Jin, G. Inflammatory activation of microglia by Staphylococcus aureus caused phenotypic alterations and affected glioblastoma growth. Cell Biochem. Funct. 2019, 37, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Madhusudhan, N.; Pausan, M.R.; Halwachs, B.; Durdević, M.; Windisch, M.; Kehrmann, J.; Patra, V.; Wolf, P.; Boukamp, P.; Moissl-Eichinger, C.; et al. Molecular Profiling of Keratinocyte Skin Tumors Links Staphylococcus aureus Overabundance and Increased Human β-Defensin-2 Expression to Growth Promotion of Squamous Cell Carcinoma. Cancers 2020, 12, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourdrain, A.; Bouabdallah, I.; Gust, L.; Cassir, N.; Brioude, G.; Falcoz, P.E.; Alifano, M.; Le Rochais, J.P.; D’Annoville, T.; Trousse, D.; et al. Screening and topical decolonization of preoperative nasal Staphylococcus aureus carriers to reduce the incidence of postoperative infections after lung cancer surgery: A propensity matched study. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 552–558. [Google Scholar] [CrossRef]
- Qiang, Y.; Ma, F.; Wang, Z.; Nie, Z.; Xu, L.; Ding, P.; Ma, X. LukS-PV induces cell cycle arrest and apoptosis through p38/ERK MAPK signaling pathway in NSCLC cells. Biochem. Biophys. Res. Commun. 2020, 521, 846–852. [Google Scholar] [CrossRef]
- Zhao, C.C.; Yu, W.W.; Qi, Y.J.; Xu, L.F.; Wang, Z.R.; Qiang, Y.W.; Ma, F.; Ma, X.L. Quantitative proteomic analysis reveals that Luks-PV exerts antitumor activity by regulating the key proteins and metabolic pathways in HepG2 cells. Anti-Cancer Drugs 2020, 31, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Thyagarajan, S.; Zhang, Y.; Thapa, S.; Allen, M.S.; Phillips, N.; Chaudhary, P.; Kashyap, M.V.; Vishwanatha, J.K. Comparative analysis of racial differences in breast tumor microbiome. Sci Rep 2020, 10, 14116. [Google Scholar] [CrossRef]
- Klann, E.; Williamson, J.M.; Tagliamonte, M.S.; Ukhanova, M.; Asirvatham, J.R.; Chim, H.; Yaghjyan, L.; Mai, V. Microbiota composition in bilateral healthy breast tissue and breast tumors. Cancer Causes Control 2020, 31, 1027–1038. [Google Scholar] [CrossRef]
- Chiba, A.; Bawaneh, A.; Velazquez, C.; Clear, K.Y.J.; Wilson, A.S.; Howard-McNatt, M.; Levine, E.A.; Levi-Polyachenko, N.; Yates-Alston, S.A.; Diggle, S.P.; et al. Neoadjuvant Chemotherapy Shifts Breast Tumor Microbiota Populations to Regulate Drug Responsiveness and the Development of Metastasis. Mol. Cancer Res. 2020, 18, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Gotland, N.; Uhre, M.L.; Sandholdt, H.; Mejer, N.; Lundbo, L.F.; Petersen, A.; Larsen, A.R.; Benfield, T. Increased risk of incident primary cancer after Staphylococcus aureus bacteremia: A matched cohort study. Medicine 2020, 99, e19984. [Google Scholar] [CrossRef]
- Qi, J.L.; He, J.R.; Liu, C.B.; Jin, S.M.; Gao, R.Y.; Yang, X.; Bai, H.M.; Ma, Y.B. Pulmonary Staphylococcus aureus infection regulates breast cancer cell metastasis via neutrophil extracellular traps (NETs) formation. MedComm 2020, 1, 188–201. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, S.; Barzegari, A.; Esmaeili, A.; Omidi, Y. Designing a light-activated recombinant alpha hemolysin for colorectal cancer targeting. BioImpacts BI 2020, 10, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Khusro, A.; Aarti, C.; Mahizhaveni, B.; Dusthackeer, A.; Agastian, P.; Esmail, G.A.; Ghilan, A.M.; Al-Dhabi, N.A.; Arasu, M.V. Purification and characterization of anti-tubercular and anticancer protein from Staphylococcus hominis strain MANF2: In silico structural and functional insight of peptide. Saudi. J. Biol. Sci. 2020, 27, 1107–1116. [Google Scholar] [CrossRef] [PubMed]
