Mapping the Key Technological and Functional Characteristics of Indigenous Lactic Acid Bacteria Isolated from Greek Traditional Dairy Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbiological and pH Analyses from Traditional Artisanal Greek Cheeses
2.2. Isolation of Lactic Acid Bacteria from Traditional Artisanal Greek Cheeses
2.3. Biochemical, Technological Characteristics, and Haemolytic Activity of Cheese Isolates
2.3.1. Biochemical and Technological Characteristics
2.3.2. Haemolytic Activity
2.4. Identification and Characterization of the LAB Isolates with Molecular Tools
2.5. Enzymatic Activity
2.6. Survival under Conditions Simulating the Human GI Tract
2.6.1. Resistance to Low pH and to Bile Salts
2.6.2. Bile Salts Hydrolysis
2.7. Antibiotic Resistance
2.8. Antimicrobial Activity against Pathogens
2.9. Yogurt Fermentation Trials Using Selected LAB Isolates
2.9.1. Preparation of Yogurt
2.9.2. Sensory Analysis
2.9.3. Isolation of LAB and Molecular Analysis
3. Results and Discussion
3.1. Cheese Microbiota of the Traditional Artisanal Greek Cheeses
3.2. Biochemical, Technological, and Molecular Characterization of LAB Isolates
3.3. Haemolytic Activity
3.4. Enzymatic Activity
3.5. Survival under Conditions Simulating the Human GI Tract
3.6. Antibiotic Resistance
3.7. Antimicrobial Activity against Pathogens
3.8. Yogurt Fermentation Trials Using Selected LAB Isolates
3.8.1. Sensorial Characteristics of Yogurt Produced with the 48 Selected LAB
3.8.2. Microbiological and Molecular Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health Benefits of Fermented Foods: Microbiota and Beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef]
- Ray, R.C.; El Sheikha, A.F.; Kumar, R.S. Oriental Fermented Functional (Probiotic) Foods. In Microorganisms and Fermentation of Traditional Foods; Food biology series; Science Publishers Inc.: Boca Raton, FL, USA, 2014; pp. 283–311. [Google Scholar]
- El Sheikha, A.F. Revolution in Fermented Foods: From Artisan Household Technology to the Era of Biotechnology. In Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability; El Sheikha, A.F., Levin, R., Xu, J., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar]
- Holzapfel, W. Advances in Fermented Foods and Beverages: Improving Quality, Technologies and Health Benefits; Elsevier Science: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Nuraida, L. A Review: Health Promoting Lactic Acid Bacteria in Traditional Indonesian Fermented Foods. Food Sci. Hum. Wellness 2015, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Terefe, N.S. Food Fermentation. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; p. B978008100596503420X. [Google Scholar] [CrossRef]
- Altay, F.; Karbancıoglu-Güler, F.; Daskaya-Dikmen, C.; Heperkan, D. A Review on Traditional Turkish Fermented Non-Alcoholic Beverages: Microbiota, Fermentation Process and Quality Characteristics. Int. J. Food Microbiol. 2013, 167, 44–56. [Google Scholar] [CrossRef] [Green Version]
- De Roos, J.; De Vuyst, L. Acetic Acid Bacteria in Fermented Foods and Beverages. Curr. Opin. Biotechnol. 2018, 49, 115–119. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, J.; Moon, H.; Yang, J.; Kim, M. Determination of Sodium Contents in Traditional Fermented Foods in Korea. J. Food Compos. Anal. 2017, 56, 110–114. [Google Scholar] [CrossRef]
- Şanlier, N.; Gökcen, B.B.; Sezgin, A.C. Health Benefits of Fermented Foods. Crit. Rev. Food Sci. Nutr. 2019, 59, 506–527. [Google Scholar] [CrossRef]
- Wu, C.; Huang, J.; Zhou, R. Genomics of Lactic Acid Bacteria: Current Status and Potential Applications. Crit. Rev. Microbiol. 2017, 43, 393–404. [Google Scholar] [CrossRef]
- Magnusson, J.; Schnürer, J. Lactobacillus Coryniformis Subsp. Coryniformis Strain Si3 Produces a Broad-Spectrum Proteinaceous Antifungal Compound. Appl. Environ. Microbiol. 2001, 67, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Contente, D.; Igrejas, G.; Câmara, S.P.A.; de Lurdes Enes Dapkevicius, M.; Poeta, P. Role of Exposure to Lactic Acid Bacteria from Foods of Animal Origin in Human Health. Foods 2021, 10, 2092. [Google Scholar] [CrossRef]
- Gueimonde, M.; Ouwehand, A.C.; Salminen, S. Safety of Probiotics. Scand. J. Nutr. 2004, 48, 42–48. [Google Scholar] [CrossRef]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; de Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health. Nutrients 2017, 15, 1021. [Google Scholar] [CrossRef]
