Clinical Factors Implicated in Antibiotic Resistance in Helicobacter pylori Patients
Abstract
:1. Introduction
2. Clinical Factors Implicated in Antibiotic Resistance
2.1. Prior Antibiotic Exposure
Patients with Resistance to: | ||||
---|---|---|---|---|
Study | CLR | MTZ | FQ a | Any |
Shiota et al. [33] | ||||
Prior macrolide use (n = 30) | 30.0% | 26.7% | 36.7% | 60.0% |
No macrolide use (n = 98) | 12.2% | 18.4% | 29.6% | 45.9% |
p-value | 0.02 | 0.32 | 0.46 | 0.18 |
Odds ratio b | - | - | - | 3.92 |
95% CI | - | - | - | (1.39–11.07) |
Prior fluoroquinolone use (n = 39) | 23.1% | 30.8% | 43.6% | 64.1% |
No fluoroquinolone use (n = 89) | 13.5% | 15.7% | 25.8% | 42.7% |
p-value | 0.18 | 0.05 | 0.046 | 0.03 |
Odds ratio b | - | - | 3.49 | - |
95% CI | - | - | (1.30–9.36) | - |
Prior treatment of H. pylori (n = 7) | 71.4% | 42.9% | 71.4% | 100.0% |
No prior treatment (n = 110) | 14.5% | 17.3% | 29.1% | 45.5% |
p-value | 0.002 | 0.12 | 0.03 | 0.01 |
Odds ratio b | 11.37 | 4.64 | 3.83 | - |
95% CI | (1.79–72.21) | (0.86–24.92) | (0.60–24.36) | - |
McMahon et al. [26] | ||||
No prior macrolide use (n = 41) | 7% | - | - | - |
1 course of macrolides (n = 29) | 28% | - | - | - |
2 courses of macrolides (n = 22) | 23% | - | - | - |
3–4 courses of macrolides (n = 18) | 50% | - | - | - |
5 courses of macrolides (n = 15) | 80% | - | - | - |
p-value | <0.001 | - | - | - |
McNulty et al. [27] | ||||
No prior clarithromycin use (n = 103) | 7% | - | - | - |
1 course of clarithromycin (n = 21) | 19% | - | - | - |
2+ courses of clarithromycin (n = 8) | 25% | - | - | - |
p-value | 0.12 | - | - | - |
Relative risk c | 1.5 | - | - | - |
95% CI | (0.92–2.41) | - | - | - |
No prior metronidazole use (n = 114) | - | 28% | - | - |
1 course of metronidazole (n = 13) | - | 38% | - | - |
2+ courses of metronidazole (n = 5) | - | 100% | - | - |
p-value | - | 0.002 | - | - |
Relative risk c | - | 1.6 | - | - |
95% CI | - | (1.46–1.75) | - | - |
No prior quinolone use (n = 114) | - | - | 4% | - |
1 course of quinolones (n = 7) | - | - | 14% | - |
2+ courses of quinolones (n = 11) | - | - | 27% | - |
p-value | - | - | 0.01 | - |
Relative risk c | - | - | 1.8 | - |
95% CI | - | - | (1.24–2.49) | - |
Bai et al. [38] | ||||
Prior treatment of H. pylori (n = 37) | 51.4% | 83.8% | 78.4% | - |
No prior treatment (n = 144) | 25.7% | 55.6% | 72.9% | - |
p-value | 0.005 | 0.002 | 0.674 | - |
Odds ratio d | 3.354 | 3.836 | NS | - |
95% CI | (1.514–7.429) | (1.456–10.109) | NS | - |
2.2. Age
Patients with Resistance to: | ||||
---|---|---|---|---|
Study | CLR | MTZ | FQ a | Any |
Zullo et al. [29] | ||||
>45 years (n = 142) | 19.0% | 28.2% | 28.4% | - |
<45 years (n = 113) | 14.1% | 28.3% | 14.4% | - |
p-value | NS | NS | 0.048 | - |
Megraud et al. 2013 [30] | ||||
Age < 50 years (n = 847) | - | - | - | - |
Age > 50 years (n = 1046) | - | - | - | - |
p-value | 0.305 | 0.329 | 0.012 | - |
Odds ratio b | 1.13 | 0.91 | 1.51 | - |
95% CI | (0.89–1.44) | (0.75–1.10) | (1.09–2.09) | - |
Shiota et al. [33] | ||||
Age < 60 years (n = 51) | 11.8% | 21.6% | 23.5% | 51.0% |
Age ≥ 60 years (n = 77) | 19.5% | 19.5% | 36.4% | 48.1% |
p-value | 0.25 | 0.77 | 0.13 | 0.75 |
Odds ratio c | 2.16 | 0.74 | 2.34 | 1.04 |
95% CI | (0.67–6.99) | (0.26–2.10) | (0.87–6.28) | (0.44–2.48) |
Megraud et al. 2021 [37] | ||||
Age < 50 years (n = NR) | - | - | - | |
Age ≥ 50 years (n = NR) | - | - | - | |
p-value | 0.538 | 0.841 | 0.608 | - |
Odds ratio d | 0.87 | 1.04 | 0.89 | - |
95% CI | (0.56–1.36) | (0.70–1.54) | (0.57–1.39) | - |
Bai et al. [38] | ||||
≤35 years (n = 55) | 34.5 | 56.4 | 72.7 | - |
35–60 years (n = 98) | 30.6 | 63.3 | 73.5 | - |
≥60 years (n = 28) | 25.0 | 64.3 | 78.6 | - |
