A Red Fluorescent Protein Reporter System Developed for Measuring Gene Expression in Photosynthetic Bacteria under Anaerobic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Genetic Manipulation of R. palustris and R. rubrum
2.3. Measurement of Fluorescence Intensity and Cell Growth
2.4. Quantitative Real-Time PCR Analysis
2.5. Examination of the Spectroscopic Properties of mCherry Fluorescent Protein
3. Results
3.1. Influence of Oxygen Exposure Time on Fluorescence Intensity of RFP in R. palustris
3.2. R. palustris Mutants That Express RFP and Nitrogenase Simultaneously
3.3. RFP Can Be Used to Quantify Nitrogenase Gene Expression
3.4. RFP Reporter System Can Be Used as an Efficient Tool for the Investigation of Transcriptional Regulation of Nitrogenase in Anaerobes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Larimer, F.W.; Chain, P.; Hauser, L.; Lamerdin, J.; Malfatti, S.; Do, L.; Land, M.L.; Pelletier, D.A.; Beatty, J.T.; Lang, A.S.; et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nat. Biotechnol. 2004, 22, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.J.; Heiniger, E.K.; McKinlay, J.B.; Harwood, C.S. Production of hydrogen gas from light and the inorganic electron donor thiosulfate by Rhodopseudomonas palustris. Appl. Environ. Microbiol. 2010, 76, 7717–7722. [Google Scholar] [CrossRef] [Green Version]
- McGlynn, S.E.; Boyd, E.S.; Peters, J.W.; Orphan, V.J. Classifying the metal dependence of uncharacterized nitrogenases. Front. Microbiol. 2013, 3, 419. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.G.; Xie, X.Q.; Wang, X.; Dixon, R.; Wang, Y. Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proc. Natl. Acad. Sci. USA 2014, 111, E3718–E3725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Y.; Harris, D.F.; Yu, Z.; Fu, Y.; Poudel, S.; Ledbetter, R.N.; Fixen, K.R.; Yang, Z.-Y.; Boyd, E.S.; Lidstrom, M.E.; et al. A pathway for biological methane production using bacterial iron-only nitrogenase. Nat. Microbiol. 2018, 3, 281–286. [Google Scholar] [CrossRef]
- Oda, Y.; Samanta, S.K.; Rey, F.E.; Wu, L.; Liu, X.; Yan, T.; Zhou, J.; Harwood, C.S. Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. J. Bacteriol. 2005, 187, 7784–7794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fixen, K.R.; Pal Chowdhury, N.; Martinez-Perez, M.; Poudel, S.; Boyd, E.S.; Harwood, C.S. The path of electron transfer to nitrogenase in a phototrophic alpha-proteobacterium. Environ. Microbiol. 2018, 20, 2500–2508. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, A.; Mueller, O.; Stocker, S.; Salowsky, R.; Leiber, M.; Gassmann, M.; Lightfoot, S.; Menzel, W.; Granzow, M.; Ragg, T. The RIN: An RNA integrity number for assigning integrity values to RNA measurements. BMC Mol. Biol. 2006, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demtröder, L.; Pfänder, Y.; Masepohl, B. Rhodobacter capsulatus AnfA is essential for production of Fe-nitrogenase proteins but dispensable for cofactor biosynthesis and electron supply. MicrobiologyOpen 2020, 9, 1234–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demtröder, L.; Pfänder, Y.; Schäkermann, S.; Bandow, J.E.; Masepohl, B. NifA is the master regulator of both nitrogenase systems in Rhodobacter capsulatus. MicrobiologyOpen 2019, 8, e921. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.C.; Wagner, E.; Langklotz, S.; Pfänder, Y.; Masepohl, B. Proteome profiling of the Rhodobacter capsulatus molybdenum response reveals a role of IscN in nitrogen fixation by Fe-nitrogenase. J. Bacteriol. 2015, 198, 633–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, P.; James, J. Assaying promoter activity using LacZ and GFP as reporters. Methods Mol. Biol. 2009, 465, 265–277. [Google Scholar] [CrossRef]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory: New York, NY, USA, 1972. [Google Scholar]