- Food and Agriculture Organization; World Health Organization (FAO). Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation; FAO: Rome, Italy, 2006. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Amara, A.A.; Shibl, A. Role of Probiotics in Health Improvement, Infection Control and Disease Treatment and Management. Saudi. Pharm. J. 2015, 23, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Garcia, S.L.A.; da Silva, G.M.; Medeiros, J.M.S.; de Queiroga, A.P.R.; de Queiroz, B.B.; de Farias, D.R.B.; Correia, J.O.; Florentino, E.R.; Alonso Buriti, F.C. Influence of Co-Cultures of Streptococcus Thermophilus and Probiotic Lactobacilli on Quality and Antioxidant Capacity Parameters of Lactose-Free Fermented Dairy Beverages Containing Syzygium Cumini (L.) Skeels Pulp. RSC Adv. 2020, 10, 10297–10308. [Google Scholar] [CrossRef] [Green Version]
- Velez, E.; Novotny-Nuñez, I.; Correa, S.; Perdigón, G.; Maldonado-Galdeano, C. Modulation of Gut Immune Response by Probiotic Fermented Milk Consumption to Control IgE in a Respiratory Allergy Model. Benef. Microbes. 2021, 12, 175–186. [Google Scholar] [CrossRef]
- Masoumi, S.J.; Mehrabani, D.; Saberifiroozi, M.; Fattahi, M.R.; Moradi, F.; Najafi, M. The Effect of Yogurt Fortified with Lactobacillus Acidophilus and Bifidobacterium Sp. Probiotic in Patients with Lactose Intolerance. Food Sci. Nutr. 2021, 9, 1704–1711. [Google Scholar] [CrossRef]
- Lichtenstein, L.; Avni-Biron, I.; Ben-Bassat, O. Probiotics and Prebiotics in Crohn’s Disease Therapies. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 81–88. [Google Scholar] [CrossRef]
- Wang, Y.; Dilidaxi, D.; Wu, Y.; Sailike, J.; Sun, X.; Nabi, X. Composite Probiotics Alleviate Type 2 Diabetes by Regulating Intestinal Microbiota and Inducing GLP-1 Secretion in Db/Db Mice. Biomed. Pharmacother. 2020, 125, 109914. [Google Scholar] [CrossRef]
- Masood, M.I.; Qadir, M.I.; Shirazi, J.H.; Khan, I.U. Beneficial Effects of Lactic Acid Bacteria on Human Beings. Crit. Rev. Microbiol. 2011, 37, 91–98. [Google Scholar] [CrossRef]
- Tamang, J.P.; Shin, D.-H.; Jung, S.-J.; Chae, S.-W. Functional Properties of Microorganisms in Fermented Foods. Front. Microbiol. 2016, 7, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.-A.G.; Tsakalidou, E.; Nychas, G.-J.E.; Panagou, E.Z.; Tassou, C.C. Selection of Potential Probiotic Lactic Acid Bacteria from Fermented Olives by in Vitro Tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Botta, C.; Langerholc, T.; Cencič, A.; Cocolin, L. In Vitro Selection and Characterization of New Probiotic Candidates from Table Olive Microbiota. PLoS ONE 2014, 9, e94457. [Google Scholar] [CrossRef]
- Pavli, F.G.; Argyri, A.A.; Chorianopoulos, N.G.; Nychas, G.-J.E.; Tassou, C.C. Effect of Lactobacillus Plantarum L125 Strain with Probiotic Potential on Physicochemical, Microbiological and Sensorial Characteristics of Dry-Fermented Sausages. LWT 2020, 118, 108810. [Google Scholar] [CrossRef]
- Sirini, N.; Frizzo, L.S.; Aleu, G.; Soto, L.P.; Rosmini, M.R. Use of Probiotic Microorganisms in the Formulation of Healthy Meat Products. Curr. Opin. Food Sci. 2021, 38, 141–146. [Google Scholar] [CrossRef]
- Guan, Q.; Xiong, T.; Xie, M. Influence of Probiotic Fermented Fruit and Vegetables on Human Health and the Related Industrial Development Trend. Engineering 2021, 7, 212–218. [Google Scholar] [CrossRef]
- Vitali, B.; Minervini, G.; Rizzello, C.G.; Spisni, E.; Maccaferri, S.; Brigidi, P.; Gobbetti, M.; Di Cagno, R. Novel Probiotic Candidates for Humans Isolated from Raw Fruits and Vegetables. Food Microbiol. 2012, 31, 116–125. [Google Scholar] [CrossRef]
- Manini, F.; Casiraghi, M.C.; Poutanen, K.; Brasca, M.; Erba, D.; Plumed-Ferrer, C. Characterization of Lactic Acid Bacteria Isolated from Wheat Bran Sourdough. LWT Food Sci. Technol. 2016, 66, 275–283. [Google Scholar] [CrossRef]
- Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-Dairy Probiotic Products. Food Microbiol. 2010, 27, 1–11. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Pramateftaki, P.; Argyri, A.A.; Nychas, G.-J.E.; Tassou, C.C.; Panagou, E.Z. Molecular Characterization of Lactic Acid Bacteria Isolated from Industrially Fermented Greek Table Olives. LWT Food Sci. Technol. 2013, 50, 353–356. [Google Scholar] [CrossRef]
- Giraffa, G. Functionality of Enterococci in Dairy Products. Int. J. Food Microbiol. 2003, 88, 215–222. [Google Scholar] [CrossRef]
- Sperber, W.H.; Swan, J. Hot-Loop Test for the Determination of Carbon Dioxide Production from Glucose by Lactic Acid Bacteria. Appl. Environ. Microbiol. 1976, 31, 990–991. [Google Scholar] [CrossRef] [Green Version]
- Sarantinopoulos, P.; Andrighetto, C.; Georgalaki, M.D.; Rea, M.C.; Lombardi, A.; Cogan, T.M.; Kalantzopoulos, G.; Tsakalidou, E. Biochemical Properties of Enterococci Relevant to Their Technological Performance. Int. Dairy J. 2001, 11, 621–647. [Google Scholar] [CrossRef]
