SARS-CoV-2–Legionella Co-Infections: A Systematic Review and Meta-Analysis (2020–2021)
Abstract
:1. Introduction
2. Materials and Methods
- (a)
- Case-control studies, cross-sectional studies, and cohort studies
- (b)
- Case reports and case series
3. Results
3.1. Observational Studies
3.2. Case Reports and Case Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Reference | Country | Timeframe | Gender | Age (Years) | Settings (SARS-CoV-2) | Setting (LD) | Underlying Disease (Any) | ICU (Days) | Intubation (Days) | Outcome |
---|---|---|---|---|---|---|---|---|---|---|
Alhuofie, S. [64] | Saudi Arabia | June 2020 | Male | 76 | Community | Community | Diabetes | No | - | Discharge |
Allam et al. [35] | France | March 2020 | Male | 72 | Hospital | Hospital | CVD, Cancer | Yes (na) | na | Ongoing |
Male | 71 | Hospital Travel | Hospital Travel | Smoking, CVD, CRD, Diabetes, | Yes (na) | na | Ongoing | |||
Male | 71 | Community | Community | Steroid therapy, Smoking, CVD, Cancer | Yes (na) | na | Death | |||
Female | 83 | Community | Community | Steroid therapy, CVD | Yes (na) | na | Discharge | |||
Male | 73 | Community | Plumbing | CVD, Diabetes | Yes (na) | na | Ongoing | |||
Male | 73 | Community | Community | CVD, CKD | Yes (na) | na | Death | |||
Male | 37 | Community | Community | - | Yes (na) | na | Ongoing | |||
Anderson et al. [65] | USA | April 2020 | Male | 49 | Community | Community | - | Yes (10) | Yes (10) | Discharge |
Arashiro et al. [28] | Japan | March 2020 | Male | 80 | Travel | Travel | Diabetes | Yes (23) | Yes (10) | Death |
Argemí et al. [66] | Spain | November 2020 | Male | 35 | Community | Community | - | Yes (9) | - | Discharge |
Camoes et al. [67] | Portugal | November 2020 | Male | 53 | Undefined | Community | Obesity, Smoking | Yes (20) | Yes (10) | Discharge |
Chalker et al. [68] | UK | February 2020 | Female | 65 | Undefined | Undefined | Asthma, Hypertension, Steroid therapy, | Yes (20) | Yes (20) | Death |
April 2020 | Female | 80 | Community | Community | Hypertension, CKD | Yes (5) | Yes (5) | Death | ||
Choappa et al. [69] | Chile | July 2020 | Male | 47 | Community | Community | Obesity, Hypertension, Smoking, previous COVID-19 | Yes (27) | Yes (27) | Discharge |
Palazzolo et al. [29] | Italy | June 2020 | Male | 40 | Community | Community | - | No | - | Discharge |
Shimizu et al. [70] | Japan | Na. | Male | 73 | Travel | Travel Hot Tubes | Cancer | Yes (27) | Yes (8) | Discharge |
Subedi and Haas [71] | USA | Na. | Male | 58 | Community | Community | Rheumatoid Arthritis, Obesity, Hypertension, Abuse of Opiate, Steroid therapy, Smoking | Yes (18) | - | Discharge |
Verhasselt et al. [62] | Germany | March 2020 | Male | 41 | Community | Community | Asthma, Steroid therapy | Yes (na) | Yes (na) | Ongoing |
References
- Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020, 584, 257–261. [Google Scholar] [CrossRef]
- Ullrich, A.; Schranz, M.; Rexroth, U.; Hamouda, O.; Schaade, L.; Diercke, M.; Boender, T.S. Impact of the COVID-19 pandemic and associated non-pharmaceutical interventions on other notifiable infectious diseases in Germany: An analysis of National Surveillance Data during Week 1—2016–Week 32—2020. Lancet Reg. Health—Eur. 2021, 6, 100103. [Google Scholar] [CrossRef]