- Carroll, P.; Schreuder, L.J.; Muwanguzi-Karugaba, J.; Wiles, S.; Robertson, B.D.; Ripoll, J.; Ward, T.H.; Bancroft, G.J.; Schaible, U.E.; Parish, T. Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized Far-Red reporters. PLoS ONE 2010, 5, e9823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science 1994, 263, 802–805. [Google Scholar] [CrossRef] [Green Version]
- Atkins, D.; Izant, J.G. Expression and analysis of the green fluorescent protein gene in the fission yeast Schizosaccharomyces pombe. Curr. Genet. 1995, 28, 585–588. [Google Scholar] [CrossRef]
- Yeh, E.; Gustafson, K.; Boulianne, G.L. Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc. Natl. Acad. Sci. USA 1995, 92, 7036–7040. [Google Scholar] [CrossRef] [Green Version]
- Amsterdam, A.; Lin, S.; Hopkins, N. The aequorea victoria green fluorescent protein can be used as a reporter in live Zebrafish embryos. Dev. Biol. 1995, 171, 123–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzuto, R.; Brini, M.; Pizzo, P.; Murgia, M.; Pozzan, T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 1995, 5, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Cormack, B.P.; Valdivia, R.H.; Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 1996, 173, 33–38. [Google Scholar] [CrossRef]
- Elsliger, M.A.; Wachter, R.M.; Hanson, G.T.; Kallio, K.; Remington, S.J. Remington, structural and spectral response of green fluorescent protein variants to changes in pH. Biochemistry 1999, 38, 5296–5301. [Google Scholar] [CrossRef]
- Patterson, G.H.; Knobel, S.M.; Sharif, W.D.; Kain, S.R.; Piston, D.W. Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 1997, 73, 2782–2790. [Google Scholar] [CrossRef] [Green Version]
- Shaner, N.C.; Campbell, R.E.; Steinbach, P.A.; Giepmans, B.; Palmer, A.E.; Tsien, R.Y. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sred fluorescent protein. Nat. Biotechnol. 2004, 22, 1567–1572. [Google Scholar] [CrossRef]
- Kim, M.K.; Harwood, C.S. Regulation of benzoate-CoA ligase in Rhodopseudomonas palustris. FEMS Microbiol. Lett. 1991, 83, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Li, K.; Li, J.; Wang, T.; Lichuan, G.; Xun, L. T5 exonuclease-dependent assembly offers a low-cost method for efficient cloning and site-directed mutagenesis. Nucleic Acids Res. 2018, 3, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, F.E.; Heiniger, E.K.; Harwood, C.S. Redirection of metabolism for biological hydrogen production. Appl. Environ. Microbiol. 2007, 73, 1665–1671. [Google Scholar] [CrossRef] [Green Version]
- Kovach, M.E.; Elzer, P.H.; Hill, D.S.; Robertson, G.T.; Farris, M.A.; Ii, R.; Peterson, K.M. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166, 175–176. [Google Scholar] [CrossRef]
- Simon, R.; Priefer, U.; Puhler, A. A broad host mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram-Negative bacteria. Nat. Biotechnol. 1983, 1, 37–45. [Google Scholar] [CrossRef]
- McKinlay, J.B.; Harwood, C.S. Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. Proc. Natl. Acad. Sci. USA 2010, 107, 11669–11675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehman, L.J.; Fitzmaurice, W.P.; Roberts, G. The cloning and functional characterization of the nifH gene of Rhodospirillum rubrum. Gene 1990, 95, 143–147. [Google Scholar] [CrossRef]