- Behare, P.V.; Singh, R.; Kumar, M.; Prajapati, J.B.; Singh, R.P. Exopolysaccharides of lactic acid bacteria: A review. J. Food Sci. Technol. 2009, 46, 1–11. [Google Scholar]
- Pavli, F.G.; Argyri, A.A.; Papadopoulou, O.S. Probiotic Potential of Lactic Acid Bacteria from Traditional Fermented Dairy and Meat Products: Assessment by In Vitro Tests and Molecular Characterization. J. Probiotics Health 2016, 4, 1000157. [Google Scholar] [CrossRef]
- Cocolin, L.; Diez, A.; Urso, R.; Rantsiou, K.; Comi, G.; Bergmaier, I.; Beimfohr, C. Optimization of Conditions for Profiling Bacterial Populations in Food by Culture-Independent Methods. Int. J. Food Microbiol. 2007, 120, 100–109. [Google Scholar] [CrossRef]
- Doulgeraki, A.I.; Paramithiotis, S.; Kagkli, D.M.; Nychas, G.-J.E. Lactic Acid Bacteria Population Dynamics during Minced Beef Storage under Aerobic or Modified Atmosphere Packaging Conditions. Food Microbiol. 2010, 27, 1028–1034. [Google Scholar] [CrossRef] [Green Version]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillus Plantarum, L. Pentosus, and L. Paraplantarum by RecA Gene Sequence Analysis and Multiplex PCR Assay with RecA Gene-Derived Primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef] [Green Version]
- Ventura, M.; Canchaya, C.; Meylan, V.; Klaenhammer, T.R.; Zink, R. Analysis, Characterization, and Loci of the Tuf Genes in Lactobacillus and Bifidobacterium Species and Their Direct Application for Species Identification. Appl. Environ. Microbiol. 2003, 69, 6908–6922. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.D.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef]
- Saxami, G.; Papadopoulou, O.; Chorianopoulos, N.; Kourkoutas, Y.; Tassou, C.; Galanis, A. Molecular Detection of Two Potential Probiotic Lactobacilli Strains and Evaluation of Their Performance as Starter Adjuncts in Yogurt Production. Int. J. Mol. Sci. 2016, 17, 668. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, O.S.; Argyri, A.A.; Varzakis, E.E.; Tassou, C.C.; Chorianopoulos, N.G. Greek Functional Feta Cheese: Enhancing Quality and Safety Using a Lactobacillus Plantarum Strain with Probiotic Potential. Food Microbiol. 2018, 74, 21–33. [Google Scholar] [CrossRef]
- Giraffa, G.; Rossetti, L.; Neviani, E. An Evaluation of Chelex-Based DNA Purification Protocols for the Typing of Lactic Acid Bacteria. J. Microbiol. Methods 2000, 42, 175–184. [Google Scholar] [CrossRef]
- Gantzias, C.; Lappa, I.K.; Aerts, M.; Georgalaki, M.; Manolopoulou, E.; Papadimitriou, K.; De Brandt, E.; Tsakalidou, E.; Vandamme, P. MALDI-TOF MS Profiling of Non-Starter Lactic Acid Bacteria from Artisanal Cheeses of the Greek Island of Naxos. Int. J. Food Microbiol. 2020, 323, 108586. [Google Scholar] [CrossRef]
- Rhoades, N.S.; Hendrickson, S.M.; Prongay, K.; Haertel, A.; Gill, L.; Edwards, R.A.; Garzel, L.; Slifka, M.K.; Messaoudi, I. Growth Faltering Regardless of Chronic Diarrhea Is Associated with Mucosal Immune Dysfunction and Microbial Dysbiosis in the Gut Lumen. Mucosal. Immunol. 2021, 14, 1113–1126. [Google Scholar] [CrossRef]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. Microbiological Characteristics of Greek Traditional Cheeses. Small Rumin. Res. 2011, 101, 17–32. [Google Scholar] [CrossRef]
- Zoumpopoulou, G.; Papadimitriou, K.; Alexandraki, V.; Mavrogonatou, E.; Alexopoulou, K.; Anastasiou, R.; Georgalaki, M.; Kletsas, D.; Tsakalidou, E.; Giaouris, E. The Microbiota of Kalathaki and Melichloro Greek Artisanal Cheeses Comprises Functional Lactic Acid Bacteria. LWT 2020, 130, 109570. [Google Scholar] [CrossRef]
- Axelsson, L. Lactic Acid Bacteria: Classification and Physiology. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd ed.; Salminen, S., Wright, A.V., Ouwehand, A., Eds.; Marcel Dekker: New York, NY, USA, 2004; pp. 1–67. [Google Scholar]
- Nascimento, L.C.S.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B. Probiotic Potential and Safety of Enterococci Strains. Ann. Microbiol. 2019, 69, 241–252. [Google Scholar] [CrossRef]
- Foulquié Moreno, M.R.; Sarantinopoulos, P.; Tsakalidou, E.; De Vuyst, L. The Role and Application of Enterococci in Food and Health. Int. J. Food Microbiol. 2006, 106, 1–24. [Google Scholar] [CrossRef]
- Lebreton, F.; Willems, R.J.L.; Gilmore, M.S. Enterococcus Diversity, Origins in Nature, and Gut Colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Huys, G.; Botteldoorn, N.; Delvigne, F.; De Vuyst, L.; Heyndrickx, M.; Pot, B.; Dubois, J.; Daube, G. Microbial Characterization of Probiotics–Advisory Report of the W Orking G Roup “8651 Probiotics” of the B Elgian S Uperior H Ealth C Ouncil (SHC). Mol. Nutr. Food Res. 2013, 57, 1479–1504. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.P. The Pathogenicity of Enterococci. J. Antimicrob. Chemother. 1994, 33, 1083–1089. [Google Scholar] [CrossRef]
