Legionella pneumophila—Virulence Factors and the Possibility of Infection in Dental Practice
Abstract
:1. Introduction
Characteristics | Legionella pneumophila | References |
---|---|---|
Family | Legionellaceae | [15] |
Form | bacillus | [1] |
Coloring per gram | Gram (-) | [1] |
Metabolism | Aerobic | [1] |
pH | 5–8.5 | [16] |
Habitat | Aquatic habitats (biofilm, within multicellular organisms) | [17] |
Reproduction temperature | 25–37 °C | [18] |
Survival temperature | 0–63 °C | [16] |
Nutrients | Amino acids (L-cysteine), iron | [17] |
Sensitivity | Drying, chlorine, UV radiation | [19] |
2. History of Legionellosis
3. Virulence Factors
3.1. Surface Virulence Factors
3.2. Secreted Factors
3.3. Biofilm
3.4. Legionella and Protozoan Interactions
4. Legionella pneumophila in Dental Practice
4.1. Resistance of L. pneumophila Biofilms to Biocides
4.2. Antimicrobial Therapy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brady, M.F.; Sundareshan, V. Legionnaires’ Disease. StatPearls 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK430807/ (accessed on 12 November 2021).
- Best, A.; Price, C.; Ozanic, M.; Santic, M.; Jones, S.; Kwaik, Y.A. A Legionella pneumophila amylase is essential for intracellular replication in human macrophages and amoebae. Sci. Rep. 2018, 8, 6340. [Google Scholar] [CrossRef] [PubMed]
- Winn, W.C., Jr. Legionnaires disease: Historical perspective. Clin. Microbiol. Rev. 1988, 1, 60. [Google Scholar] [CrossRef]
- Chaabna, Z.; Forey, F.; Reyrolle, M.; Jarraud, S.; Atlan, D.; Fontvieille, D.; Gilbert, C. Molecular diversity and high virulence of Legionella pneumophila strains isolated from biofilms developed within a warm spring of a thermal spa. BMC Microbiol. 2013, 13, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cullom, A.C.; Martin, R.L.; Song, Y.; Williams, K.; Williams, A.; Pruden, A.; Edwards, M.A. Critical Review: Propensity of Premise Plumbing Pipe Materials to Enhance or Diminish Growth of Legionella and Other Opportunistic Pathogens. Pathogens 2020, 9, 957. [Google Scholar] [CrossRef] [PubMed]
- Keše, D.; Obreza, A.; Rojko, T.; Kišek, T.C. Legionella pneumophila-Epidemiology and Characterization of Clinical Isolates, Slovenia, 2006–2020. Diagnostics 2021, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Ditommaso, S.; Giacomuzzi, M.; Rivera, S.R.A.; Raso, R.; Ferrero, P.; Zotti, C.M. Virulence of Legionella pneumophila strains isolated from hospital water system and healthcare-associated Legionnaires’ disease in Northern Italy between 2004 and 2009. BMC Infect. Dis. 2014, 14, 483. [Google Scholar] [CrossRef] [Green Version]
- Furugen, M.; Koide, M.; Teruya, H.; Naha, Y.; Tamayose, M.; Akamine, M.; Uchihara, T.; Atsumi, E.; Haranaga, S.; Yara, S.; et al. Legionella pneumonia caused by Legionella pneumophila serogroup 2: Second case report in Japan. J. Infect. Chemother. 2008, 14, 161–165. [Google Scholar] [CrossRef]
- Kawanami, T.; Yatera, K.; Fukuda, K.; Yamasaki, K.; Kunimoto, M.; Nagata, S.; Nishida, C.; Ishimoto, H.; Ogawa, M.; Taniguchi, H.; et al. Diagnosis of fulminant pneumonia caused by Legionella pneumophila serogroup 8 with the sequence analysis of the 16S rRNA gene. Tohoku J. Exp. Med. 2011, 225, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Ishida, T.; Tachibana, H.; Ito, Y.; Takaiwa, T.; Fujii, H.; Hashimoto, T.; Nakajima, H.; Amemura-Maekawa, J. A Case of Community-Acquired Pneumonia Due to Legionella pneumophila Serogroup 9 Wherein Initial Treatment with Single-Dose Oral Azithromycin Appeared Useful. Jpn. J. Infect. Dis. 2017, 70, 660–662. [Google Scholar] [CrossRef] [Green Version]
- Buse, H.Y.; Hoelle, J.M.; Muhlen, C.; Lytle, D.A. Electrophoretic mobility of Legionella pneumophila serogroups 1 to 14. FEMS Microbiol. Lett. 2018, 365, 67. [Google Scholar] [CrossRef] [PubMed]