- Quandt, J.; Hynes, M.F. Versatile suicide vectors which allow direct selection for gene replacement in Gram-Negative bacteria. Gene 1993, 127, 15–21. [Google Scholar] [CrossRef]
- Yang, J.; Yin, L.; Lessner, F.H.; Nakayasu, E.S.; Payne, S.H.; Fixen, K.R.; Gallagher, L.; Harwood, C.S. Harwood, Genes essential for phototrophic growth by a purple alphaproteobacterium. Environ. Microbiol. 2017, 19, 3567–3578. [Google Scholar] [CrossRef]
- Zheng, Y.N.; Harwood, C.S. Influence of energy and electron availability on in vivo methane and hydrogen production by a variant molybdenum nitrogenase. Appl. Environ. Microbiol. 2019, 85, e02671-18. [Google Scholar] [CrossRef] [Green Version]
- Khadka, N.; Dean, D.R.; Smith, D.; Hoffman, B.M.; Raugei, S.; Seefeldt, L.C. CO2 reduction catalyzed by nitrogenase: Pathways to formate, carbon monoxide, and methane. Inorg. Chem. 2016, 55, 8321–8330. [Google Scholar] [CrossRef] [Green Version]
- Heiniger, E.K.; Oda, Y.; Samanta, S.K.; Harwood, C.S. How posttranslational modification of nitrogenase is circumvented in Rhodopseudomonas palustris strains that produce hydrogen gas constitutively. Appl. Environ. Microbiol. 2012, 78, 1023–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drepper, T.; Huber, R.; Heck, A.; Circolone, F.; Hillmer, A.K.; Buchs, J.; Jaeger, K.E. Flavin mononucleotide-based fluorescent reporter proteins outperform green fluorescent protein-like proteins as quantitative in vivo Real-Time reporters. Appl. Environ. Microbiol. 2010, 76, 5990–5994. [Google Scholar] [CrossRef] [Green Version]
- Lobo, L.A.; Smith, C.J.; Rocha, E.R. Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for gene expression in the anaerobe Bacteroides fragilis. FEMS Microbiol. Lett. 2011, 317, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regmi, C.K.; Bhandari, Y.R.; Gerstman, B.S.; Chapagain, P. Chapagain, exploring the diffusion of molecular oxygen in the red fluorescent protein mCherry Using explicit oxygen molecular dynamics simulations. J. Phys. Chem. B 2013, 117, 2247–2253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rey, F.E.; Harwood, C.S. FixK, a global regulator of microaerobic growth, controls photosynthesis in Rhodopseudomonas palustris. Mol. Microbiol. 2010, 75, 1007–1020. [Google Scholar] [CrossRef]
- Liao, M.; Fang, F. Yeast one-hybrid system—One effective method studying DNA-protein interaction. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2000, 22, 388–391. [Google Scholar]
- Miller, J.; Stagljar, I. Using the yeast two-hybrid system to identify interacting proteins. Methods Mol. Biol. 2004, 261, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Lehman, L.J.; Roberts, G. Identification of an alternative nitrogenase system in Rhodospirillum rubrum. J. Bacteriol. 1991, 173, 5705–5711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain, Plasmid or Primer | Characteristics | Reference or Source |
---|---|---|
E. coli strains | ||
E. coli S17-1 | thi pro hdsR hdsM + recA; chromosomal insertion of RP4-2 (Tc::Mu Km::Tn7) | [28] |
E. coli PJ23119-RFP | E. coli S17-1 harboring pBBR5-PJ23119-RFP | This study |
R. palustris strains | ||
CGA009 | Wild type; hupV mutant; spontaneous frameshift (4-bp deletion) in hupV | [1] |
CGA676 | nifA*; 48-bp deletion encoding Q-linker amino acids 202–217; produces H2 in the presence of NH4+ | [29] |
CGA3005 | CGA009-gRFP; CGA009 in which the RFP was introduced after its nif gene cluster using allelic exchange | This study |
CGA3006 | nifA*-gRFP; nifA* in which the RFP was introduced after its nif gene cluster using allelic exchange | This study |