- Terzić-Vidojević, A.; Veljović, K.; Tolinački, M.; Živković, M.; Lukić, J.; Lozo, J.; Fira, Đ.; Jovčić, B.; Strahinić, I.; Begović, J.; et al. Diversity of Non-Starter Lactic Acid Bacteria in Autochthonous Dairy Products from Western Balkan Countries—Technological and Probiotic Properties. Food Res. Int. 2020, 136, 109494. [Google Scholar] [CrossRef]
- Bintsis, T.; Papademas, P. Microbiological Quality of White-Brined Cheeses: A Review. Int. J. Dairy Technol. 2002, 55, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Bozoudi, D.; Kotzamanidis, C.; Hatzikamari, M.; Tzanetakis, N.; Menexes, G.; Litopoulou-Tzanetaki, E. A Comparison for Acid Production, Proteolysis, Autolysis and Inhibitory Properties of Lactic Acid Bacteria from Fresh and Mature Feta PDO Greek Cheese, Made at Three Different Mountainous Areas. Int. J. Food Microbiol. 2015, 200, 87–96. [Google Scholar] [CrossRef]
- Tzanetakis, N.; Litopoulou-Tzanetaki, E. Changes in Numbers and Kinds of Lactic Acid Bacteria in Feta and Teleme, Two Greek Cheeses from Ewes’ Milk. J. Dairy Sci. 1992, 75, 1389–1393. [Google Scholar] [CrossRef]
- Vernile, A.; Giammanco, G.; Spano, G.; Beresford, T.P.; Fox, P.F.; Massa, S. Genotypic Characterization of Lactic Acid Bacteria Isolated from Traditional Pecorino Siciliano Cheese. Dairy Sci. Technol. 2008, 88, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Domingos-Lopes, M.F.P.; Stanton, C.; Ross, P.R.; Dapkevicius, M.L.E.; Silva, C.C.G. Genetic Diversity, Safety and Technological Characterization of Lactic Acid Bacteria Isolated from Artisanal Pico Cheese. Food Microbiol. 2017, 63, 178–190. [Google Scholar] [CrossRef]
- De Souza, J.V.; Silva Dias, F. Protective, Technological, and Functional Properties of Select Autochthonous Lactic Acid Bacteria from Goat Dairy Products. Curr. Opin. Food Sci. 2017, 13, 1–9. [Google Scholar] [CrossRef]
- Georgalaki, M.; Zoumpopoulou, G.; Mavrogonatou, E.; Van Driessche, G.; Alexandraki, V.; Anastasiou, R.; Papadelli, M.; Kazou, M.; Manolopoulou, E.; Kletsas, D.; et al. Evaluation of the Antihypertensive Angiotensin-Converting Enzyme Inhibitory (ACE-I) Activity and Other Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Greek Dairy Products. Int. Dairy J. 2017, 75, 10–21. [Google Scholar] [CrossRef]
- Tzanetakis, N.; Hatzikamari, M. La Flore Lactique Superficielle Du Fromage Feta. In Colloque de Societe Francaise de Microbiologie: Gestions des Populations Microbiennes dans les Industries Agro-Alimentaires; Societe Francaise de Microbiologie: Dijon, France, 1993; p. 57. [Google Scholar]
- Breyer, G.M.; Arechavaleta, N.N.; Siqueira, F.M.; de Souza da Motta, A. Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: A Screening for Novel Probiotic Candidates and Their Transcriptional Response to Acid Stress. Probiotics Antimicrob. Proteins 2021, 13, 468–483. [Google Scholar] [CrossRef]
- Angmo, K.; Kumari, A.; Savitri; Bhalla, T.C. Probiotic Characterization of Lactic Acid Bacteria Isolated from Fermented Foods and Beverage of Ladakh. LWT Food Sci. Technol. 2016, 66, 428–435. [Google Scholar] [CrossRef]
- Kumari, A.; Angmo, K.; Monika; Bhalla, T.C. Probiotic Attributes of Indigenous Lactobacillus Spp. Isolated from Traditional Fermented Foods and Beverages of North-Western Himalayas Using in Vitro Screening and Principal Component Analysis. J. Food Sci. Technol. 2016, 53, 2463–2475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.K.; Michaud, P.; Singhania, R.R.; Soccol, C.R.; Pandey, A. Polysaccharides from Probiotics: New Developments as Food Additives. Food Technol. Biotechnol. 2010, 48, 451–463. [Google Scholar]
- Kim, Y.H.; Kim, S.H.; Whang, K.Y.; Kim, Y.J.; Oh, S.J. Inhibition of Escherichia Coli O157: H7 Attachment by Interactions between Lactic Acid Bacteria and Intestinal Epithelial Cells. J. Microbiol. Biotechnol. 2008, 18, 1278–1285. [Google Scholar]
- Kalschne, D.L.; Womer, R.; Mattana, A.; Sarmento, C.M.P.; Colla, L.M.; Colla, E. Characterization of the Spoilage Lactic Acid Bacteria in “Sliced Vacuum-Packed Cooked Ham”. Braz. J. Microbiol. 2015, 46, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Dewan, S.; Tamang, J.P. Dominant Lactic Acid Bacteria and Their Technological Properties Isolated from the Himalayan Ethnic Fermented Milk Products. Antonie. Van. Leeuwenhoek 2007, 92, 343–352. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Mountzouris, K.C.; Psyrras, D.; Cremonese, S.; Fischer, J.; Cantor, M.D.; Tsakalidou, E. Functional Properties of Novel Protective Lactic Acid Bacteria and Application in Raw Chicken Meat against Listeria Monocytogenes and Salmonella Enteritidis. Int. J. Food Microbiol. 2009, 130, 219–226. [Google Scholar] [CrossRef]