- Burstein, D.; Amaro, F.; Zusman, T.; Lifshitz, Z.; Cohen, O.; Gilbert, J.A.; Pupko, T.; Shuman, H.A.; Segal, G. Genomic analysis of 38 Legionella species identifies large and diverse effector repertoires. Nat. Genet. 2016, 48, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Valero, L.; Rusniok, C.; Carson, D.; Mondino, S.; Pérez-Cobas, A.E.; Rolando, M.; Pasricha, S.; Reuter, S.; Demirtas, J.; Crumbach, J.; et al. More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl. Acad. Sci. USA 2019, 116, 2265–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondino, S.; Schmidt, S.; Buchrieser, C. Molecular mimicry: A paradigm of host-microbe coevolution illustrated by Legionella. MBio 2020, 11, e01201-20. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, S.; Mohammadi, M.; Tabatabaiepour, S.; Tabatabaiepour, S.; Hosseini-Nave, H.; Soltani, M.; Alizadeh, H.; Hadizadeh, M. A Systematic In Silico Analysis of the Legionellaceae Family for Identification of Novel Drug Target Candidates. Microb. Drug Resist. 2019, 25, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Rakić, A.; Štambuk-Giljanović, N. Physical and chemical parameter correlations with technical and technological characteristics of heating systems and the presence of Legionella spp. in the hot water supply. Environ. Monit. Assess. 2016, 188, 73. [Google Scholar] [CrossRef]
- Winn, W.J. Legionella. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; pp. 1611–1625. ISBN 9780123971692. [Google Scholar]
- Wadowsky, R.M.; Wolford, R.; McNamara, A.M.; Yee, R.B. Effect of temperature, pH, and oxygen level on the multiplication of naturally occurring Legionella pneumophila in potable water. Appl. Environ. Microbiol. 1985, 49, 1197–1205. [Google Scholar] [CrossRef] [Green Version]
- Sciuto, E.L.; Laganà, P.; Filice, S.; Scalese, S.; Libertino, S.; Corso, D.; Faro, G.; Coniglio, M.A. Environmental Management of Legionella in Domestic Water Systems: Consolidated and Innovative Approaches for Disinfection Methods and Risk Assessment. Microorganisms 2021, 9, 577. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Legionnaires’ Disease in Europe; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2016.
- Lesnik, R.; Brettar, I.; Höfle, M.G. Legionella species diversity and dynamics from surface reservoir to tap water: From cold adaptation to thermophily. ISME J. 2016, 10, 1064–1080. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, B.; Chmiel, E.; Palusinska-Szysz, M. The Role of Lipids in Legionella-Host Interaction. Int. J. Mol. Sci. 2021, 22, 1487. [Google Scholar] [CrossRef]
- Manske, C.; Hilbi, H. Metabolism of the vacuolar pathogen Legionella and implications for virulence. Front. Cell. Infect. Microbiol. 2014, 4, 125. [Google Scholar] [CrossRef] [PubMed]
- Nisar, M.A.; Ross, K.E.; Brown, M.H.; Bentham, R.; Whiley, H. Legionella pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens 2020, 9, 286. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Silva, A.R.; Melo, L.F. Legionella and Biofilms—Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021, 9, 1212. [Google Scholar] [CrossRef] [PubMed]
- Prussin, A.J.; Schwake, D.O.; Marr, L.C. Ten questions concerning the aerosolization and transmission of Legionella in the built environment. Build. Environ. 2017, 123, 684–695. [Google Scholar] [CrossRef]
- Martin, R.L.; Strom, O.R.; Pruden, A.; Edwards, M.A. Interactive Effects of Copper Pipe, Stagnation, Corrosion Control, and Disinfectant Residual Influenced Reduction of Legionella pneumophila during Simulations of the Flint Water Crisis. Pathogens 2020, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Saoud, J.; Mani, T.; Faucher, S.P. The Tail-Specific Protease Is Important for Legionella pneumophila To Survive Thermal Stress in Water and inside Amoebae. Appl. Environ. Microbiol. 2021, 87, e02975-20. [Google Scholar] [CrossRef]