- Safarpour-Dehkordi, M.; Doosti, A.; Jami, M.S. Integrative Analysis of lncRNAs in Kidney Cancer to Discover A New lncRNA (LINC00847) as A Therapeutic Target for Staphylococcal Enterotoxin tst Gene. Cell J. 2020, 22, 101–109. [Google Scholar] [CrossRef]
- Chiappini, A.; Santos, A.N.; DE Trizio, I.; Croci, D.; Valci, L.; Reinert, M.; Marchi, F. Longer survival of glioblastoma complicated by bacterial infections after surgery: What is known today. J. Neurosurg. Sci. 2021, 65, 524–531. [Google Scholar] [CrossRef] [PubMed]
- El Dine, R.S.; Elfaky, M.A.; Asfour, H.; El Halawany, A.M. Anti-adhesive activity of Aframomum melegueta major phenolics on lower respiratory tract pathogens. Nat. Prod. Res. 2021, 35, 539–547. [Google Scholar] [CrossRef]
- Tzeng, A.; Sangwan, N.; Jia, M.; Liu, C.C.; Keslar, K.S.; Downs-Kelly, E.; Fairchild, R.L.; Al-Hilli, Z.; Grobmyer, S.R.; Eng, C. Human breast microbiome correlates with prognostic features and immunological signatures in breast cancer. Genome Med. 2021, 13, 60. [Google Scholar] [CrossRef]
- Parra-Grande, M.; Oré-Arce, M.; Martínez-Priego, L.; D’Auria, G.; Rosselló-Mora, R.; Lillo, M.; Sempere, A.; Lumbreras, B.; Sánchez-Hellín, V. Profiling the Bladder Microbiota in Patients With Bladder Cancer. Front. Microbiol. 2021, 12, 718776. [Google Scholar] [CrossRef]
- Li, Z.; Zhuang, H.; Wang, G.; Wang, H.; Dong, Y. Prevalence, predictors, and mortality of bloodstream infections due to methicillin-resistant Staphylococcus aureus in patients with malignancy: Systemic review and meta-analysis. BMC Infect. Dis. 2021, 21, 74. [Google Scholar] [CrossRef]
- Yang, J.; He, P.; Zhou, M.; Li, S.; Zhang, J.; Tao, X.; Wang, A.; Wu, X. Variations in oral microbiome and its predictive functions between tumorous and healthy individuals. J. Med. Microbiol. 2022, 71, 001568. [Google Scholar] [CrossRef]
- An, J.; Kwon, H.; Lim, W.; Moon, B.I. Staphylococcus aureus-Derived Extracellular Vesicles Enhance the Efficacy of Endocrine Therapy in Breast Cancer Cells. J. Clin. Med. 2022, 11, 2030. [Google Scholar] [CrossRef] [PubMed]
- Maślak, E.; Miśta, W.; Złoch, M.; Błońska, D.; Pomastowski, P.; Monedeiro, F.; Buszewski, B.; Mrochem-Kwarciak, J.; Bojarska, K.; Gabryś, D. A New Approach to Imaging and Rapid Microbiome Identification for Prostate Cancer Patients Undergoing Radiotherapy. Biomedicines 2022, 10, 1806. [Google Scholar] [CrossRef]
- Worku, M.; Belay, G.; Tigabu, A. Bacterial profile and antimicrobial susceptibility patterns in cancer patients. PLoS ONE 2022, 17, e0266919. [Google Scholar] [CrossRef] [PubMed]
- Mansour, B.; Monyók, Á.; Gajdács, M.; Stercz, B.; Makra, N.; Pénzes, K.; Vadnay, I.; Szabó, D.; Ostorházi, E. Bladder Tissue Microbiome Composition in Patients of Bladder Cancer or Benign Prostatic Hyperplasia and Related Human Beta Defensin Levels. Biomedicines 2022, 10, 1758. [Google Scholar] [CrossRef]
- Xu, X.; Ding, P.; Shi, L.; Wu, G.; Ma, X. LukS-PV inhibits hepatocellular carcinoma cells migration by downregulating HDAC6 expression. BMC Cancer 2022, 22, 630. [Google Scholar] [CrossRef]
- Abbasi Montazeri, E.; Khosravi, A.D.; Khazaei, S.; Sabbagh, A. Prevalence of methicillin resistance and superantigenic toxins in Staphylococcus aureus strains isolated from patients with cancer. BMC Microbiol. 2021, 21, 262. [Google Scholar] [CrossRef]