- Saelim, K.; Jampaphaeng, K.; Maneerat, S. Functional Properties of Lactobacillus Plantarum S0/7 Isolated Fermented Stinky Bean (Sa Taw Dong) and Its Use as a Starter Culture. J. Funct. Foods 2017, 38, 370–377. [Google Scholar] [CrossRef]
- Ryu, E.H.; Chang, H.C. In Vitro Study of Potentially Probiotic Lactic Acid Bacteria Strains Isolated from Kimchi. Ann. Microbiol. 2013, 63, 1387–1395. [Google Scholar] [CrossRef]
- Herreros, M.A.; Fresno, J.M.; González Prieto, M.J.; Tornadijo, M.E. Technological Characterization of Lactic Acid Bacteria Isolated from Armada Cheese (a Spanish Goats’ Milk Cheese). Int. Dairy J. 2003, 13, 469–479. [Google Scholar] [CrossRef]
- Lipinska-Zubrycka, L.; Klewicki, R.; Sojka, M.; Bonikowski, R.; Milczarek, A.; Klewicka, E. Anticandidal Activity of Lactobacillus Spp. in the Presence of Galactosyl Polyols. Microbiol. Res. 2020, 240, 126540. [Google Scholar] [CrossRef]
- Heavey, P.M.; McKenna, D.; Rowland, I.R. Colorectal Cancer and the Relationship Between Genes and the Environment. Nutr. Cancer 2004, 48, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Drago, L. Probiotics and Colon Cancer. Microorganisms 2019, 7, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leahy, S.C.; Higgins, D.G.; Fitzgerald, G.F.; Sinderen, D. Getting Better with Bifidobacteria. J. Appl. Microbiol. 2005, 98, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, A.C.; Forssten, S.; Hibberd, A.A.; Lyra, A.; Stahl, B. Probiotic Approach to Prevent Antibiotic Resistance. Ann. Med. 2016, 48, 246–255. [Google Scholar] [CrossRef]
- Williams, A.G.; Banks, J.M. Proteolytic and Other Hydrolytic Enzyme Activities in Non-Starter Lactic Acid Bacteria (NSLAB) Isolated from Cheddar Cheese Manufactured in the United Kingdom. Int. Dairy J. 1997, 7, 763–774. [Google Scholar] [CrossRef]
- Khalid, N.M.; Marth, E.H. Lactobacilli—Their Enzymes and Role in Ripening and Spoilage of Cheese: A Review. J. Dairy Sci. 1990, 73, 2669–2684. [Google Scholar] [CrossRef]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical Pathways for the Production of Flavour Compounds in Cheeses during Ripening: A Review. Le. Lait. 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Das, P.; Khowala, S.; Biswas, S. In Vitro Probiotic Characterization of Lactobacillus Casei Isolated from Marine Samples. LWT 2016, 73, 383–390. [Google Scholar] [CrossRef]
- Cakir, I. Determination of Some Probiotic Properties on Lactobacilli and Bifidobacteria. Ph.D. Thesis, Ankara University, Ankara, Turkey, 2003. [Google Scholar]
- Corcoran, B.M.; Stanton, C.; Fitzgerald, G.F.; Ross, R.P. Survival of Probiotic Lactobacilli in Acidic Environments Is Enhanced in the Presence of Metabolizable Sugars. Appl. Environ. Microbiol. 2005, 71, 3060–3067. [Google Scholar] [CrossRef] [Green Version]
- Abosereh, N.A.; Ghani, S.A.E.; Gomaa, R.S.; Fouad, M.T. Molecular Identification of Potential Probiotic Lactic Acid Bacteria Strains Isolated from Egyptian Traditional Fermented Dairy Products. Biotechnology 2015, 15, 35–43. [Google Scholar] [CrossRef]
- Sharma, A.; Lavania, M.; Singh, R.; Lal, B. Identification and Probiotic Potential of Lactic Acid Bacteria from Camel Milk. Saudi J. Biol. Sci. 2021, 28, 1622–1632. [Google Scholar] [CrossRef] [PubMed]
- Ouarabi, L.; Chait, Y.A.; Seddik, H.A.; Drider, D.; Bendali, F. Newly Isolated Lactobacilli Strains from Algerian Human Vaginal Microbiota: Lactobacillus Fermentum Strains Relevant Probiotic’s Candidates. Probiotics Antimicrob. Proteins 2019, 11, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, W.; Lin, H.; Wang, W.; Du, L.; Xing, W. Antibiotics and Antibiotic Resistance Genes in Global Lakes: A Review and Meta-Analysis. Environ. Int. 2018, 116, 60–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammor, M.S.; Belén Flórez, A.; Mayo, B. Antibiotic Resistance in Non-Enterococcal Lactic Acid Bacteria and Bifidobacteria. Food Microbiol. 2007, 24, 559–570. [Google Scholar] [CrossRef]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J. Food Prot. 1998, 61, 1636–1643. [Google Scholar] [CrossRef]
- Jose, N.M.; Bunt, C.R.; Hussain, M.A. Implications of antibiotic resistance in probiotics. Food Rev. Int. 2015, 31, 52–62. [Google Scholar] [CrossRef]
- Seale, J.V.; Millar, M. Probiotics: A new frontier for infection control. J. Hosp. Infect. 2013, 84, 1–4. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Avonts, L.; Makras, L. Probiotics, Prebiotics and Gut Health. In Functional Foods, Ageing and Degenerative Disease; Remacle, C., Reusens, B., Eds.; Woodhead Publishing: Cambridge, UK, 2004. [Google Scholar]