- Oh, D.-Y.; Buda, S.; Biere, B.; Reiche, J.; Schlosser, F.; Duwe, S.; Wedde, M.; von Kleist, M.; Mielke, M.; Wolff, T.; et al. Trends in respiratory virus circulation following COVID-19-targeted nonpharmaceutical interventions in Germany, January–September 2020: Analysis of National Surveillance Data. Lancet Reg. Health—Eur. 2021, 6, 100112. [Google Scholar] [CrossRef]
- Müller, O.; Razum, O.; Jahn, A. Effects of non-pharmaceutical interventions against COVID-19 on the incidence of other diseases. Lancet Reg. Health—Eur. 2021, 6, 100139. [Google Scholar] [CrossRef]
- Hall, C.B.; Weinberg, G.A.; Iwane, M.K.; Blumkin, A.K.; Edwards, K.M.; Staat, M.A.; Auinger, P.; Griffin, M.R.; Poehling, K.A.; Erdman, D.; et al. The burden of respiratory syncytial virus infection in young children. N. Engl. J. Med. 2009, 360, 588–598. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.B. Respiratory syncytial virus and parainfluenza virus. N. Engl. J. Med. 2001, 344, 1917–1926. [Google Scholar] [CrossRef] [Green Version]
- Graham, F.F.; Hales, S.; White, P.S.; Baker, M.G. Review global seroprevalence of legionellosis—A systematic review and meta-analysis. Sci. Rep. 2020, 10, 7337. [Google Scholar] [CrossRef]
- Cunha, B.A.; Burillo, A.; Bouza, E. Legionnaires’ disease. Lancet 2016, 387, 376–385. [Google Scholar] [CrossRef]
- Burillo, A.; Pedro-Botet, M.L.; Bouza, E. Microbiology and epidemiology of Legionnaire’s disease. Infect. Dis. Clin. N. Am. 2017, 31, 7–27. [Google Scholar] [CrossRef]
- Brodhun, B.; Buchholz, U. Legionarskrankheit in Deutschland—2010 Bis 2020; Robert Koch Institut: Berlin, Germany, 2021; Volume 2021. [Google Scholar]
- Direction Des Maladies Infectieuses. Bilan des Cas de Légionellose Notifiés en France en 2020; Santé Publique France: Paris, France, 2021.
- Rota, M.C.; Caporali, M.G.; Bella, A.; Scaturro, M.; Giannitelli, S.; Ricci, M.L. I Risultati del sistema di sorveglianza della legionellosi in Italia nel 2020 durante la pandemia di COVID-19. Boll. Epidemiol. Naz. 2021, 2, 9–16. [Google Scholar]
- Riccò, M. Impact of lockdown and non-pharmaceutical interventions on the epidemiology of Legionnaires’ disease. Acta Biomed. 2022, 93, e2022090. [Google Scholar]
- Cassell, K.; Thomas-Lopez, D.; Kjelso, C.; Uldum, S. Provincial trends in Legionnaires’ disease are not explained by population structure in Denmark, 2015 to 2018. Eurosurveillance 2021, 26, 2000036. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Rolando, M.; Escoll, P.; Gomez-Valero, L.; Buchrieser, C. Legionnaires’ disease: State of the art knowledge of pathogenesis mechanisms of Legionella. Annu. Rev. Pathol. Mech. Dis. 2020, 15, 439–466. [Google Scholar] [CrossRef] [Green Version]
- Riccò, M.; Peruzzi, S.; Ranzieri, S.; Giuri, P.G. Epidemiology of Legionnaires’ disease in Italy, 2004–2019: A summary of available evidence. Microorganisms 2021, 9, 2180. [Google Scholar] [CrossRef]