- Nanayakkara, A.K.; Boucher, H.W.; Fowler, V.G., Jr.; Jezek, A.; Outterson, K.; Greenberg, D.E. Antibiotic resistance in the patient with cancer: Escalating challenges and paths forward. CA A Cancer J. Clin. 2021, 71, 488–504. [Google Scholar] [CrossRef]
- Wang, K.; Nakano, K.; Naderi, N.; Bajaj-Elliott, M.; Mosahebi, A. Is the skin microbiota a modifiable risk factor for breast disease?: A systematic review. Breast 2021, 59, 279–285. [Google Scholar] [CrossRef]
- Fujii, K. Pathogenesis of cutaneous T cell lymphoma: Involvement of Staphylococcus aureus. J. Dermatol. 2022, 49, 202–209. [Google Scholar] [CrossRef]
- Squarzanti, D.F.; Zavattaro, E.; Pizzimenti, S.; Amoruso, A.; Savoia, P.; Azzimonti, B. Non-Melanoma Skin Cancer: News from microbiota research. Crit. Rev. Microbiol. 2020, 46, 433–449. [Google Scholar] [CrossRef]
- Richardson, B.N.; Lin, J.; Buchwald, Z.S.; Bai, J. Skin Microbiome and Treatment-Related Skin Toxicities in Patients With Cancer: A Mini-Review. Front. Oncol. 2022, 12, 924849. [Google Scholar] [CrossRef] [PubMed]
- Wagstaffe, S.J.; Hill, K.E.; Williams, D.W.; Randle, B.J.; Thomas, D.W.; Stephens, P.; Riley, D.J. Bispecific antibody-mediated detection of the Staphylococcus aureus thermonuclease. Anal. Chem. 2012, 84, 5876–5884. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Chan, S.C.; Leung, K.W.; Wu, J.M.; Fang, H.J.; Tsong, T.Y. Local stability identification and the role of key acidic amino acid residues in staphylococcal nuclease unfolding. FEBS J. 2005, 272, 3967–3974. [Google Scholar] [CrossRef] [PubMed]
- Lai, B.; Gao, W.; Cui, K.; Xie, W.; Tang, Q.; Jin, W.; Hu, G.; Ni, B.; Zhao, K. Principles of nucleosome organization revealed by single-cell micrococcal nuclease sequencing. Nature 2018, 562, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Zhang, L.; Ruan, H.; Li, G. Histone variant H2A.Z regulates nucleosome unwrapping and CTCF binding in mouse ES cells. Nucleic. Acids Res. 2020, 48, 5939–5952. [Google Scholar] [CrossRef] [PubMed]
- Liénard, P.; Rivière, M.; Van Vooren, P.; Szpirer, C.; Szpirer, J. Assignment of SND1, the gene encoding coactivator p100, to human chromosome 7q31.3 and rat chromosome 4q23 by in situ hybridization. Cytogenet. Cell Genet. 2000, 90, 253–254. [Google Scholar] [CrossRef]
- Ochoa, B.; Chico, Y.; Martínez, M.J. Insights Into SND1 Oncogene Promoter Regulation. Front. Oncol. 2018, 8, 606. [Google Scholar] [CrossRef]
- Callebaut, I.; Mornon, J.P. The human EBNA-2 coactivator p100: Multidomain organization and relationship to the staphylococcal nuclease fold and to the tudor protein involved in Drosophila melanogaster development. Biochem. J. 1997, 321 Pt 1, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Meng, J.; Shi, C.; Hervin, K.; Fratamico, P.M.; Shi, X. Characterization and comparative analysis of a second thermonuclease from Staphylococcus aureus. Microbiol. Res. 2013, 168, 174–182. [Google Scholar] [CrossRef]
- Hynes, T.R.; Fox, R.O. The crystal structure of staphylococcal nuclease refined at 1.7 A resolution. Proteins 1991, 10, 92–105. [Google Scholar] [CrossRef]