- Abdel-Nour, M.; Duncan, C.; Low, D.E.; Guyard, C. Biofilms: The stronghold of Legionella pneumophila. Int. J. Mol. Sci. 2013, 14, 21660–21675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Valero, L.; Buchrieser, C. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Genes Immun. 2019, 20, 394–402. [Google Scholar] [CrossRef]
- Chambers, S.T.; Slow, S.; Scott-thomas, A.; Murdoch, D.R. Legionellosis caused by non-legionella pneumophila species, with a focus on legionella longbeachae. Microorganisms 2021, 9, 291. [Google Scholar] [CrossRef]
- Cunha, B.A.; Burillo, A.; Bouza, E. Legionnaires’ disease. Lancet 2016, 387, 376–385. [Google Scholar] [CrossRef]
- Wang, C.; Chuai, X.; Liang, M. Legionella feeleii: Pneumonia or Pontiac fever? Bacterial virulence traits and host immune response. Med. Microbiol. Immunol. 2019, 208, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, T.; Takahashi, K.; Crump, A. Legionellosis in Japan: A Self-inflicted Wound? Intern. Med. 2021, 60, 173. [Google Scholar] [CrossRef] [PubMed]
- Alarcon Falconi, T.M.; Cruz, M.S.; Naumova, E.N. The Shift in Seasonality of Legionellosis in the U.S. Epidemiol. Infect. 2018, 146, 1824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishore, A.K.; Vail, A.; Jeans, A.R.; Chamorro, A.; Di Napoli, M.; Kalra, L.; Langhorne, P.; Roffe, C.; Westendorp, W.; Nederkoorn, P.J.; et al. Microbiological Etiologies of Pneumonia Complicating Stroke: A Systematic Review. Stroke 2018, 49, 1602–1609. [Google Scholar] [CrossRef] [Green Version]
- Graham, F.F. The mysterious illness that drove them to their knees—Ah, that Legionnaires’ disease—A historical reflection of the work in Legionnaires’ disease in New Zealand (1978 to mid-1990s) and the ‘One Health’ paradigm. One Health 2020, 10, 100149. [Google Scholar] [CrossRef]
- Mcdade, J.E.; Shepard, C.C.; Fraser, D.W.; Tsai, T.R.; Redus, M.A.; Dowdle, W.R. Legionnaires’ disease: Isolation of a bacterium and demonstration of its role in other respiratory disease. N. Engl. J. Med. 1977, 297, 1197–1203. [Google Scholar] [CrossRef]
- Mercante, J.W.; Morrison, S.S.; Raphael, B.H.; Winchell, J.M. Complete Genome Sequences of the Historical Legionella pneumophila Strains OLDA and Pontiac. Genome Announc. 2016, 4, e00866-16. [Google Scholar] [CrossRef] [Green Version]
- Terranova, W.; Cohen, M.L.; Fraser, D.W. 1974 outbreak of Legionnaires’ Disease diagnosed in 1977. Clinical and epidemiological features. Lancet 1978, 2, 122–124. [Google Scholar] [CrossRef]
- Glick, T.H.; Gregg, M.B.; Berman, B.; Mallison, G.; Rhodes, W.W.; Kassanoff, I. Pontiac fever. An epidemic of unknown etiology in a health department: I. Clinical and epidemiologic aspects. Am. J. Epidemiol. 1978, 107, 149–160. [Google Scholar] [CrossRef]
- McDade, J.E.; Brenner, D.J.; Bozeman, F.M. Legionnaires’ disease bacterium isolated in 1947. Ann. Intern. Med. 1979, 90, 659–661. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Prussin, A.J.; Ahmed, W.; Haas, C.N. Outbreaks of Legionnaires’ Disease and Pontiac Fever 2006–2017. Curr. Environ. Health Rep. 2018, 5, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Tomao, P.; Visca, P. Legionellosis in the occupational setting. Environ. Res. 2017, 152, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Misch, E.A. Legionella: Virulence factors and host response. Curr. Opin. Infect. Dis. 2016, 29, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Appelt, S.; Heuner, K. The flagellar regulon of Legionella—A review. Front. Cell. Infect. Microbiol. 2017, 7, 454. [Google Scholar] [CrossRef]
- Arslan-Aydoğdu, E.Ö.; Kimiran, A. An investigation of virulence factors of Legionella pneumophila environmental isolates. Braz. J. Microbiol. 2018, 49, 189–199. [Google Scholar] [CrossRef]
- Rehman, S.; Grigoryeva, L.S.; Richardson, K.H.; Corsini, P.; White, R.C.; Shaw, R.; Portlock, T.J.; Dorgan, B.; Zanjani, Z.S.; Fornili, A.; et al. Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog. 2020, 16, e1008342. [Google Scholar] [CrossRef]