CGA3007 | CGA009/pRFP; R. palustris CGA009 harboring pBBR5-PnifH-RFP | This study |
CGA3008 | nifA*/pRFP; R. palustris nifA* harboring pBBR5-PnifH-RFP | This study |
CGA3009 | CGA009/nifA*pRFP; R. palustris CGA009 harboring pBBR5-PJ23119-nifA*-PnifH-RFP | This study |
CGA3010 | nifA*/nifA*pRFP; R. palustris nifA* harboring pBBR5-PJ23119-nifA*-PnifH-RFP | This study |
CGA3011 | CGA009/PJ23119-RFP; R. palustris CGA009 harboring pBBR5-PJ23119-RFP | This study |
CGA3012 | CGA009/PCPA1-RFP; R. palustris CGA009 harboring pBBR5-PCPA1-RFP | This study |
CGA3013 | CGA009/PTac-RFP; R. palustris CGA009 harboring pBBR5-PTac-RFP | This study |
CGA3014 | CGA009/PRpGAPDH-RFP; R. palustris CGA009 harboring pBBR5-PRpGAPDH-RFP | This study |
Rhodospirillum rubrum UR2 | Wild type; spontaneous SmR derivative of ATCC11170 | [30] |
R. rubrum/PRrnifH-RFP | R. rubrum UR2 harboring pBBR5- PRrnifH-RFP | This study |
Plasmids | ||
pJQ200SK | GmR, sacB; mobilizable suicide vector | [31] |
pJQ-nif-RFP | GmR, in-frame nifHDK-mCherry cloned into PstI site of pJQ200SK | This study |
pBBR1MCS5 | GmR, pBBR1 replicon, mob+; broad-host-range cloning vector | [27] |
pBBR5-PJ23119-RFP | GmR, mcherry with J23119 promoter cloned into SacI/EcoRI site of pBBR1MCS5 | This study |
pBBR5-PCPA1-RFP | GmR, mcherry with CPA1 promoter cloned into SacI/EcoRI site of pBBR1MCS5 | This study |
pBBR5-PTac-RFP | GmR, mcherry with Tac promoter cloned into SacI/EcoRI site of pBBR1MCS5 | This study |
pBBR5-PRpGapdh-RFP | GmR, mcherry with R. palustris CGA009 GAPDH promoter cloned into SacI/EcoRI site of pBBR1MCS5 | This study |
pBBR5-PRpnifH-RFP | GmR, mcherry with R. palustris CGA009 nifH promoter cloned into SacI/EcoRI site of pBBR1MCS5 | This study |
pBBR5-PJ23119-nifA*-PRpnifH-RFP | GmR, PJ23119-nifA* and PRpnifH-RFP cloned into SacI/EcoRI site of pBBR1MCS5 | This study |
pBBR5-PRrnifH-RFP | GmR, mcherry with Rhodospirillum rubrum UR2 nifH promoter cloned into SacI/EcoRI site of pBBR1MCS5 | This study |
Primers | ||
nif-up-F | TTGATATCGAATTCCTGCAGGGCGTTCGTCGGCAGCC | |
nif-up-R | CACCATATGTATATCTCCTTTCAGCGGATGATATCGAAGCTGACG | |
nif-down-F | AGCTGTACAAGGCCGGCTAATGCCAAACGTTCGGACCAC | |
nif-down-R | GTGGATCCCCCGGGCTGCAGTGTAGGCCTTGATCGCCGC | |
Q-rpoD-F | CGTCCACTCGGTGCAGAAG | |
Q-rpoD-R | GATGTTGCCTTCCTGAATGAG | |
Q-nifD-F | AAGGTGATGCTGTATGTCGG | |
Q-nifD-R | GCTGATAATCGTCGTTATGG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zeng, Y.; Cui, L.; Wang, M.; Zheng, Y. A Red Fluorescent Protein Reporter System Developed for Measuring Gene Expression in Photosynthetic Bacteria under Anaerobic Conditions. Microorganisms 2022, 10, 201. https://doi.org/10.3390/microorganisms10020201
Jiang M, Zeng Y, Cui L, Wang M, Zheng Y. A Red Fluorescent Protein Reporter System Developed for Measuring Gene Expression in Photosynthetic Bacteria under Anaerobic Conditions. Microorganisms. 2022; 10(2):201. https://doi.org/10.3390/microorganisms10020201
Chicago/Turabian StyleJiang, Mingyue, Yan Zeng, Lingwei Cui, Mengmei Wang, and Yanning Zheng. 2022. "A Red Fluorescent Protein Reporter System Developed for Measuring Gene Expression in Photosynthetic Bacteria under Anaerobic Conditions" Microorganisms 10, no. 2: 201. https://doi.org/10.3390/microorganisms10020201
APA StyleJiang, M., Zeng, Y., Cui, L., Wang, M., & Zheng, Y. (2022). A Red Fluorescent Protein Reporter System Developed for Measuring Gene Expression in Photosynthetic Bacteria under Anaerobic Conditions. Microorganisms, 10(2), 201. https://doi.org/10.3390/microorganisms10020201