- Hossain, M.J.; Korde, R.; Singh, S.; Mohmmed, A.; Dasaradhi, P.V.; Chauhan, V.S.; Malhotra, P. Tudor domain proteins in protozoan parasites and characterization of Plasmodium falciparum tudor staphylococcal nuclease. Int. J. Parasitol. 2008, 38, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.L.; Tian, L.; Kumamaru, T.; Hamada, S.; Okita, T.W. Multifunctional RNA Binding Protein OsTudor-SN in Storage Protein mRNA Transport and Localization. Plant Physiol. 2017, 175, 1608–1623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Yan, Z.; Wang, Y.; Yan, X.; Han, Y. Tudor-SN, a component of stress granules, regulates growth under salt stress by modulating GA20ox3 mRNA levels in Arabidopsis. J. Exp. Bot. 2014, 65, 5933–5944. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.J.; Korde, R.; Singh, P.K.; Kanodia, S.; Ranjan, R.; Ram, G.; Kalsey, G.S.; Singh, R.; Malhotra, P. Plasmodium falciparum Tudor Staphylococcal Nuclease interacting proteins suggest its role in nuclear as well as splicing processes. Gene 2010, 468, 48–57. [Google Scholar] [CrossRef]
- Ascano, M.; Hafner, M.; Cekan, P.; Gerstberger, S.; Tuschl, T. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Reviews. RNA 2012, 3, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Baltz, A.G.; Munschauer, M.; Schwanhäusser, B.; Vasile, A.; Murakawa, Y.; Schueler, M.; Youngs, N.; Penfold-Brown, D.; Drew, K.; Milek, M.; et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 2012, 46, 674–690. [Google Scholar] [CrossRef] [Green Version]
- Cuatrecasas, P.; Fuchs, S.; Anfinsen, C.B. The binding of nucleotides and calcium to the extracellular nuclease of Staphylococcus aureus. Studies by gel filtration. J. Biol. Chem. 1967, 242, 3063–3067. [Google Scholar] [CrossRef]
- Yang, W.; Chendrimada, T.P.; Wang, Q.; Higuchi, M.; Seeburg, P.H.; Shiekhattar, R.; Nishikura, K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 2006, 13, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Scadden, A.D. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat. Struct. Mol. Biol. 2005, 12, 489–496. [Google Scholar] [CrossRef]
- Ayllón, N.; Naranjo, V.; Hajdušek, O.; Villar, M.; Galindo, R.C.; Kocan, K.M.; Alberdi, P.; Šíma, R.; Cabezas-Cruz, A.; Rückert, C.; et al. Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. PLoS ONE 2015, 10, e0133038. [Google Scholar] [CrossRef] [Green Version]
- Elbarbary, R.A.; Miyoshi, K.; Myers, J.R.; Du, P.; Ashton, J.M.; Tian, B.; Maquat, L.E. Tudor-SN-mediated endonucleolytic decay of human cell microRNAs promotes G(1)/S phase transition. Science 2017, 356, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Phetrungnapha, A.; Panyim, S.; Ongvarrasopone, C. Penaeus monodon Tudor staphylococcal nuclease preferentially interacts with N-terminal domain of Argonaute-1. Fish Shellfish Immunol. 2013, 34, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Phetrungnapha, A.; Panyim, S.; Ongvarrasopone, C. A Tudor staphylococcal nuclease from Penaeus monodon: cDNA cloning and its involvement in RNA interference. Fish Shellfish Immunol. 2011, 31, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Musiyenko, A.; Majumdar, T.; Andrews, J.; Adams, B.; Barik, S. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA. Cell. Microbiol. 2012, 14, 882–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheweita, S.A.; Alsamghan, A.S. Molecular Mechanisms Contributing Bacterial Infections to the Incidence of Various Types of Cancer. Mediat. Inflamm. 2020, 2020, 4070419. [Google Scholar] [CrossRef] [PubMed]
- Dharmaraja, A.T. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria. J. Med. Chem. 2017, 60, 3221–3240. [Google Scholar] [CrossRef]
- Shivaee, A.; Sedighi, M.; Imani Fooladi, A.A. Staphylococcal enterotoxins as good candidates for cancer immunotherapy: A systematic review. Ann. Di Ig. Med. Prev. E Di Comunita 2020, 32, 648–663. [Google Scholar] [CrossRef]