- Margalho, L.P.; Feliciano, M.D.; Silva, C.E.; Abreu, J.S.; Piran, M.V.F.; Sant’Ana, A.S. Brazilian Artisanal Cheeses Are Rich and Diverse Sources of Nonstarter Lactic Acid Bacteria Regarding Technological, Biopreservative, and Safety Properties—Insights through Multivariate Analysis. J. Dairy Sci. 2020, 103, 7908–7926. [Google Scholar] [CrossRef]
- Trias, R.; Badosa, E.; Montesinos, E.; Baneras, L. Bioprotective Leuconostoc Strains against Listeria Monocytogenes in Fresh Fruits and Vegetables. Int. J. Food Microbiol. 2008, 127, 91–98. [Google Scholar] [CrossRef]
- Sip, A.; Więckowicz, M.; Olejnik-Schmidt, A.; Grajek, W. Anti-Listeria Activity of Lactic Acid Bacteria Isolated from Golka, a Regional Cheese Produced in Poland. Food Control. 2012, 26, 117–124. [Google Scholar] [CrossRef]
- Garai-Ibabe, G.; Areizaga, J.; Aznar, R.; Elizaquivel, P.; Prieto, A.; Irastorza, A.; Dueñas, M.T. Screening and Selection of 2-Branched (1,3)-β- d-Glucan Producing Lactic Acid Bacteria and Exopolysaccharide Characterization. J. Agric. Food Chem. 2010, 58, 6149–6156. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, T.B.; Ristagno, D.; McSweeney, P.L.H.; Vogensen, F.K.; Ardö, Y. Potential Impact on Cheese Flavour of Heterofermentative Bacteria from Starter Cultures. Int. Dairy J. 2013, 33, 112–119. [Google Scholar] [CrossRef]
- Welman, A.D.; Maddox, I.S. Exopolysaccharides from Lactic Acid Bacteria: Perspectives and Challenges. Trends Biotechnol. 2003, 21, 269–274. [Google Scholar] [CrossRef]
- Amatayakul, T.; Halmos, A.L.; Sherkat, F.; Shah, N.P. Physical Characteristics of Yoghurts Made Using Exopolysaccharide-Producing Starter Cultures and Varying Casein to Whey Protein Ratios. Int. Dairy J. 2006, 16, 40–51. [Google Scholar] [CrossRef]
- Mani-López, E.; Palou, E.; López-Malo, A. Probiotic Viability and Storage Stability of Yogurts and Fermented Milks Prepared with Several Mixtures of Lactic Acid Bacteria. J. Dairy Sci. 2014, 97, 2578–2590. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, O.S.; Argyri, A.A.; Kounani, V.; Tassou, C.C.; Chorianopoulos, N. Use of Fourier Transform Infrared Spectroscopy for Monitoring the Shelf Life and Safety of Yogurts Supplemented With a Lactobacillus Plantarum Strain With Probiotic Potential. Front. Microbiol. 2021, 12, 678356. [Google Scholar] [CrossRef]
- Favaro, L.; Barretto Penna, A.L.; Todorov, S.D. Bacteriocinogenic LAB from Cheeses—Application in Biopreservation? Trends Food Sci. Technol. 2015, 41, 37–48. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Giri, S.K. Probiotic Functional Foods: Survival of Probiotics during Processing and Storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- Sidira, M.; Saxami, G.; Dimitrellou, D.; Santarmaki, V.; Galanis, A.; Kourkoutas, Y. Monitoring Survival of Lactobacillus Casei ATCC 393 in Probiotic Yogurts Using an Efficient Molecular Tool. J. Dairy Sci. 2013, 96, 3369–3377. [Google Scholar] [CrossRef]
- Sidira, M.; Santarmaki, V.; Kiourtzidis, M.; Argyri, A.A.; Papadopoulou, O.S.; Chorianopoulos, N.; Tassou, C.; Kaloutsas, S.; Galanis, A.; Kourkoutas, Y. Evaluation of Immobilized Lactobacillus Plantarum 2035 on Whey Protein as Adjunct Probiotic Culture in Yoghurt Production. LWT 2017, 75, 137–146. [Google Scholar] [CrossRef]
LAB Isolates | pH 2.5 (SR%) 1 | Bile Salts (SR%) 2 | Bile Salts Hydrolysis 3 | Antimicrobial Activity 4 | Antibiotic Resistance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AM | VM | GM | KM | SM | EM | CL | TC | CM | |||||
L. mesenteroides FRX1 | 48% | 87% | 0 | 0 | ≤1 | 1024 | 8 | 64 R | 64 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX2 | 53% | 65% | 0 | 0 | ≤1 | 1024 | 4 | 32 R | 64 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX3 | 54% | 83% | 0 | 0 | ≤1 | 1024 | 4 | 64 R | 32 | ≤1 | ≤1 | 2 | 4 |
L. mesenteroides FRX4 | 50% | 91% | 0 | 0 | ≤1 | >1024 | 4 | 32 R | 32 | 2 R | ≤1 | 4 | 4 |
L. mesenteroides FRX5 | 50% | 87% | 0 | 0 | ≤1 | 1024 | 4 | 32 R | 32 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX6 | 12% | 96% | 0 | 0 | ≤1 | 1024 | 4 | 64 R | 32 | ≤1 | ≤1 | 2 | 4 |
L. plantarum FRX7 | 81% | 99% | 1 | 0 | ≤1 | >1024 | >128 R | >1024 R | >1024 | >2 R | 2 | 64 R | >16 R |
L. mesenteroides FRX8 | 34% | 73% | 0 | 0 | ≤1 | 1024 | 4 | 32 R | 16 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX9 | 23% | 91% | 0 | 0 | ≤1 | >1024 | 4 | 64 R | 64 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX10 | 32% | 91% | 0 | 0 | ≤1 | >1024 | 4 | 64 R | 64 | ≤1 | ≤1 | 4 | >16 R |
L. mesenteroides FRX11 | 58% | 91% | 0 | 0 | ≤1 | >1024 | 4 | 64 R | 32 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX12 | 50% | 75% | 0 | 0 | ≤1 | >1024 | 4 | 32 R | 32 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX13 | 23% | 63% | 0 | 0 | ≤1 | >1024 | 2 | 3 R | 64 | ≤1 | ≤1 | 2 | 4 |