- Rodgers, F. The role of structure and invasiveness on the pathogenicity of Legionella. Zent. Bakteriol. Mikrobiol. Hyg. A 1983, 255, 138–144. [Google Scholar] [CrossRef]
- Newton, H.J.; Ang, D.K.Y.; Van Driel, I.R.; Hartland, E.L. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev. 2010, 23, 274–298. [Google Scholar] [CrossRef] [Green Version]
- Cianciotto, N.P. Pathogenicity of Legionella pneumophila. Int. J. Med. Microbiol. 2001, 291, 331–343. [Google Scholar] [CrossRef]
- Shevchuk, O.; Jäger, J.; Steinert, M. Virulence properties of the Legionella pneumophila cell envelope. Front. Microbiol. 2011, 2, 74. [Google Scholar] [CrossRef] [Green Version]
- Garcia, L.S.; Arrowood, M.; Kokoskin, E.; Paltridge, G.P.; Pillai, D.R.; Procop, G.W.; Ryan, N.; Shimizu, R.Y.; Visvesvara, G. Laboratory diagnosis of parasites from the gastrointestinal tract. Clin. Microbiol. Rev. 2018, 31, e00025-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jäger, J.; Marwitz, S.; Tiefenau, J.; Rasch, J.; Shevchuk, O.; Kugler, C.; Goldmann, T.; Steinert, M. Human Lung Tissue Explants Reveal Novel Interactions during Legionella pneumophila Infections. Infect. Immun. 2014, 82, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kenhove, E.; Dinne, K.; Janssens, A.; Laverge, J. Overview and comparison of Legionella regulations worldwide. Am. J. Infect. Control 2019, 47, 968–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haroon, A.; Koide, M.; Higa, F.; Tateyama, M.; Fujita, J. Identification of Legionella pneumophila serogroups and other Legionella species by mip gene sequencing. J. Infect. Chemother. 2012, 18, 276–281. [Google Scholar] [CrossRef]
- Chauhan, D.; Shames, S.R. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence 2021, 12, 1122–1144. [Google Scholar] [CrossRef]
- Hughes, E.D.; Swanson, M.S. How Legionella defend their turf. eLife 2019, 8, e48695. [Google Scholar] [CrossRef]
- Qin, T.; Zhou, H.; Ren, H.; Liu, W. Distribution of secretion systems in the genus Legionella and its correlation with pathogenicity. Front. Microbiol. 2017, 8, 388. [Google Scholar] [CrossRef] [Green Version]
- Tyson, J.Y.; Vargas, P.; Cianciotto, N.P. The novel Legionella pneumophila type II secretion substrate NttC contributes to infection of amoebae Hartmannella vermiformis and Willaertia magna. Microbiology 2014, 160, 2732. [Google Scholar] [CrossRef]
- Portlock, T.J.; Tyson, J.Y.; Dantu, S.C.; Rehman, S.; White, R.C.; McIntire, I.E.; Sewell, L.; Richardson, K.; Shaw, R.; Pandini, A.; et al. Structure, Dynamics and Cellular Insight Into Novel Substrates of the Legionella pneumophila Type II Secretion System. Front. Mol. Biosci. 2020, 7, 112. [Google Scholar] [CrossRef]
- Nakano, N.; Kubori, T.; Kinoshita, M.; Imada, K.; Nagai, H. Crystal Structure of Legionella DotD: Insights into the Relationship between Type IVB and Type II/III Secretion Systems. PLoS Pathog. 2010, 6, e1001129. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Du, D.; Li, S.; Yan, W. Advances in the Assembly Model of Bacterial Type IVB Secretion Systems. Appl. Sci. 2018, 8, 2368. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Shin, S. Viewing Legionella pneumophila Pathogenesis through an Immunological Lens. J. Mol. Biol. 2019, 431, 4321–4344. [Google Scholar] [CrossRef] [PubMed]
- Lammertyn, E.; Anné, J. Protein secretion in Legionella pneumophila and its relation to virulence. FEMS Microbiol. Lett. 2004, 238, 273–279. [Google Scholar] [CrossRef]
- Bitar, D.M.; Molmeret, M.; Abu Kwaik, Y. Molecular and cell biology of Legionella pneumophila. Int. J. Med. Microbiol. 2004, 293, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, P.; Liu, S.; Gabbai, C.B.; Venitelli, Z.; Steinman, H.M. Environmental Mimics and the Lvh Type IVA Secretion System Contribute to Virulence-Related Phenotypes of Legionella pneumophila. Infect. Immun. 2007, 75, 723. [Google Scholar] [CrossRef] [Green Version]