- Russo, F.; Pitter, G.; da Re, F.; Tonon, M.; Avossa, F.; Bellio, S.; Fedeli, U.; Gubian, L.; Monetti, D.; Saia, M.; et al. Epidemiology and public health response in early phase of COVID-19 pandemic, Veneto region, Italy, 21 February to 2 April 2020. Eurosurveillance 2020, 25, 2000548. [Google Scholar] [CrossRef]
- Gatto, M.; Bertuzzo, E.; Mari, L.; Miccoli, S.; Carraro, L.; Casagrandi, R.; Rinaldo, A. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc. Natl. Acad. Sci. USA 2020, 117, 10484–10491. [Google Scholar] [CrossRef] [Green Version]
- Scortichini, M.; Schneider Dos Santos, R.; De’ Donato, F.; de Sario, M.; Michelozzi, P.; Davoli, M.; Masselot, P.; Sera, F.; Gasparrini, A. Excess mortality during the COVID-19 outbreak in Italy: A two-stage interrupted time-series analysis. Int. J. Epidemiol. 2020, 49, 1909–1917. [Google Scholar] [CrossRef]
- Rawson, T.; Moore, L.S.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and fungal co-infection in individuals with coronavirus: A rapid review to support COVID-19 antimicrobial prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar]
- Schouten, J.; de Waele, J.; Lanckohr, C.; Koulenti, D.; Haddad, N.; Rizk, N.; Sjövall, F.; Kanj, S.S. Antimicrobial stewardship in the ICU in COVID-19 times: The known unknowns. Int. J. Antimicrob. Agents 2021, 58, 106409. [Google Scholar] [CrossRef]
- Seaton, R.A.; Gibbons, C.L.; Cooper, L.; Malcolm, W.; McKinney, R.; Dundas, S.; Griffith, D.; Jeffreys, D.; Hamilton, K.; Choo-Kang, B.; et al. Survey of antibiotic and antifungal prescribing in patients with suspected and confirmed COVID-19 in Scottish hospitals. J. Infect. 2020, 81, 952–960. [Google Scholar] [CrossRef]
- Contou, D.; Claudinon, A.; Pajot, O.; Micaëlo, M.; Longuet Flandre, P.; Dubert, M.; Cally, R.; Logre, E.; Fraissé, M.; Mentec, H.; et al. Bacterial and viral co-infections in patients with severe SARS-CoV-2 pneumonia admitted to a French ICU. Ann. Intensive Care 2020, 10, 119. [Google Scholar] [CrossRef]
- Rouzé, A.; Martin-Loeches, I.; Povoa, P.; Metzelard, M.; du Cheyron, D.; Lambiotte, F.; Tamion, F.; Labruyere, M.; Geronimi, C.B.; Nieszkowska, A.; et al. Early bacterial identification among intubated patients with COVID-19 or influenza pneumonia: A European multicenter comparative clinical trial. Am. J. Respir. Crit. Care Med. 2021, 204, 546–556. [Google Scholar] [CrossRef]
- Gerver, S.M.; Guy, R.; Wilson, K.; Thelwall, S.; Nsonwu, O.; Rooney, G.; Brown, C.S.; Muller-Pebody, B.; Hope, R.; Hall, V. National surveillance of bacterial and fungal coinfection and secondary infection in COVID-19 patients in England: Lessons from the first wave. Clin. Microbiol. Infect. 2021, 27, 1658–1665. [Google Scholar] [CrossRef]
- Hughes, S.; Troise, O.; Donaldson, H.; Mughal, N.; Moore, L.S.P. Bacterial and fungal coinfection among hospitalized patients with COVID-19: A retrospective cohort study in a UK secondary-care setting. Clin. Microbiol. Infect. 2020, 26, 1395–1399. [Google Scholar] [CrossRef]