- Terman, D.S.; Bohach, G.; Vandenesch, F.; Etienne, J.; Lina, G.; Sahn, S.A. Staphylococcal superantigens of the enterotoxin gene cluster (egc) for treatment of stage IIIb non-small cell lung cancer with pleural effusion. Clin. Chest Med. 2006, 27, 321–334. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, X.; Rao, X. Apoptosis induced by Staphylococcus aureus toxins. Microbiol. Res. 2017, 205, 19–24. [Google Scholar] [CrossRef]
- Dohlsten, M.; Abrahmsén, L.; Björk, P.; Lando, P.A.; Hedlund, G.; Forsberg, G.; Brodin, T.; Gascoigne, N.R.; Förberg, C.; Lind, P.; et al. Monoclonal antibody-superantigen fusion proteins: Tumor-specific agents for T-cell-based tumor therapy. Proc. Natl. Acad. Sci. USA 1994, 91, 8945–8949. [Google Scholar] [CrossRef] [Green Version]
- Golob-Urbanc, A.; Rajčević, U.; Strmšek, Ž.; Jerala, R. Design of split superantigen fusion proteins for cancer immunotherapy. J. Biol. Chem. 2019, 294, 6294–6305. [Google Scholar] [CrossRef] [PubMed]
- Perabo, F.G.; Willert, P.L.; Wirger, A.; Schmidt, D.H.; Wardelmann, E.; Sitzia, M.; von Ruecker, A.; Mueller, S.C. Preclinical evaluation of superantigen (staphylococcal enterotoxin B) in the intravesical immunotherapy of superficial bladder cancer. Int. J. Cancer 2005, 115, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.L.; Yan, Z.; Chen, J.; Zhao, W.H.; Guo, W. Clinical application of highly agglutinative staphylococcin in cancer treatment updates of the literature. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2718–2725. [Google Scholar] [PubMed]
- Fu, X.; Xu, M.; Zhang, H.; Li, Y.; Li, Y.; Zhang, C. Staphylococcal Enterotoxin C2 Mutant-Directed Fatty Acid and Mitochondrial Energy Metabolic Programs Regulate CD8(+) T Cell Activation. J. Immunol. 2020, 205, 2066–2076. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, H.; Xu, M.; Liu, C.; Zhang, C. Biological analysis of the deletion mutants of Staphylococcal enterotoxin C2. Appl. Microbiol. Biotechnol. 2009, 83, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Solal-Celigny, P.; Simeon, J.; Herrera, A.; Boivin, P. Cancer treatment with Staphylococcus aureus protein A. Biomed. Pharmacother. Biomed. Pharmacother. 1985, 39, 177–186. [Google Scholar]
- Rigi, G.; Ghaedmohammadi, S.; Ahmadian, G. A comprehensive review on staphylococcal protein A (SpA): Its production and applications. Biotechnol. Appl. Biochem. 2019, 66, 454–464. [Google Scholar] [CrossRef]
- Chen, X.; Schneewind, O.; Missiakas, D. Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2022, 119, e2114478119. [Google Scholar] [CrossRef]
- Kozmin, S.G.; Rogozin, I.B.; Moore, E.A.; Abney, M.; Schaaper, R.M.; Pavlov, Y.I. Comment on “A commensal strain of Staphylococcus epidermidis protects against skin neoplasia” by Nakatsuji et al. Sci. Adv. 2019, 5, eaaw3915. [Google Scholar] [CrossRef]
Number | Year | Cancer | Staphylococcus-Related Issue | Clinical or Experimental Samples | Links | Reference |
---|---|---|---|---|---|---|
1 | 1991 | Skin cancer | SEB | PRO4L cell; C3H mice | SEB V beta 8+ cells tumor growth | [38] |
2 | 1991 | Colon cancer | SEA | SW620, WiDr, COLO205 cells | C215-SEA anti-tumor | [39] |
3 | 1992 | Several types of cancers | Oral flora | 197 patients with advanced malignant disease | S. aureus (28% oral rinses) | [40] |
4 | 1995 | Colon cancer | C242Fab-SEA | COLO205 cell; humanized SCID mice | C242Fab-SEA T cell infiltration tumor growth | [41] |
5 | 2004 | Lung cancer | Tobacco tar-resistant S. aureus (Sa-TA10) | H226B cells, Bhas 42 | Sa-TA10 TNF-α carcinogenic potential | [42] |