- Lorquin, F.; Ziarelli, F.; Amouric, A.; Di Giorgio, C.; Robin, M.; Piccerelle, P.; Lorquin, J. Production and properties of non-cytotoxic pyomelanin by laccase and comparison to bacterial and synthetic pigments. Sci. Rep. 2021, 11, 8538. [Google Scholar] [CrossRef]
- Steinert, M.; Flugel, M.; Schuppler, M.; Helbig, J.H.; Supriyono, A.; Proksch, P.; Luck, P.C. The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. FEMS Microbiol. Lett. 2001, 203, 41–47. [Google Scholar] [CrossRef]
- Brigmon, R.L.; Turick, C.E.; Knox, A.S.; Burckhalter, C.E. The Impact of Storms on Legionella pneumophila in Cooling Tower Water, Implications for Human Health. Front. Microbiol. 2020, 11, 2979. [Google Scholar] [CrossRef]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Nina, P.B.; JP, D.; Kumar, S.; Singh, B.; Tiwari, R.R. Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. Front. Microbiol. 2021, 12, 16. [Google Scholar] [CrossRef]
- Patini, R.; Mangino, G.; Martellacci, L.; Quaranta, G.; Masucci, L.; Gallenzi, P. The Effect of Different Antibiotic Regimens on Bacterial Resistance: A Systematic Review. Antibiotics 2020, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Talapko, J.; Škrlec, I. The Principles, Mechanisms, and Benefits of Unconventional Agents in the Treatment of Biofilm Infection. Pharmaceuticals 2020, 13, 299. [Google Scholar] [CrossRef] [PubMed]
- Abu Khweek, A.; Amer, A.O. Factors Mediating Environmental Biofilm Formation by Legionella pneumophila. Front. Cell. Infect. Microbiol. 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Cont, A.; Rossy, T.; Al-Mayyah, Z.; Persat, A. Biofilms deform soft surfaces and disrupt epithelia. eLife 2020, 9, e56533. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, I.W. The biofilm matrix—An immobilized but dynamic microbial environment. Trends Microbiol. 2001, 9, 222–227. [Google Scholar] [CrossRef]
- Shirtliff, M.E.; Mader, J.T.; Camper, A.K. Molecular interactions in biofilms. Chem. Biol. 2002, 9, 859–871. [Google Scholar] [CrossRef] [Green Version]
- Mampel, J.; Spirig, T.; Weber, S.S.; Haagensen, J.A.J.; Molin, S.; Hilbi, H. Planktonic replication is essential for biofilm formation by Legionella pneumophila in a complex medium under static and dynamic flow conditions. Appl. Environ. Microbiol. 2006, 72, 2885–2895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watnick, P.; Kolter, R. Biofilm, city of microbes. J. Bacteriol. 2000, 182, 2675–2679. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.R.; Muthye, V.; Cianciotto, N.P. Legionella pneumophila Persists within Biofilms Formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under Dynamic Flow Conditions. PLoS ONE 2012, 7, e50560. [Google Scholar] [CrossRef] [Green Version]
- Cebrián, F.; Montero, J.C.; Fernández, P.J. New approach to environmental investigation of an explosive legionnaireś disease outbreak in Spain: Early identification of potential risk sources by rapid Legionella spp. immunosensing technique. BMC Infect. Dis. 2018, 18, 696. [Google Scholar] [CrossRef] [Green Version]
- Declerck, P. Biofilms: The environmental playground of Legionella pneumophila. Environ. Microbiol. 2010, 12, 557–566. [Google Scholar] [CrossRef]
- De Buck, E.; Maes, L.; Meyen, E.; Van Mellaert, L.; Geukens, N.; Anné, J.; Lammertyn, E. Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem. Biophys. Res. Commun. 2005, 331, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Di Cesare, A.; Sabatini, L.; Chessa, E.; Sisti, D.; Rocchi, M.; Citterio, B. Role of biofilm in protection of the replicative form of Legionella pneumophila. Curr. Microbiol. 2014, 69, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Pena, R.T.; Blasco, L.; Ambroa, A.; González-Pedrajo, B.; Fernández-García, L.; López, M.; Bleriot, I.; Bou, G.; García-Contreras, R.; Wood, T.K.; et al. Relationship Between Quorum Sensing and Secretion Systems. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, X.; Nakatsu, C.H.; Bhunia, A.K. Bacterial Biofilms and Their Implications in Pathogenesis and Food Safety. Foods 2021, 10, 2117. [Google Scholar] [CrossRef]