L. mesenteroides FRX14 | 33% | 76% | 0 | 0 | ≤1 | 1024 | 2 | 64 R | 128 R | ≤1 | ≤1 | 2 | 4 |
L. mesenteroides FRX15 | 26% | 84% | 0 | 0 | ≤1 | >1024 | 8 | 64 R | 128 R | ≤1 | ≤1 | 2 | 4 |
L. mesenteroides FRX16 | 50% | 98% | 0 | 0 | ≤1 | 1024 | 2 | 32 R | 32 | ≤1 | ≤1 | 2 | 4 |
L. plantarum FRX17 | 73% | 97% | 1 | 0 | ≤1 | >1024 | >128 R | >1024 R | 512 | >2 R | ≤1 | >128 R | >16 R |
L. mesenteroides FRX18 | 53% | 93% | 0 | 0 | ≤1 | >1024 | 4 | 32 R | 32 | ≤1 | ≤1 | 4 | 4 |
L. mesenteroides FRX19 | 42% | 77% | 0 | 0 | ≤1 | 1024 | 4 | 32 R | 32 | ≤1 | ≤1 | 2 | 4 |
L. plantarum FRX20 | 72% | 96% | 1 | 0 | ≤1 | >1024 | >128 R | >1024 R | 256 | >2 R | 2 | >128 R | >16 R |
L. mesenteroides FMX1 | 12% | 72% | 0 | 0 | ≤1 | 1024 | 4 | 64 R | 64 | ≤1 | ≤1 | ≤1 | 4 |
L. mesenteroides FMX3 | 44% | 99% | 0 | 1 | ≤1 | 1024 | 128 R | 512 R | 128 R | >2 R | ≤1 | ≤1 | 4 |
L. mesenteroides FMX6 | 54% | 76% | 0 | 0 | ≤1 | 1024 | 8 | 32 | 128 R | ≤1 | ≤1 | ≤1 | 4 |
L. mesenteroides FMX11 | 51% | 79% | 0 | 0 | ≤1 | 1024 | 32 R | 64 R | 128 R | 2 R | ≤1 | ≤1 | 4 |
L. mesenteroides FMX12 | 49% | 75% | 0 | 0 | ≤1 | >1024 | 2 | 32 R | 32 | ≤1 | ≤1 | ≤1 | 4 |
L. mesenteroides FMX14 | 21% | 79% | 0 | 0 | ≤1 | 1024 | 4 | 64 R | 64 | ≤1 | ≤1 | 2 | 4 |
L. plantarum FB1 | 55% | 96% | 1 | 0 | ≤1 | >1024 | >128 R | >1024 R | 512 | >2 R | ≤1 | >128 R | >16 R |
L. plantarum FB17 | 72% | 95% | 1 | 0 | ≤1 | 32 | >128 R | >1024 R | 128 | >2 R | 2 | >128 R | 8 |
L. pseudomesenteroides SRX1 | 55% | 98% | 0 | 0 | ≤1 | >1024 | 64 R | 512 R | 256 R | 2 R | ≤1 | ≤1 | 4 |
L. lactis SRX2 | 60% | 91% | 1 | 0 | ≤1 | 1 | 8 | 32 | 64 R | ≤1 | ≤1 | ≤1 | 4 |
L. lactis SRX3 | 50% | 93% | 1 | 0 | ≤1 | 1 | 16 | 32 | 64 R | ≤1 | ≤1 | ≤1 | 4 |
L. lactis SRX4 | 48% | 100% | 1 | 0 | ≤1 | 1 | >128 R | >1024 R | 256 R | 2 R | ≤1 | ≤1 | 8 |
L. lactis SRX5 | 54% | 97% | 1 | 0 | ≤1 | 1 | >128 R | >1024 R | 256 R | >2 R | ≤1 | ≤1 | 8 |
L. mesenteroides SRX6 | 82% | 87% | 0 | 0 | ≤1 | 1024 | 4 | 64 R | 64 | ≤1 | ≤1 | ≤1 | 4 |
L. pseudomesenteroides SRX7 | 40% | 91% | 0 | 0 | ≤1 | 1024 | 64 | 128 | 128 R | ≤1 | ≤1 | 4 | 4 |
Leuconostoc sp. SRX8 | 53% | 95% | 0 | 0 | ≤1 | 1024 | 4 | 64 R | 128 R | ≤1 | ≤1 | ≤1 | 4 |
L. mesenteroides SRX9 | 43% | 92% | 0 | 0 | ≤1 | 1024 | 4 | 64 R | 64 | ≤1 | ≤1 | 4 | 2 |
L. paracasei SRX10 | 91% | 93% | 1 | 0 | ≤1 | >1024 | >128 R | >1024 R | 512 R | >2 R | ≤1 | >128 R | >16 R |
L. lactis SRX14 | 64% | 99% | 0 | 0 | ≤1 | 1 | 4 | 128 | 64 R | ≤1 | ≤1 | ≤1 | 4 |
L. pseudomesenteroides SRX16 | 64% | 95% | 0 | 0 | ≤1 | 1024 | 8 | 64 R | 32 | ≤1 | ≤1 | 4 | 4 |
L. lactis SRX17 | 51% | 90% | 0 | 0 | ≤1 | 1 | >128 R | >1024 R | 256 R | >2 R | ≤1 | ≤1 | 8 |
L. pseudomesenteroides SRX18 | 39% | 88% | 0 | 0 | ≤1 | >1024 | 4 | 64 R | 64 | ≤1 | ≤1 | 4 | 2 |
L. brevis SRX19 | 67% | 88% | 1 | 0 | ≤1 | 512 | 32 R | 256 R | 128 R | >2 R | ≤1 | 64 R | 8 R |
L. brevis SRX20 | 51% | 91% | 1 | 0 | ≤1 | 512 | 32 R | 256 R | 128 R | >2 R | ≤1 | 64 R | 8 R |
L. lactis SMX2 | 45% | 99% | 1 | 1 | ≤1 | 1 | >128 R | >1024 R | 256 R | >2 R | ≤1 | ≤1 | 8 |
L. lactis SMX5 | 43% | 95% | 1 | 0 | ≤1 | 1 | >128 R | 512 R | 256 R | >2 R | ≤1 | ≤1 | 8 |
L. lactis SMX16 | 54% | 95% | 1 | 0 | ≤1 | 1 | >128 R | >1024 R | 256 R | >2 R | ≤1 | ≤1 | 8 |
L. lactis SMX20 | 52% | 97% | 1 | 0 | ≤1 | 1 | >128 R | >1024 R | 256 R | >2 R | ≤1 | ≤1 | 8 |
LAB Isolates | Overall Appearance | Overall Aroma | Overall Taste | Overall Texture |
---|---|---|---|---|
L. mesenteroides FRX1 | 6.2 ± 0.9 | 6.6 ± 0.9 | 4.9 ± 0.1 | 5.8 ± 0.8 |
L. mesenteroides FRX2 | 7.5 ± 0.7 | 6.2 ± 1.0 | 4.3 ± 0.1 | 4.8 ± 0.3 |
L. mesenteroides FRX3 | 5.4 ± 0.8 | 6.8 ± 0.1 | 4.2 ± 0.9 | 6.8 ± 0.1 |
L. mesenteroides FRX4 | 6.3 ± 0.3 | 7.3 ± 1.0 | 5.3 ± 0.3 | 5.6 ± 0.9 |
L. mesenteroides FRX5 | 6.7 ± 0.5 | 5.2 ± 0.2 | 4.2 ± 0.4 | 6.8 ± 1.0 |
L. mesenteroides FRX6 | 6.7 ± 0.8 | 5.8 ± 0.7 | 4.6 ± 0.4 | 6.6 ± 0.9 |
L. plantarum FRX7 | 5.6 ± 0.6 | 6.3 ± 0.4 | 6.5 ± 0.5 | 5.2 ± 0.3 |
L. mesenteroides FRX8 | 7.2 ± 0.9 | 6.2 ± 1.0 | 4.7 ± 0.4 | 6.7 ± 0.3 |
L. mesenteroides FRX9 | 7.0 ± 0.2 | 6.6 ± 0.5 | 3.1 ± 0.7 | 5.6 ± 0.5 |
L. mesenteroides FRX10 | 5.7 ± 0.6 | 6.6 ± 0.8 | 4.3 ± 0.7 | 5.2 ± 0.2 |
L. mesenteroides FRX11 | 6.9 ± 1.1 | 5.2 ± 0.5 | 4.6 ± 0.5 | 5.2 ± 0.7 |
L. mesenteroides FRX12 | 5.1 ± 0.5 | 6.8 ± 0.8 | 3.9 ± 0.9 | 5.0 ± 0.2 |
L. mesenteroides FRX13 | 6.8 ± 0.3 | 6.9 ± 0.8 | 6.7 ± 0.8 | 6.5 ± 0.5 |
L. mesenteroides FRX14 | 6.6 ± 1.1 | 7.1 ± 0.8 | 4.1 ± 0.6 | 6.2 ± 0.2 |
L. mesenteroides FRX15 | 4.9 ± 0.3 | 7.1 ± 0.4 | 4.9 ± 0.9 | 6.7 ± 0.7 |
L. mesenteroides FRX16 | 6.0 ± 0.2 | 6.0 ± 0.7 | 4.1 ± 0.8 | 5.9 ± 0.8 |