p-value | 0.670 | 0.660 | 0.833 | - |
Ji et al. [44] | ||||
Age < 20 years (n = 114) | 16.67% | - | 6.14% | - |
Age 21–30 (n = 705) | 14.61% | - | 9.65% | - |
Age 31–40 (n = 1294) | 19.71% | - | 19.78% | - |
Age 41–50 (n = 2330) | 20.94% | - | 22.19% | - |
Age 51–60 (n = 2977) | 15.38% | - | 18.41% | - |
Age 61–70 (n = 1976) | 16.75% | - | 21.31% | - |
Age 71–80 (n = 291) | 23.02% | - | 29.9% | - |
2.3. Gender/Sex
Patients with Resistance to: | |||
---|---|---|---|
Study | CLR | MTZ | FQ a |
Zullo et al. [29] | |||
Male (n = 94) | 17.0% | 24.4% | 20.1% |
Female (n = 161) | 16.7% | 30.4% | 16.7% |
p-value | NS | NS | NS |
Megraud et al. 2013 [30] | |||
Male (n = 1077) | - | - | - |
Female (n = 1127) | - | - | - |
p-value | 0.006 | 0.001 | 0.59 |
Odds ratio b | 1.40 | 1.63 | 1.07 |
95% CI | (1.10–1.78) | (1.28–2.09) | (0.82–1.39) |
Tveit et al. [31] | |||
Male (n = 271) | 24% | 32% | 16% |
Female (n = 260) | 37% | 52% | 24% |
p-value | <0.05 | <0.05 | NS |
Megraud et al. 2021 [37] | |||
Men (n = NR) | - | - | - |
Women (n = NR) | - | - | - |
p-value | 0.604 | 0.596 | 0.526 |
Odds ratio c | 0.89 | 1.11 | 0.87 |
95% CI | (0.57–1.38) | (0.76–1.63) | (0.56–1.35) |
Bai et al. [38] | |||
Male (n = 108) | 29.6% | 61.1% | 76.9% |
Female (n = 73) | 32.9% | 61.6% | 69.9% |
p-value | 0.743 | 1.000 | 0.305 |
Shao et al. [53] d | |||
Male (n = 1225) | 20.08% | 89.97% | 21.80% |
Female (n = 1058) | 25.80% | 95.01% | 28.17% |
p-value | 0.001 | 0.012 | <0.001 |
2.4. Race/Ethnicity
2.5. Alcohol Consumption
2.6. Non-Ulcer Dyspepsia
Patients with Resistance to: | |||
---|---|---|---|
Study | CLR | MTZ | FQ a |
Zullo et al. [29] | |||
NUD (n = 226) | 19.1 | 28.3 | 18.4 |
PUD (n = 29) | 0 | 27.6 | 13.8 |
p-value | 0.02 | NS | NS |
Megraud et al. 2013 [30] | |||
NUD (n = 1254) | - | - | - |
PUD (n = 377) | - | - | - |
p-value | 0.002 | 0.233 | 0.046 |
Odds ratio b | 0.5 | 0.85 | 0.65 |
95% CI | (0.32–0.77) | (0.65–1.11) | (0.42–0.99) |
Broutet et al. [34] | |||
NUD (n = 257) | 16.7 | - | - |
PUD (n = 179) | 5.6 | - | - |
p-value | 0.0005 | - | - |
Megraud et al. 2021 [37] | |||
Normal (n = NR) | - | - | - |
Ulcer/erosions (n = NR) | - | - | - |
p-value | 0.133 | 0.309 | 0.103 |
Odds ratio c | 1.75 | 1.34 | 1.86 |
95% CI | (0.84–3.61) | (0.76–2.37) | (0.88–3.94) |
Inflammation (n = NR) | |||
p-value | 0.07 | 0.921 | 0.114 |
Odds ratio c | 1.85 | 0.97 | 1.75 |
95% CI | (0.95–3.61) | (0.58–1.64) | (0.87–3.51) |
Bai et al. [38] | |||
Gastritis (n = 114) | 36.8 | 62.3 | 74.6 |
Peptic ulcer (n = 67) | 20.9 | 59.7 | 73.1 |
p-value | 0.021 | 0.638 | 0.727 |
Odds ratio d | 2.101 | - | - |
95% CI | (0.969–4.169) | - | - |
Wong et al. [61] | |||
NUD (n = 198) | 13.6% | 38.4% | - |
Duodenal ulcer (n = 204) | 6.4% | 37.3% | - |
p-value | 0.015 | 0.815 | - |
2.7. Proton Pump Inhibitors (PPIs), Gene Polymorphism, and H. pylori Eradication
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacy, B.E.; Rosemore, J. Helicobacter pylori: Ulcers and more: The beginning of an era. J. Nutr. 2001, 131, 2789s–2793s. [Google Scholar] [CrossRef] [PubMed]
- Sharndama, H.C.; Mba, I.E. Helicobacter pylori: An up-to-date overview on the virulence and pathogenesis mechanisms. Braz. J. Microbiol. 2022, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Chiang, T.H.; Chou, C.K.; Tu, Y.K.; Liao, W.C.; Wu, M.S.; Graham, D.Y. Association Between Helicobacter pylori Eradication and Gastric Cancer Incidence: A Systematic Review and Meta-analysis. Gastroenterology 2016, 150, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Savoldi, A.; Carrara, E.; Graham, D.Y.; Conti, M.; Tacconelli, E. Prevalence of Antibiotic Resistance in Helicobacter pylori: A Systematic Review and Meta-analysis in World Health Organization Regions. Gastroenterology 2018, 155, 1372–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Peng, C.; Chen, P.; Zhang, W.; Jiang, C.; Sang, S.; Zhu, W.; Yuan, Y.; Hong, Y.; Yao, M. In-vitro anti-Helicobacter pylori activity and preliminary mechanism of action of Canarium album Raeusch. fruit extracts. J. Ethnopharmacol. 2022, 283, 114578. [Google Scholar] [CrossRef]