6 | 2005 | Bladder cancer | SEB | TCC cells | SEB-stimulated PBMC apoptosis | [43] |
7 | 2005 | Breast cancer | MRSA | One case with ductal breast carcinoma | Complications | [44] |
8 | 2006 | HCC | TSST-1 | SMMC772 cell | 12 mer peptide fused with the TSST-1 migration of tumor cell | [45] |
9 | 2007 | Breast cancer | Eap of S. aureus | MDA-MB-231 cell | Eap bone metastasis | [46] |
10 | 2007 | Several types of cancers | Staphylococcus | 300 patients with 13 different cancer diagnoses | Frequently isolated Staphylococcus during chemotherapy (oral microbiota) | [47] |
11 | 2007 | Colon cancer | Tannase | Colon cancer cases vs. adenoma/normal controls (1999~2004) | S. lugdunensis (fecal and rectal) | [48] |
12 | 2008 | Bladder cancer | S. saprophyticus ATCC 15305 | 5637 cells | S. saprophyticus internalization | [49] |
13 | 2008 | Mesothelioma | α-hemolysin | P31 res cell | α-hemolysin cytotoxicity | [50] |
14 | 2008 | Glioblastoma | S. aureus | One glioblastoma multiforme case | Intracranial abscess complication | [51] |
15 | 2009 | Skin cancer | S. aureus | 82 skin SCC patients vs. 353 healthy subjects | S. aureus DNA (biopsies) | [52] |
16 | 2009 | Melanoma | SEA | B16 cell | SEA-TDLN pulmonary metastasis | [53] |
17 | 2009 | Several types of cancers | SSL10 | Jurkat T-ALL; Jurkat; HeLa cells | SSL10 CXCR4 binding CXCL12-induced migration of tumor cells | [54] |
18 | 2010 | Breast cancer | Peptidoglycan of S. aureus | MDA-MB-231 cell | Peptidoglycan TLR2 Invasiveness/adhesiveness of tumor cell | [55] |
19 | 2011 | HCC | human homologue of SNases | HepG3, QGY-7703, Hep3B, and Huh7 cells | pdTp nuclease activity of SND1 RISC activity hepatocarcinogenesis | [56] |
20 | 2011 | Lung cancer | S. epidermidis | 32 surgically removed lung cancer samples | S. epidermidis | [57] |
21 | 2012 | Oral cancer | S. aureus and S. epidermidis | 186 patients with chemotherapy or chemoradiotherapy (2007~2009) | S. aureus and S. epidermidis (blood; oral cavity) | [58] |
22 | 2012 | Bladder cancer | SEB | 75 female Fisher 344 rats (nonmuscle invasive bladder cancer model) | SEB anti-angiogenic effects | [59] |
23 | 2013 | Several types of cancers | SEB | BGC823; HeLa cells; mouse Lewis lung carcinoma model | SEB-H32Q/K173E cytotoxic effectshost immune response | [60] |
24 | 2013 | Cancer MRSA | MRSA | 44 cancer cases on therapy vs. 34 non-cancer controls in Saudi Arabia (MRSA isolates) | multiple resistant for antibiotic agents | [61] |
25 | 2013 | Bladder cancer | PPE3-SEA | MB49 cells; mice | PPE3-SEA CD3+ T cells Tumor growth | [62] |
26 | 2013 | Colorectal cancer | TSST-1 | LoVo cell | TSST-1 T cell activation Cytotoxicity of lymphocytes | [63] |
27 | 2013 | Bladder cancer | S. aureus | T24 cell | GlcNAz adherence | [64] |
28 | 2013 | AML | PVL | THP-1 cell | LukS-PV apoptosis cell cycle arrest | [65] |
29 | 2013 | Several types of cancer | egcSEs | Hep-2, CRL5800, CRL1547, MDA-MB-549, SK-N-BE, PLAOD cells | Apoptosis of tumor cells | [66] |
30 | 2013 | HCC | SEC2 | Hepa1-6 cell | SEC (14-128) tumor growth | [67] |
31 | 2014 | Breast cancer | α-hemolysin | MCF7, 4T1 cells, mice | α-hemolysin necrosis tumor growth | [68] |
32 | 2014 | Cutaneous T-cell lymphoma | S. aureus | Sezary syndrome patients; SeAx, MF1850 cells | S. aureus colonization SEs Stat3/IL-10 axis immune dysregulation | [69] |
33 | 2015 | AML | PVL | HL-60 AML cell; SCID mice | LukS-PVapoptosis tumor growth | [70] |