- Tiaden, A.; Spirig, T.; Sahr, T.; Wälti, M.A.; Boucke, K.; Buchrieser, C.; Hilbi, H. The autoinducer synthase LqsA and putative sensor kinase LqsS regulate phagocyte interactions, extracellular filaments and a genomic island of Legionella pneumophila. Environ. Microbiol. 2010, 12, 1243–1259. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.; Sousa, P.; Gaspar, A.; Vilar, S.; Borges, F.; Simões, M. Furvina inhibits the 3-oxo-C12-HSL-based quorum sensing system of Pseudomonas aeruginosa and QS-dependent phenotypes. Biofouling 2017, 33, 156–168. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Seesuay, W.; Mahasongkram, K.; Sookrung, N.; Pumirat, P.; Ampawong, S.; Reamtong, O.; Chongsa-Nguan, M.; Chaicumpa, W.; Indrawattana, N. Human Single-chain Variable Fragments Neutralize Pseudomonas aeruginosa Quorum Sensing Molecule, 3O-C12-HSL, and Prevent Cells From the HSL-mediated Apoptosis. Front. Microbiol. 2020, 11, 1172. [Google Scholar] [CrossRef]
- Boamah, D.K.; Zhou, G.; Ensminger, A.W.; O’Connor, T.J. From Many Hosts, One Accidental Pathogen: The Diverse Protozoan Hosts of Legionella. Front. Cell. Infect. Microbiol. 2017, 7, 477. [Google Scholar] [CrossRef] [Green Version]
- Valster, R.M.; Wullings, B.A.; Van Der Kooij, D. Detection of protozoan hosts for Legionella pneumophila in engineered water systems by using a biofilm batch test. Appl. Environ. Microbiol. 2010, 76, 7144–7153. [Google Scholar] [CrossRef] [Green Version]
- Dobrowsky, P.H.; Khan, S.; Cloete, T.E.; Khan, W. Molecular detection of Acanthamoeba spp., Naegleria fowleri and Vermamoeba (Hartmannella) vermiformis as vectors for Legionella spp. in untreated and solar pasteurized harvested rainwater. Parasit. Vectors 2016, 9, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, A.M.; Von Dwingelo, J.E.; Price, C.T.; Kwaik, Y.A. Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 2013, 4, 307–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mraz, A.L.; Weir, M.H. Knowledge to Predict Pathogens: Legionella pneumophila Lifecycle Critical Review Part I Uptake into Host Cells. Water 2018, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Alli, O.A.T.; Gao, L.Y.; Pedersen, L.L.; Zink, S.; Radulic, M.; Doric, M.; Abu Kwaik, Y. Temporal pore formation-mediated egress from macrophages and alveolar epithelial cells by Legionella pneumophila. Infect. Immun. 2000, 68, 6431–6440. [Google Scholar] [CrossRef] [PubMed]
- Oliva, G.; Sahr, T.; Buchrieser, C. The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Price, C.T.D.; Kwaik, Y.A. Evolution and Adaptation of Legionella pneumophila to Manipulate the Ubiquitination Machinery of Its Amoebae and Mammalian Hosts. Biomolecules 2021, 11, 112. [Google Scholar] [CrossRef]
- Lee, P.C.; Machner, M.P. The Legionella Effector Kinase LegK7 Hijacks the Host Hippo Pathway to Promote Infection. Cell Host Microbe 2018, 24, 429–438.e6. [Google Scholar] [CrossRef] [Green Version]
- Jeng, E.E.; Bhadkamkar, V.; Ibe, N.U.; Gause, H.; Jiang, L.; Chan, J.; Jian, R.; Jimenez-Morales, D.; Stevenson, E.; Krogan, N.J.; et al. Systematic Identification of Host Cell Regulators of Legionella pneumophila Pathogenesis Using a Genome-wide CRISPR Screen. Cell Host Microbe 2019, 26, 551–563.e6. [Google Scholar] [CrossRef]
- Hanford, H.E.; von Dwingelo, J.; Kwaik, Y.A. Bacterial nucleomodulins: A coevolutionary adaptation to the eukaryotic command center. PLoS Pathog. 2021, 17, e1009184. [Google Scholar] [CrossRef]