- Guerra-Valle, M.; Orellana-Palma, P.; Petzold, G. Plant-Based Polyphenols: Anti-Helicobacter pylori Effect and Improvement of Gut Microbiota. Antioxidants 2022, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos Viana, I.; Cordeiro Santos, M.L.; Santos Marques, H.; Lima de Souza Gonçalves, V.; Bittencourt de Brito, B.; França da Silva, F.A.; Oliveira, E.S.N.; Dantas Pinheiro, F.; Fernandes Teixeira, A.; Tanajura Costa, D.; et al. Vaccine development against Helicobacter pylori: From ideal antigens to the current landscape. Expert Rev. Vaccines 2021, 20, 989–999. [Google Scholar] [CrossRef]
- Calvet, X. Dealing with uncertainty in the treatment of Helicobacter pylori. Ther. Adv. Chronic Dis. 2018, 9, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.H.; Li, Z.; Wang, L.; Zhu-Ge, L.Y.; Zhao, R.L.; Wu, S.; Wang, Y.; An, Y.; Xie, Y. A systematic review and meta-analysis of genotypic methods for detecting antibiotic resistance in Helicobacter pylori. Helicobacter 2018, 23, e12467. [Google Scholar] [CrossRef]
- Beckman, E.; Saracino, I.; Fiorini, G.; Clark, C.; Slepnev, V.; Patel, D.; Gomez, C.; Ponaka, R.; Elagin, V.; Vaira, D. A Novel Stool PCR Test for Helicobacter pylori May Predict Clarithromycin Resistance and Eradication of Infection at a High Rate. J. Clin. Microbiol. 2017, 55, 2400–2405. [Google Scholar] [CrossRef] [Green Version]
- Ierardi, E.; Giorgio, F.; Iannone, A.; Losurdo, G.; Principi, M.; Barone, M.; Pisani, A.; Di Leo, A. Noninvasive molecular analysis of Helicobacter pylori: Is it time for tailored first-line therapy? World J. Gastroenterol. 2017, 23, 2453–2458. [Google Scholar] [CrossRef] [PubMed]
- Khadangi, F.; Yassi, M.; Kerachian, M.A. Review: Diagnostic accuracy of PCR-based detection tests for Helicobacter Pylori in stool samples. Helicobacter 2017, 22, e12444. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; O’Morain, C.; McNamara, D. Helicobacter pylori resistance to current therapies. Curr. Opin. Gastroenterol. 2019, 35, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Gisbert, J.P. Empirical or susceptibility-guided treatment for Helicobacter pylori infection? A comprehensive review. Ther. Adv. Gastroenterol. 2020, 13, 1756284820968736. [Google Scholar] [CrossRef]
- Hulten, K.G.; Genta, R.M.; Kalfus, I.N.; Zhou, Y.; Zhang, H.; Graham, D.Y. Comparison of Culture with Antibiogram to Next-Generation Sequencing Using Bacterial Isolates and Formalin-Fixed, Paraffin-Embedded Gastric Biopsies. Gastroenterology 2021, 161, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Pohl, D.; Keller, P.M.; Bordier, V.; Wagner, K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J. Gastroenterol. 2019, 25, 4629–4660. [Google Scholar] [CrossRef]
- Fallone, C.A.; Moss, S.F.; Malfertheiner, P. Reconciliation of Recent Helicobacter pylori Treatment Guidelines in a Time of Increasing Resistance to Antibiotics. Gastroenterology 2019, 157, 44–53. [Google Scholar] [CrossRef]
- Chey, W.D.; Leontiadis, G.I.; Howden, C.W.; Moss, S.F. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am. J. Gastroenterol. 2017, 112, 212–239. [Google Scholar] [CrossRef]