34 | 2015 | Glioblastoma | CHIPS | U87 cell; 178 GBM cases | CHIPS FPR1 activity U87 migration | [71] |
35 | 2015 | Breast cancer | S. aureus and S. epidermidis | Cancer patients with breast implantation | S. aureus and S. epidermidis breast peri-implant infections | [72] |
36 | 2016 | Breast cancer | SpA | HCC1954 cell | Alkyl vinyl sulfone/protein A complex cell viability | [73] |
37 | 2016 | Breast cancer | HAS | 62 cancer cases | HAS overall response rate | [74] |
38 | 2016 | Liver cancer | HAS | 22 cancer cases | HAS intrahepatic injection antitumor immune cells | [75] |
39 | 2016 | HPV-induced cancer | FnBPA | Mouse model of HPV-induced cancer | FnBPA HPV-induced cancer | [76] |
40 | 2016 | Breast cancer | Cytoplasmic fractions of enterococcus faecalis and Staphylococcus hominis | MCF-7 cell | Cytoplasmic fractions proliferation apoptosis of tumor cell | [77] |
41 | 2016 | Breast cancer | Staphylococcus | Women with breast cancer vs. healthy controls | Staphylococcus | [78] |
42 | 2016 | BIA-ALCL | Microbiome in breast implant | 26 BIA-ALCL samples vs. 62 nontumor capsule specimens | Staphylococcus | [79] |
43 | 2016 | Glioblastoma | SEB | U87 cell | SEB Smad2/3 Proliferation | [80] |
44 | 2017 | Several types of cancers | S. lugdunensis; CoNS | Cancer patients with isolated S. lugdunensis | S. lugdunensis < other CoNS (infection) | [81] |
45 | 2017 | Breast cancer | Local breast microbiota | 57 Cancer cases vs. 21 negative controls | Staphylococcus | [82] |
46 | 2017 | Lung cancer | Lipoteichoic acid of S. aureus | A549 and H226 cells | Lipoteichoic acid proliferation | [83] |
47 | 2017 | HCC | Human homologue of SNases | Hepatocyte-specific SND1 transgenic mice | pdTp HCC xenografts | [84] |
48 | 2018 | Bladder cancer | Urinary microbiota profile | 31 male cancer cases vs. 18 non-neoplastic controls in China | S. aureus infection | [85] |
49 | 2018 | Several types of cancers | Oral flora | 100 cancer cases vs. 70 healthy controls (oral rinse) | Chemo- and radiotherapy S. aureus counts | [86] |
50 | 2018 | Several types of cancers | Oral microbiota profile | Cancer patients during chemotherapy (17 studies) | Frequently observed Staphylococcus | [87] |
51 | 2018 | Melanoma | S. epidermidis strain MO34 | B16F10 cell | MO34 6-n-hydroxyaminopurine growth of tumor cell | [88] |
52 | 2018 | Colon cancer | S. lugdunensis | 288 rectal swabs (2002~2008) | Specific group D clone | [89] |
53 | 2019 | BIA-ALCL | Microbiota of breast, skin, implant, and capsule | BIA-ALCL and contralateral control breast (n = 7) | Staphylococcus (both) | [90] |
54 | 2019 | Cancer with MRSA | MRSA | 80 HA-MRSA; 40 CA-MRSA isolates from Egyptian cancer patients | Gamma-irradiation mecA gene (HA-MRSA) multi-antibiotic resistance (CA-MRSA) | [91] |
55 | 2019 | Glioma | S. aureus | C57/BL6 mouse model of orthotopic glioma | S. aureus intratumoral injection microglia activation orthotopic glioma growth | [92] |
56 | 2020 | Cutaneous SCC | S. aureus | 12 cutaneous SCC cases vs. 28 negative controls, HSC-1 and SCL-1 cells | S. aureus hBD-2 growth of tumor cell | [93] |
57 | 2020 | Lung cancer | S. aureus | Cancer patients after lung resection surgery: 108 cases with nasopharyngeal screening vs. 108 controls without screening | S. aureus (nasal cavity) health care-associated infections following lung cancer surgery | [94] |
58 | 2020 | NSCLC | PVL | A549 and H460 cells | LukS-PV apoptosis cell cycle arrest | [95] |
59 | 2020 | HCC | PVL | HepG2 cell | LukS-PV apoptosis proliferation | [96] |