- Cossart, P.; Helenius, A. Endocytosis of viruses and bacteria. Cold Spring Harb. Perspect. Biol. 2014, 6, a016972. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Luo, L.Z. Cell biology of infection by Legionella pneumophila. Microbes Infect. 2013, 15, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Krause, K.; Amer, A.O. Caspase Exploitation by Legionella pneumophila. Front. Microbiol. 2016, 7, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petti, S.; Vitali, M. Occupational risk for Legionella infection among dental healthcare workers: Meta-analysis in occupational epidemiology. BMJ Open 2017, 7, e015374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deegan, C. Legionella: What is the risk? BDJ Team 2014, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Schönning, C.; Jernberg, C.; Klingenberg, D.; Andersson, S.; Pääjärvi, A.; Alm, E.; Tano, E.; Lytsy, B. Legionellosis acquired through a dental unit: A case study. J. Hosp. Infect. 2017, 96, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Kevorkyan, A.; Tomova, I.; Raycheva, R.; Stoeva, V.; Stoilova, Y.; Lalabonova, H.; Kondeva, V. Legionella pneumophila antibodies in serum samples from medical and dental personnel: A seroepidemiological survey. Biotechnol. Biotechnol. Equip. 2017, 31, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Sedlata Juraskova, E.; Sedlackova, H.; Janska, J.; Holy, O.; Lalova, I.; Matouskova, I. Legionella spp. in dental unit waterlines. Bratisl. Lek. Listy 2017, 118, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Uzel, A.; Cogulu, D.; Oncag, O. Microbiological evaluation and antibiotic susceptibility of dental unit water systems in general dental practice. Int. J. Dent. Hyg. 2008, 6, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Spagnolo, A.M.; Sartini, M.; Di Cave, D.; Casini, B.; Tuvo, B.; Cristina, M.L. Evaluation of Microbiological and Free-Living Protozoa Contamination in Dental Unit Waterlines. Int. J. Environ. Res. Public Health 2019, 16, 2648. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, C.L.; Coulter, W.A. Do contaminated dental unit waterlines pose a risk of infection? J. Dent. 2007, 35, 712–720. [Google Scholar] [CrossRef]
- Tuvo, B.; Totaro, M.; Cristina, M.L.; Spagnolo, A.M.; Di Cave, D.; Profeti, S.; Baggiani, A.; Privitera, G.; Casini, B. Prevention and Control of Legionella and Pseudomonas spp. Colonization in Dental Units. Pathogens 2020, 9, 305. [Google Scholar] [CrossRef] [Green Version]
- Dental unit waterlines: Approaching the year 2000. ADA Council on Scientific Affairs. J. Am. Dent. Assoc. 1999, 130, 1653–1664.
- Kohn, W.; Collins, A.; Cleveland, J.; Harte, J.; Eklund, K.; Malvitz, D. Centers for Disease Control and Prevention (CDC) Guidelines for infection control in dental health-care settings—2003. MMWR Recomm. Rep. 2003, 52, 1–61. [Google Scholar] [PubMed]
- Tesauro, M.; Petrelli, F.; Lizioli, A.; Pregliasco, F.; Masia, C.; Cossellu, G.; Farronato, G.; Consonni, M.; Sisto, F. Presence of Legionella spp. in human dental plaque. Ann. Ig. 2018, 30, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, K.A.; Kuppravalli, A.; Heida, A.; Joshi, S.; Haas, C.N.; Verhougstraete, M.; Gerrity, D. Legionnaires’ disease in dental offices: Quantifying aerosol risks to dental workers and patients. J. Occup. Environ. Hyg. 2021, 18, 378–393. [Google Scholar] [CrossRef] [PubMed]
- Lauritano, D.; Nardone, M.; Gaudio, R.M.; Candotto, V.; Carinci, F. Risk assessment of colonization of Legionella spp. in dental unit waterlines. Oral Implantol. 2017, 10, 283. [Google Scholar] [CrossRef] [PubMed]
- Surman-Lee, S.; Chalker, V.; Crespi, S.; de Jong, B.; Kusnetsov, J.; Lee, J.V.; Ricci, M.L.; van der Lugt, W.; Moran-Gilad, J.; Walker, J.T.; et al. ESGLI Guidance for Managing Legionella in Dental Practises during the COVID-19 Pandemic. 2020, 5. Available online: https://www.escmid.org/fileadmin/src/media/PDFs/3Research_Projects/ESGLI/ESGLI_GUIDANCE_FOR_MANAGING_LEGIONELLA_IN_DENTAL_WATER_SYSTEMS_DURING_THE_COVID-19_PANDEMIC_22042024_v01.01.pdf (accessed on 12 December 2021).