- Fallone, C.A.; Chiba, N.; van Zanten, S.V.; Fischbach, L.; Gisbert, J.P.; Hunt, R.H.; Jones, N.L.; Render, C.; Leontiadis, G.I.; Moayyedi, P.; et al. The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology 2016, 151, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.Y. Transitioning of Helicobacter pylori Therapy from Trial and Error to Antimicrobial Stewardship. Antibiotics 2020, 9, 671. [Google Scholar] [CrossRef]
- Zamani, M.; Alizadeh-Tabari, S.; Zamani, V.; Shokri-Shirvani, J.; Derakhshan, M.H. Worldwide and Regional Efficacy Estimates of First-line Helicobacter pylori Treatments: A Systematic Review and Network Meta-Analysis. J. Clin. Gastroenterol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Rokkas, T.; Gisbert, J.P.; Malfertheiner, P.; Niv, Y.; Gasbarrini, A.; Leja, M.; Megraud, F.; O’Morain, C.; Graham, D.Y. Comparative Effectiveness of Multiple Different First-Line Treatment Regimens for Helicobacter pylori Infection: A Network Meta-analysis. Gastroenterology 2021, 161, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.M.; Chen, P.Y.; Luo, J.C.; Lee, J.Y.; Chen, C.C.; Fang, Y.J.; Yang, T.H.; Chang, C.Y.; Bair, M.J.; Chen, M.J.; et al. Efficacies of Genotypic Resistance-Guided vs Empirical Therapy for Refractory Helicobacter pylori Infection. Gastroenterology 2018, 155, 1109–1119. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Chung, H.; Awan, I.; Mone, A.; Cooper, R.; Patel, S.; Grigoryan, Z.; Ishida, Y.; Papachristou, C.; Judge, T.; et al. Designing strategies for eradication of Helicobacter pylori based on prevalence patterns of infection and antibiotic resistance in a low-income, medically underserved community in the United States. Helicobacter 2021, 26, e12769. [Google Scholar] [CrossRef]
- Meyer, J.M.; Silliman, N.P.; Wang, W.; Siepman, N.Y.; Sugg, J.E.; Morris, D.; Zhang, J.; Bhattacharyya, H.; King, E.C.; Hopkins, R.J. Risk factors for Helicobacter pylori resistance in the United States: The surveillance of H. pylori antimicrobial resistance partnership (SHARP) study, 1993–1999. Ann. Int. Med. 2002, 136, 13–24. [Google Scholar] [CrossRef]
- McMahon, B.J.; Hennessy, T.W.; Bensler, J.M.; Bruden, D.L.; Parkinson, A.J.; Morris, J.M.; Reasonover, A.L.; Hurlburt, D.A.; Bruce, M.G.; Sacco, F.; et al. The relationship among previous antimicrobial use, antimicrobial resistance, and treatment outcomes for Helicobacter pylori infections. Ann. Int. Med. 2003, 139, 463–469. [Google Scholar] [CrossRef] [Green Version]
- McNulty, C.A.; Lasseter, G.; Shaw, I.; Nichols, T.; D’Arcy, S.; Lawson, A.J.; Glocker, E. Is Helicobacter pylori antibiotic resistance surveillance needed and how can it be delivered? Aliment. Pharm. Ther. 2012, 35, 1221–1230. [Google Scholar] [CrossRef]
- Lim, S.G.; Park, R.W.; Shin, S.J.; Yoon, D.; Kang, J.K.; Hwang, J.C.; Kim, S.S.; Kim, J.H.; Lee, K.M. The relationship between the failure to eradicate Helicobacter pylori and previous antibiotics use. Dig. Liver Dis. 2016, 48, 385–390. [Google Scholar] [CrossRef]
- Zullo, A.; Perna, F.; Hassan, C.; Ricci, C.; Saracino, I.; Morini, S.; Vaira, D. Primary antibiotic resistance in Helicobacter pylori strains isolated in northern and central Italy. Aliment. Pharm. Ther. 2007, 25, 1429–1434. [Google Scholar] [CrossRef]
- Megraud, F.; Coenen, S.; Versporten, A.; Kist, M.; Lopez-Brea, M.; Hirschl, A.M.; Andersen, L.P.; Goossens, H.; Glupczynski, Y. Helicobacter pylori resistance to antibiotics in Europe and its relationship to antibiotic consumption. Gut 2013, 62, 34–42. [Google Scholar] [CrossRef]