L. plantarum FRX17 | 3.4 ± 0.6 | 6.5 ± 0.9 | 4.8 ± 0.1 | 4.9 ± 0.9 |
L. mesenteroides FRX18 | 6.4 ± 0.5 | 6.2 ± 0.7 | 4.8 ± 0.3 | 6.6 ± 0.8 |
L. mesenteroides FRX19 | 6.5 ± 0.9 | 7.0 ± 0.8 | 3.8 ± 0.9 | 5.7 ± 0.5 |
L. plantarum FRX20 | 5.1 ± 0.3 | 7.2 ± 0.4 | 5.9 ± 0.8 | 7.4 ± 0.7 |
L. mesenteroides FMX1 | 4.4 ± 0.9 | 6.7 ± 0.1 | 4.5 ± 0.3 | 4.9 ± 0.7 |
L. mesenteroides FMX3 | 6.2 ± 1.0 | 7.2 ± 1.0 | 6.4 ± 0.9 | 6.6 ± 0.6 |
L. mesenteroides FMX6 | 6.9 ± 0.6 | 7.2 ± 0.8 | 6.3 ± 0.9 | 5.8 ± 0.7 |
L. mesenteroides FMX11 | 4.6 ± 0.3 | 6.0 ± 0.3 | 3.6 ± 0.5 | 3.9 ± 0.4 |
L. mesenteroides FMX12 | 6.7 ± 0.7 | 6.4 ± 0.2 | 3.9 ± 0.2 | 5.1 ± 0.1 |
L. mesenteroides FMX14 | 6.5 ± 0.4 | 5.7 ± 0.8 | 4.9 ± 0.8 | 6.2 ± 0.4 |
L. plantarum FB1 | 7.0 ± 0.2 | 6.8 ± 0.8 | 5.5 ± 0.6 | 5.4 ± 0.5 |
L. plantarum FB17 | 1.8 ± 0.2 | 7.2 ± 0.6 | 3.6 ± 0.3 | 4.4 ± 0.3 |
L. pseudomesenteroides SRX1 | 6.2 ± 0.3 | 7.3 ± 0.8 | 7.4 ± 0.8 | 6.7 ± 0.3 |
L. lactis SRX2 | 5.5 ± 0.1 | 6.0 ± 0.3 | 6.7 ± 0.1 | 7.3 ± 0.5 |
L. lactis SRX3 | 8.3 ± 0.8 | 7.1 ± 0.9 | 7.0 ± 0.9 | 7.5 ± 0.6 |
L. lactis SRX4 | 7.4 ± 0.6 | 8.0 ± 0.9 | 7.1 ± 0.7 | 6.9 ± 0.6 |
L. lactis SRX5 | 8.4 ± 0.3 | 7.6 ± 0.5 | 7.2 ± 0.3 | 6.6 ± 1.0 |
L. mesenteroides SRX6 | 6.1 ± 0.2 | 5.0 ± 0.6 | 4.9 ± 0.7 | 7.1 ± 0.9 |
L. pseudomesenteroides SRX7 | 5.4 ± 0.2 | 6.0 ± 0.2 | 4.9 ± 0.1 | 6.5 ± 0.5 |
Leuconostoc sp. SRX8 | 5.9 ± 0.7 | 7.9 ± 0.4 | 8.4 ± 0.8 | 8.3 ± 0.3 |
L. mesenteroides SRX9 | 5.5 ± 0.3 | 5.9 ± 0.9 | 6.5 ± 0.9 | 6.1 ± 0.8 |
L. paracasei SRX10 | 8.6 ± 0.4 | 8.3 ± 0.7 | 8.7 ± 0.5 | 9.0 ± 0.2 |
L. lactis SRX14 | 3.6 ± 0.4 | 6.9 ± 0.7 | 4.2 ± 0.3 | 2.9 ± 0.6 |
L. pseudomesenteroides SRX16 | 3.7 ± 0.7 | 6.8 ± 0.6 | 3.6 ± 0.6 | 6.4 ± 0.2 |
L. lactis SRX17 | 7.0 ± 0.9 | 7.5 ± 0.9 | 7.1 ± 0.2 | 6.6 ± 0.3 |
L. pseudomesenteroides SRX18 | 6.5 ± 0.6 | 6.9 ± 0.7 | 4.2 ± 0.7 | 4.6 ± 0.9 |
L. brevis SRX19 | 6.1 ± 0.2 | 6.6 ± 0.3 | 3.5 ± 0.8 | 4.0 ± 0.4 |
L. brevis SRX20 | 6.0 ± 0.2 | 6.9 ± 0.6 | 3.5 ± 0.7 | 4.2 ± 0.2 |
L. lactis SMX2 | 5.1 ± 0.6 | 7.0 ± 0.3 | 7.7 ± 0.9 | 7.2 ± 0.7 |
L. lactis SMX5 | 7.9 ± 0.9 | 7.7 ± 0.4 | 7.9 ± 0.7 | 7.8 ± 0.8 |
L. lactis SMX16 | 7.3 ± 1.0 | 7.8 ± 0.9 | 8.8 ± 0.5 | 8.6 ± 0.4 |
L. lactis SMX20 | 5.6 ± 0.4 | 7.0 ± 0.4 | 4.0 ± 0.5 | 4.2 ± 0.4 |
CONTROL | 6.0 ± 0.2 | 7.4 ± 0.4 | 5.9 ± 0.1 | 5.3 ± 0.3 |
LAB Isolates | pH 2.5 (SR%) 1 | Bile Salts (SR%) 2 | Bile Salts Hydrolysis 3 | Antimicrobial Activity 4 | Antibiotic Resistance 5 | β-galactosidase 6 | EPS 7 | Proteolytic Activity 8 | Survival after Yogurt Production (RR%) 9 |
---|---|---|---|---|---|---|---|---|---|
L. plantarum FRX7 | 81% | 99% | 1 | 0 | GM, KM, EM, TC, CM | 1 | 0 | 1 | 43% |
L. mesenteroides FMX3 | 44% | 99% | 0 | 1 | GM, KM, SM, EM | 1 | 0 | 1 | 61% |
L. plantarum FB1 | 55% | 96% | 1 | 0 | GM, KM, EM, TC, CM | 1 | 0 | 0 | 60% |
L. lactis SRX2 | 60% | 91% | 1 | 0 | SM | 0 | 1 | 0 | 67% |
L. lactis SRX3 | 50% | 93% | 1 | 0 | SM | 0 | 1 | 1 | 63% |
L. lactis SRX5 | 54% | 97% | 1 | 0 | GM, KM, SM, EM | 0 | 1 | 0 | 67% |
L. paracasei SRX10 | 91% | 93% | 1 | 0 | GM, KM, SM, EM, TC, CM | 0 | 0 | 0 | 71% |
L. lactis SMX2 | 45% | 99% | 1 | 1 | GM, KM, SM, EM | 1 | 0 | 1 | 77% |
L. lactis SMX16 | 54% | 95% | 1 | 0 | GM, KM, SM, EM | 1 | 1 | 1 | 65% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamarinou, C.S.; Papadopoulou, O.S.; Doulgeraki, A.I.; Tassou, C.C.; Galanis, A.; Chorianopoulos, N.G.; Argyri, A.A. Mapping the Key Technological and Functional Characteristics of Indigenous Lactic Acid Bacteria Isolated from Greek Traditional Dairy Products. Microorganisms 2022, 10, 246. https://doi.org/10.3390/microorganisms10020246
Kamarinou CS, Papadopoulou OS, Doulgeraki AI, Tassou CC, Galanis A, Chorianopoulos NG, Argyri AA. Mapping the Key Technological and Functional Characteristics of Indigenous Lactic Acid Bacteria Isolated from Greek Traditional Dairy Products. Microorganisms. 2022; 10(2):246. https://doi.org/10.3390/microorganisms10020246
Chicago/Turabian StyleKamarinou, Christina S., Olga S. Papadopoulou, Agapi I. Doulgeraki, Chrysoula C. Tassou, Alex Galanis, Nikos G. Chorianopoulos, and Anthoula A. Argyri. 2022. "Mapping the Key Technological and Functional Characteristics of Indigenous Lactic Acid Bacteria Isolated from Greek Traditional Dairy Products" Microorganisms 10, no. 2: 246. https://doi.org/10.3390/microorganisms10020246
APA StyleKamarinou, C. S., Papadopoulou, O. S., Doulgeraki, A. I., Tassou, C. C., Galanis, A., Chorianopoulos, N. G., & Argyri, A. A. (2022). Mapping the Key Technological and Functional Characteristics of Indigenous Lactic Acid Bacteria Isolated from Greek Traditional Dairy Products. Microorganisms, 10(2), 246. https://doi.org/10.3390/microorganisms10020246