- Verhasselt, H.L.; Buer, J.; Dedy, J.; Ziegler, R.; Steinmann, J.; Herbstreit, F.; Brenner, T.; Rath, P.M. COVID-19 Co-infection with Legionella pneumophila in 2 Tertiary-Care Hospitals, Germany. Emerg. Infect. Dis. 2021, 27, 1535. [Google Scholar] [CrossRef]
- Berjeaud, J.M.; Chevalier, S.; Schlusselhuber, M.; Portier, E.; Loiseau, C.; Aucher, W.; Lesouhaitier, O.; Verdon, J. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment. Front. Microbiol. 2016, 7, 486. [Google Scholar] [CrossRef] [Green Version]
- Orsi, G.B.; Vitali, M.; Marinelli, L.; Ciorba, V.; Tufi, D.; Del Cimmuto, A.; Ursillo, P.; Fabiani, M.; De Santis, S.; Protano, C.; et al. Legionella control in the water system of antiquated hospital buildings by shock and continuous hyperchlorination: 5 years experience. BMC Infect. Dis. 2014, 14, 394. [Google Scholar] [CrossRef] [Green Version]
- Di Pippo, F.; Di Gregorio, L.; Congestri, R.; Tandoi, V.; Rossetti, S. Biofilm growth and control in cooling water industrial systems. FEMS Microbiol. Ecol. 2018, 94, fiy044. [Google Scholar] [CrossRef] [Green Version]
- Talapko, J.; Škrlec, I.; Alebić, T.; Bekić, S.; Včev, A. From Bacteriophage to Antibiotics and Back. Coll. Antropol. 2018, 42, 131–138. [Google Scholar]
- Ferriol-González, C.; Domingo-Calap, P. Phages for biofilm removal. Antibiotics 2020, 9, 268. [Google Scholar] [CrossRef] [PubMed]
- Talapko, J.; Matijević, T.; Juzbašić, M.; Antolović-Požgain, A.; Škrlec, I. Antibacterial Activity of Silver and Its Application in Dentistry, Cardiology and Dermatology. Microorganisms 2020, 8, 1400. [Google Scholar] [CrossRef] [PubMed]
- Janczak, K.; Kosmalska, D.; Kaczor, D.; Raszkowska-kaczor, A.; Wedderburn, L.; Malinowski, R. Bactericidal and Fungistatic Properties of LDPE Modified with a Biocide Containing Metal Nanoparticles. Materials 2021, 14, 4228. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Management of Legionella in Water Systems; National Academies Press: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Fu, K.P.; Neu, H.C. Inactivation of beta-lactam antibiotics by Legionella pneumophila. Antimicrob. Agents Chemother. 1979, 16, 561–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandell, L.A.; Wunderink, R.G.; Anzueto, A.; Bartlett, J.G.; Campbell, G.D.; Dean, N.C.; Dowell, S.F.; File, T.M.; Musher, D.M.; Niederman, M.S.; et al. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults. Clin. Infect. Dis. 2007, 44, S27. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45. [Google Scholar] [CrossRef]
- Viasus, D.; Di Yacovo, S.; Garcia-Vidal, C.; Verdaguer, R.; Manresa, F.; Dorca, J.; Gudiol, F.; Carratalà, J. Community-Acquired Legionella pneumophila Pneumonia: A Single-Center Experience With 214 Hospitalized Sporadic Cases Over 15 Years. Medicine 2013, 92, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Velazco, J.F. Legionnaires’ Disease Treatment. In Hospital Acquired Infection and Legionnaires’ Disease; Surani, S., Ed.; IntechOpen: London, UK, 2020; pp. 1–10. ISBN 978-1-78985-970-6. [Google Scholar]
Legionella sp. | Serogroups Associated with Human Disease | Diseases | Mortality Rate |
---|---|---|---|
L. anisa | Pleural infection | ||
L. bozemanii | 1 and 2 | Pneumonia | |
L. cardiaca | Native endocarditis | ||
L. cincinnatiensis | Pneumonia | ||
L. clemsonensis | Pneumonia | ||
L. dumoffii | Legionnaires’ disease | ||
Legionella feeleii | 1 and 2 | Pontiac fever | |
L. hackeliae | 1 and 2 | Pneumonia | |
L. jordanis | Endocarditis | ||
L. lansingensis | Pneumonia | ||
Legionella longbeachae | 1 and 2 | Pneumonia | |
L. maceachernii | Pneumonia | ||
L. micdadei | Opportunistic pneumonia | ||
L. parisiensis | Pneumonia | ||
L. pneumophila | 1–15 | Pontiac fever, Legionnaires’ disease, and pneumonia | 7–25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talapko, J.; Frauenheim, E.; Juzbašić, M.; Tomas, M.; Matić, S.; Jukić, M.; Samardžić, M.; Škrlec, I. Legionella pneumophila—Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms 2022, 10, 255. https://doi.org/10.3390/microorganisms10020255
Talapko J, Frauenheim E, Juzbašić M, Tomas M, Matić S, Jukić M, Samardžić M, Škrlec I. Legionella pneumophila—Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms. 2022; 10(2):255. https://doi.org/10.3390/microorganisms10020255
Chicago/Turabian StyleTalapko, Jasminka, Erwin Frauenheim, Martina Juzbašić, Matej Tomas, Suzana Matić, Melita Jukić, Marija Samardžić, and Ivana Škrlec. 2022. "Legionella pneumophila—Virulence Factors and the Possibility of Infection in Dental Practice" Microorganisms 10, no. 2: 255. https://doi.org/10.3390/microorganisms10020255
APA StyleTalapko, J., Frauenheim, E., Juzbašić, M., Tomas, M., Matić, S., Jukić, M., Samardžić, M., & Škrlec, I. (2022). Legionella pneumophila—Virulence Factors and the Possibility of Infection in Dental Practice. Microorganisms, 10(2), 255. https://doi.org/10.3390/microorganisms10020255