60 | 2020 | Breast cancer | Breast tumor microbiome | Cancer patients from Black/White non-Hispanic | Staphylococcus (second dominant bacterium) | [97] |
61 | 2020 | Breast cancer | Breast microbiota | 10 cancer cases vs. 36 healthy controls | Staphylococcus | [98] |
62 | 2020 | Breast cancer | Breast tumor microbiome | Cancer cases with distant metastases vs. cancer cases without metastases | Staphylococcus | [99] |
63 | 2020 | Several types of cancers | SAB | SAB cohort (n = 12,918); Population cohort (n = 117,465) | SAB risk of primary cancers | [100] |
64 | 2020 | Breast cancer | S. aureus | 4T1 cell | S. aureus infection NET Lung metastasis | [101] |
65 | 2020 | Colorectal cancer | α-hemolysin of S. aureus | SW480 cell | Light-activated recombinantα-hemolysin Apoptosis or necrosis of tumor cell | [102] |
66 | 2020 | Colon/lung cancer | Staphylococcus hominis strain MANF2 | A549 and HT-29 cells | MANF2 Viability of tumor cells | [103] |
67 | 2020 | RCC | TSST-1 | ACHN cell | tst gene LINC00847 apoptosis | [104] |
68 | 2021 | Glioblastoma | Staphylococcus | 29 glioblastoma cases with cerebral infections (four studies) | Staphylococcal intracranial infection longer survival time (in one study) | [105] |
69 | 2021 | Lung cancer | S. aureus (ATCC 29213) | A549 cells | Aframomum melegueta extract Adhesion of S. aureus to A549 | [106] |
70 | 2021 | Breast cancer | Staphylococcus | 221 cancer cases vs. 69 negative controls | Staphylococcus | [107] |
71 | 2021 | Bladder cancer | Bladder microbiota | Tumor mucosa samples of 32 patients (2010~2017) | Staphylococcus (cluster 2) | [108] |
72 | 2021 | Several types of cancers | MRSA | Patients with malignancy (2000–2020) | MRSA BSIs mortality rate | [109] |
73 | 2022 | Oral cancer | Microbiota profile | 27 oral cancer cases vs. 15 healthy subjects | Staphylococcus | [110] |
74 | 2022 | Breast cancer | Staphylococcus; S. aureus derived EVs | 96 cancer cases vs. 192 healthy controls; MCF7 and BT474 cells | Staphylococcus EVs Endocrine therapy efficacy of tumor cells | [111] |
75 | 2022 | prostate cancer | Urinary microbiota | 50 cancer cases undergoing radiotherapy | S. haemolyticus; S. epidermidis; S. hominis | [112] |
76 | 2022 | Several types of cancers | Bacterial profile and antimicrobial susceptibility | 200 cancer cases (2021.03–2021.07) | S. aureus (51.5%) | [113] |
77 | 2022 | Bladder cancer | Staphylococcus level | Bladder cancer vs. Benign Prostatic Hyperplasia | Staphylococcus (urine) | [114] |
78 | 2022 | HCC | PVL | HepG2, Bel-7402, Hep3B, Huh-7 cells | LukS-PV HDAC6 α-tubulin acetylation migration | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Sandhu, E.; Yang, X.; Yang, J.; Ren, Y.; Gao, X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms 2022, 10, 2353. https://doi.org/10.3390/microorganisms10122353
Wei Y, Sandhu E, Yang X, Yang J, Ren Y, Gao X. Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms. 2022; 10(12):2353. https://doi.org/10.3390/microorganisms10122353
Chicago/Turabian StyleWei, Yuannan, Esha Sandhu, Xi Yang, Jie Yang, Yuanyuan Ren, and Xingjie Gao. 2022. "Bidirectional Functional Effects of Staphylococcus on Carcinogenesis" Microorganisms 10, no. 12: 2353. https://doi.org/10.3390/microorganisms10122353
APA StyleWei, Y., Sandhu, E., Yang, X., Yang, J., Ren, Y., & Gao, X. (2022). Bidirectional Functional Effects of Staphylococcus on Carcinogenesis. Microorganisms, 10(12), 2353. https://doi.org/10.3390/microorganisms10122353