- Tveit, A.H.; Bruce, M.G.; Bruden, D.L.; Morris, J.; Reasonover, A.; Hurlburt, D.A.; Hennessy, T.W.; McMahon, B. Alaska sentinel surveillance study of Helicobacter pylori isolates from Alaska Native persons from 2000 to 2008. J. Clin. Microbiol. 2011, 49, 3638–3643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duck, W.M.; Sobel, J.; Pruckler, J.M.; Song, Q.; Swerdlow, D.; Friedman, C.; Sulka, A.; Swaminathan, B.; Taylor, T.; Hoekstra, M.; et al. Antimicrobial resistance incidence and risk factors among Helicobacter pylori-infected persons, United States. Emerg. Infect. Dis. 2004, 10, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Shiota, S.; Reddy, R.; Alsarraj, A.; El-Serag, H.B.; Graham, D.Y. Antibiotic Resistance of Helicobacter pylori Among Male United States Veterans. Clin. Gastroenterol. Hepatol. 2015, 13, 1616–1624. [Google Scholar] [CrossRef] [PubMed]
- Broutet, N.; Tchamgoué, S.; Pereira, E.; Lamouliatte, H.; Salamon, R.; Mégraud, F. Risk factors for failure of Helicobacter pylori therapy--results of an individual data analysis of 2751 patients. Aliment. Pharm. Ther. 2003, 17, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Haas, C.E.; Nix, D.E.; Schentag, J.J. In vitro selection of resistant Helicobacter pylori. Antimicrob. Agents Chemother. 1990, 34, 1637–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenks, P.J.; Labigne, A.; Ferrero, R.L. Exposure to metronidazole in vivo readily induces resistance in Helicobacter pylori and reduces the efficacy of eradication therapy in mice. Antimicrob. Agents Chemother. 1999, 43, 777–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megraud, F.; Bruyndonckx, R.; Coenen, S.; Wittkop, L.; Huang, T.D.; Hoebeke, M.; Bénéjat, L.; Lehours, P.; Goossens, H.; Glupczynski, Y. Helicobacter pylori resistance to antibiotics in Europe in 2018 and its relationship to antibiotic consumption in the community. Gut 2021, 70, 1815–1822. [Google Scholar] [CrossRef] [PubMed]
- Bai, P.; Zhou, L.Y.; Xiao, X.M.; Luo, Y.; Ding, Y. Susceptibility of Helicobacter pylori to antibiotics in Chinese patients. J. Dig. Dis. 2015, 16, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Gómez, P.; Jordán-Castro, J.A.; Abanades-Tercero, M.; Blanco-González, J.J.; Andrés Esteban, E.M.; Valle-Muñoz, J. Macrolide use in the previous years is associated with failure to eradicate Helicobacter pylori with clarithromycin-containing regimens. Helicobacter 2018, 23, e12452. [Google Scholar] [CrossRef] [PubMed]
- Boltin, D.; Levi, Z.; Gingold-Belfer, R.; Gabay, H.; Shochat, T.; Niv, Y.; Dickman, R.; Dotan, I.; Birkenfeld, S. Impact of Previous Exposure to Macrolide Antibiotics on Helicobacter pylori Infection Treatment Outcomes. Am. J. Gastroenterol. 2019, 114, 900–906. [Google Scholar] [CrossRef]
- Guo, C.G.; Jiang, F.; Cheung, K.S.; Li, B.; Ooi, P.H.; Leung, W.K. Timing of prior exposure to antibiotics and failure of Helicobacter pylori eradication: A population-based study. J. Antimicrob. Chemother. 2021, dkab415. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sangitha, R.; Nachamkin, I.; Metz, D.C. Resistance patterns of refractory H. pylori infection in a referral center in the Delaware Valley. GastroHep 2020, 2, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Björkholm, B.; Sjölund, M.; Falk, P.G.; Berg, O.G.; Engstrand, L.; Andersson, D.I. Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori. Proc. Natl. Acad. Sci. USA 2001, 98, 14607–14612. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Han, F.; Meng, F.; Tu, M.; Yang, N.; Zhang, J. The Association of Age and Antibiotic Resistance of Helicobacter Pylori: A Study in Jiaxing City, Zhejiang Province, China. Medicine 2016, 95, e2831. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Lee, D.H.; Lee, S.T.; Kim, N.; Park, Y.S.; Shin, C.M.; Song, I.S. Moxifloxacin-containing triple therapy after non-bismuth quadruple therapy failure for Helicobacter pylori infection. World J. Gastroenterol. 2015, 21, 13124–13131. [Google Scholar] [CrossRef]
- White, B.; Sterrett, J.D.; Grigoryan, Z.; Lally, L.; Heinze, J.D.; Alikhan, H.; Lowry, C.A.; Perez, L.J.; DeSipio, J.; Phadtare, S. Characterization of gut microbiome and metabolome in Helicobacter pylori patients in an underprivileged community in the United States. World J. Gastroenterol. 2021, 27, 5575–5594. [Google Scholar] [CrossRef]
- Sheh, A.; Fox, J.G. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 2013, 4, 505–531. [Google Scholar] [CrossRef] [Green Version]
- Noto, J.M.; Peek, R.M., Jr. The gastric microbiome, its interaction with Helicobacter pylori, and its potential role in the progression to stomach cancer. PLoS Pathog. 2017, 13, e1006573. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Gao, X.; Guo, J.; Yu, D.; Xiao, Y.; Wang, H.; Li, Y. Helicobacter pylori infection alters gastric and tongue coating microbial communities. Helicobacter 2019, 24, e12567. [Google Scholar] [CrossRef] [Green Version]
- Das, A.; Pereira, V.; Saxena, S.; Ghosh, T.S.; Anbumani, D.; Bag, S.; Das, B.; Nair, G.B.; Abraham, P.; Mande, S.S. Gastric microbiome of Indian patients with Helicobacter pylori infection, and their interaction networks. Sci. Rep. 2017, 7, 15438. [Google Scholar] [CrossRef] [Green Version]
- Pounder, R.E.; Ng, D. The prevalence of Helicobacter pylori infection in different countries. Aliment. Pharm. Ther. 1995, 9, 33–39. [Google Scholar]
- Yang, L.; Zhang, J.; Xu, J.; Wei, X.; Yang, J.; Liu, Y.; Li, H.; Zhao, C.; Wang, Y.; Zhang, L.; et al. Helicobacter pylori Infection Aggravates Dysbiosis of Gut Microbiome in Children With Gastritis. Front. Cell. Infect. Microbiol. 2019, 9, 375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.; Lu, R.; Yang, Y.; Xu, Q.; Wang, B.; Ye, G. Antibiotic resistance of Helicobacter pylori to 16 antibiotics in clinical patients. J. Clin. Lab. Anal. 2018, 32, e22339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilotto, A.; Rassu, M.; Leandro, G.; Franceschi, M.; Di Mario, F. Prevalence of Helicobacter pylori resistance to antibiotics in Northeast Italy: A multicentre study. GISU. Interdisciplinary Group for the Study of Ulcer. Dig. Liver Dis. 2000, 32, 763–768. [Google Scholar] [CrossRef]
- Horie, R.; Handa, O.; Ando, T.; Ose, T.; Murakami, T.; Suzuki, N.; Sendo, R.; Imamoto, E.; Itoh, Y. Helicobacter pylori eradication therapy outcome according to clarithromycin susceptibility testing in Japan. Helicobacter 2020, 25, e12698. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.Y.; Kim, C.; Kwon, Y.H.; Lee, J.E.; Jeon, S.W.; Nam, S.Y.; Seo, A.N.; Han, M.H.; Park, J.H. Dual Clarithromycin and Metronidazole Resistance Is the Main Cause of Failure in Ultimate Helicobacter pylori Eradication. Dig. Dis. 2021, 39, 451–461. [Google Scholar] [CrossRef]
- Epplein, M.; Signorello, L.B.; Zheng, W.; Peek, R.M., Jr.; Michel, A.; Williams, S.M.; Pawlita, M.; Correa, P.; Cai, Q.; Blot, W.J. Race, African ancestry, and Helicobacter pylori infection in a low-income United States population. Cancer Epidemiol. Prev. Biomark. 2011, 20, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Sasidharan, S.; Lachumy, S.J.; Ravichandran, M.; Latha, L.Y.; Gegu, S.R. Epidemiology of Helicobacter pylori among multiracial community in Northern Peninsular, Malaysia: Effect of age across race and gender. Asian Pac. J. Trop. Med. 2011, 4, 72–75. [Google Scholar] [CrossRef]
- Céspedes, A.; Larson, E. Knowledge, attitudes, and practices regarding antibiotic use among Latinos in the United States: Review and recommendations. Am. J. Infect. Control 2006, 34, 495–502. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Hu, W.L.; Cai, Y.; Zheng, W.F.; Du, Q.; Kim, J.J.; Kao, J.Y.; Dai, N.; Si, J.M. Outcomes of furazolidone- and amoxicillin-based quadruple therapy for Helicobacter pylori infection and predictors of failed eradication. World J. Gastroenterol. 2018, 24, 4596–4605. [Google Scholar] [CrossRef]
- Wong, W.M.; Xiao, S.D.; Hu, P.J.; Wang, W.H.; Gu, Q.; Huang, J.Q.; Xia, H.H.; Wu, S.M.; Li, C.J.; Chen, M.H.; et al. Standard treatment for Helicobacter pylori infection is suboptimal in non-ulcer dyspepsia compared with duodenal ulcer in Chinese. Aliment. Pharm. Ther. 2005, 21, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Mégraud, F. H pylori antibiotic resistance: Prevalence, importance, and advances in testing. Gut 2004, 53, 1374–1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broutet, N.; Marais, A.; Lamouliatte, H.; de Mascarel, A.; Samoyeau, R.; Salamon, R.; Mégraud, F. cagA Status and eradication treatment outcome of anti-Helicobacter pylori triple therapies in patients with nonulcer dyspepsia. J. Clin. Microbiol. 2001, 39, 1319–1322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, T. Proton Pump Inhibitors: Key Ingredients in Helicobacter pylori Eradication Treatment. In Proton Pump Inhibitors: A Balanced View; Chiba, T., Malfertheiner, P., Satoh, H., Eds.; Frontiers of Gastrointestinal Research; Karger: Basel, Switzerland, 2013. [Google Scholar]
- Zhang, Z.; Liu, Z.Q.; Zheng, P.Y.; Tang, F.A.; Yang, P.C. Influence of efflux pump inhibitors on the multidrug resistance of Helicobacter pylori. World J. Gastroenterol. 2010, 16, 1279–1284. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Matsuo, K.; Ito, H.; Sawaki, A.; Hirose, K.; Wakai, K.; Sato, S.; Nakamura, T.; Yamao, K.; Ueda, R.; et al. Smoking increases the treatment failure for Helicobacter pylori eradication. Am. J. Med. 2006, 119, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Gustavson, L.E.; Kaiser, J.F.; Edmonds, A.L.; Locke, C.S.; DeBartolo, M.L.; Schneck, D.W. Effect of omeprazole on concentrations of clarithromycin in plasma and gastric tissue at steady state. Antimicrob. Agents Chemother. 1995, 39, 2078–2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Wang, J.; Yang, Y.; Wang, X.; Shi, R.; Xu, Z.; Huang, Z.; Zhang, G. Effect of CYP2C19 genetic polymorphisms on the efficacy of proton pump inhibitor-based triple therapy for Helicobacter pylori eradication: A meta-analysis. Helicobacter 2008, 13, 532–541. [Google Scholar] [CrossRef]
- Schwab, M.; Schaeffeler, E.; Klotz, U.; Treiber, G. CYP2C19 polymorphism is a major predictor of treatment failure in white patients by use of lansoprazole-based quadruple the.erapy for eradication of Helicobacter pylori. Clin. Pharm. Ther. 2004, 76, 201–209. [Google Scholar] [CrossRef]
- Bayerdörffer, E.; Miehlke, S.; Mannes, G.A.; Sommer, A.; Höchter, W.; Weingart, J.; Heldwein, W.; Klann, H.; Simon, T.; Schmitt, W.; et al. Double-blind trial of omeprazole and amoxicillin to cure Helicobacter pylori infection in patients with duodenal ulcers. Gastroenterology 1995, 108, 1412–1417. [Google Scholar] [CrossRef]
- Zhang, M. High antibiotic resistance rate: A difficult issue for Helicobacter pylori eradication treatment. World J. Gastroenterol. 2015, 21, 13432–13437. [Google Scholar] [CrossRef]
- Yoon, S.B.; Park, J.M.; Lee, J.Y.; Baeg, M.K.; Lim, C.H.; Kim, J.S.; Cho, Y.K.; Lee, I.S.; Kim, S.W.; Choi, M.G. Long-term pretreatment with proton pump inhibitor and Helicobacter pylori eradication rates. World J. Gastroenterol. 2014, 20, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Delcher, A.; Hily, S.; Boureau, A.S.; Chapelet, G.; Berrut, G.; de Decker, L. Multimorbidities and Overprescription of Proton Pump Inhibitors in Older Patients. PLoS ONE 2015, 10, e0141779. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, C.; Kodama, S.; Fujihara, K.; Hirasawa, R.; Yachi, Y.; Suzuki, A.; Hanyu, O.; Shimano, H.; Sone, H. High risk of failing eradication of Helicobacter pylori in patients with diabetes: A meta-analysis. Diabetes Res. Clin. Pract. 2014, 106, 81–87. [Google Scholar] [CrossRef]
- Yu, J.; Yang, P.; Qin, X.; Li, C.; Lv, Y.; Wang, X. Impact of smoking on the eradication of Helicobacter pylori. Helicobacter 2021, 27, e12860. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.C.; Tepler, A.; Chung, C.P.; Suarez, G.; Peek, R.M., Jr.; Hung, A.; Roumie, C.; Narula, N. Host Genetic Determinants Associated With Helicobacter pylori Eradication Treatment Failure: A Systematic Review and Meta-analysis. Gastroenterology 2021, 161, 1443–1459. [Google Scholar] [CrossRef]
- Zullo, A.; De Francesco, V.; Hassan, C. Predicting Helicobacter pylori eradication: How to teach an old dog new tricks! J. Clin. Gastroenterol. 2012, 46, 259–261. [Google Scholar] [CrossRef]
- Dore, M.P.; Lu, H.; Graham, D.Y. Role of bismuth in improving Helicobacter pylori eradication with triple therapy. Gut 2016, 65, 870–878. [Google Scholar] [CrossRef]
- Shehata, M.A.; Talaat, R.; Soliman, S.; Elmesseri, H.; Soliman, S.; Abd-Elsalam, S. Randomized controlled study of a novel triple nitazoxanide (NTZ)-containing therapeutic regimen versus the traditional regimen for eradication of Helicobacter pylori infection. Helicobacter 2017, 22, e12395. [Google Scholar] [CrossRef]
- Basu, P.P.; Rayapudi, K.; Pacana, T.; Shah, N.J.; Krishnaswamy, N.; Flynn, M. A randomized study comparing levofloxacin, omeprazole, nitazoxanide, and doxycycline versus triple therapy for the eradication of Helicobacter pylori. Am. J. Gastroenterol. 2011, 106, 1970–1975. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, M.; Attaran, B.; Malekzadeh, R.; Graham, D.Y. Furazolidone, an Underutilized Drug for H. pylori Eradication: Lessons from Iran. Dig. Dis. Sci. 2017, 62, 1890–1896. [Google Scholar] [CrossRef]
- Zhuge, L.; Wang, Y.; Wu, S.; Zhao, R.L.; Li, Z.; Xie, Y. Furazolidone treatment for Helicobacter Pylori infection: A systematic review and meta-analysis. Helicobacter 2018, 23, e12468. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Kim, E.H.; Park, C.H. Systematic review with meta-analysis: The efficacy of vonoprazan-based triple therapy on Helicobacter pylori eradication. Aliment. Pharm. Ther. 2017, 46, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuta, T.; Yamade, M.; Kagami, T.; Uotani, T.; Suzuki, T.; Higuchi, T.; Tani, S.; Hamaya, Y.; Iwaizumi, M.; Miyajima, H.; et al. Dual Therapy with Vonoprazan and Amoxicillin Is as Effective as Triple Therapy with Vonoprazan, Amoxicillin and Clarithromycin for Eradication of Helicobacter pylori. Digestion 2020, 101, 743–751. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, B.; Winte, M.; DeSipio, J.; Phadtare, S. Clinical Factors Implicated in Antibiotic Resistance in Helicobacter pylori Patients. Microorganisms 2022, 10, 322. https://doi.org/10.3390/microorganisms10020322
White B, Winte M, DeSipio J, Phadtare S. Clinical Factors Implicated in Antibiotic Resistance in Helicobacter pylori Patients. Microorganisms. 2022; 10(2):322. https://doi.org/10.3390/microorganisms10020322
Chicago/Turabian StyleWhite, Brian, Maria Winte, Joshua DeSipio, and Sangita Phadtare. 2022. "Clinical Factors Implicated in Antibiotic Resistance in Helicobacter pylori Patients" Microorganisms 10, no. 2: 322. https://doi.org/10.3390/microorganisms10020322
APA StyleWhite, B., Winte, M., DeSipio, J., & Phadtare, S. (2022). Clinical Factors Implicated in Antibiotic Resistance in Helicobacter pylori Patients. Microorganisms, 10(2), 322. https://doi.org/10.3390/microorganisms10020322