- Xing, Q.S.; Li, G.J.; Xing, Y.H.; Chen, T.; Li, W.J.; Ni, W.; Deng, K.; Gao, R.Q.; Chen, C.Z.; Gao, Y.; et al. Precautions are needed for COVID-19 patients with coinfection of common respiratory pathogens. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Arashiro, T.; Nakamura, S.; Asami, T.; Mikuni, H.; Fujiwara, E.; Sakamoto, S.; Miura, R.; Shionoya, Y.; Honda, R.; Furukawa, K.; et al. SARS-CoV-2 and Legionella co-infection in a person returning from a Nile cruise. J. Travel Med. 2020, 27, taaa053. [Google Scholar] [CrossRef] [Green Version]
- Palazzolo, C.; Maffongelli, G.; D’Abrano, A.; Lepore, L.; Mariano, A.; Vulcano, A.; Ascoli Bartoli, T.; Bevilacqua, N.; Giancola, M.L.; di Rosa, E.; et al. Legionella pneumonia: Increased risk after COVID-19 lockdown? Italy, May to June 2020. Eurosurveillance 2020, 25, 2001372. [Google Scholar] [CrossRef]
- Magira, E.E.; Zakynthinos, S. Legionnaire’s disease and influenza. Infect. Dis. Clin. N. Am. 2017, 31, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Lanternier, F.; Ader, F.; Pilmis, B.; Catherinot, E.; Jarraud, S.; Lortholary, O. Legionnaire’s disease in compromised hosts. Infect. Dis. Clin. N. Am. 2017, 31, 123–135. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Prussin, A.J.; Ahmed, W.; Haas, C.N. Outbreaks of Legionnaires’ disease and pontiac fever 2006–2017. Curr. Environ. Health Rep. 2018, 5, 263–271. [Google Scholar] [CrossRef]
- Rota, M.C.; Caporali, M.G.; Bella, A.; Ricci, M.L.; Napoli, C. Legionnaires’ disease in Italy: Results of the epidemiological surveillance from 2000 to 2011. Eurosurveillance 2013, 18, 20497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassell, K.; Davis, J.L.; Berkelman, R. Legionnaires’ disease in the time of COVID-19. Pneumonia 2021, 13, 2. [Google Scholar] [CrossRef]
- Allam, C.; Gaymard, A.; Descours, G.; Ginevra, C.; Josset, L.; Bouscambert, M.; Beraud, L.; Ibranosyan, M.; Golfier, C.; Friggeri, A.; et al. Co-infection with Legionella and SARS-CoV-2, France, March 2020. Emerg. Infect. Dis. 2021, 27, 2864–2868. [Google Scholar] [CrossRef] [PubMed]
- Rota, M.C.; Caporali, M.G.; Scaturro, M.; Girolamo, A.; Andrianou, X.; Ricci, M.L. Legionella pneumophila and SARS-CoV-2 co-infection: The importance of laboratory diagnosis. Ann. Dell’istituto Super. Sanita 2021, 57, 199–200. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Altman, D.; Antes, G.; Atkins, D.; Barbour, V.; Barrowman, N.; Berlin, J.A.; et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef]
- R 4.0.3 (R Core Team). R: A language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 14 February 2022).
- Adler, H.; Ball, R.; Fisher, M.; Mortimer, K.; Vardhan, M.S. Low rate of bacterial co-infection in patients with COVID-19. Lancet Microbe 2020, 1, e62. [Google Scholar] [CrossRef]
- Baskaran, V.; Lawrence, H.; Lansbury, L.E.; Webb, K.; Safavi, S.; Zainuddin, N.I.; Huq, T.; Eggleston, C.; Ellis, J.; Thakker, C.; et al. Co-infection in critically Ill patients with COVID-19: An observational cohort study from England. J. Med. Microbiol. 2021, 70, 1350. [Google Scholar] [CrossRef]
- Chaudhry, R.; Sreenath, K.; Batra, P.; Vinayaraj, E.V.; Rathor, N.; Saikiran, K.V.P.; Aravindan, A.; Singh, V.; Brijwal, M.; Soneja, M.; et al. Atypical bacterial co-infections among patients with COVID-19: A study from India. J. Med. Virol. 2022, 94, 303–309. [Google Scholar] [CrossRef]
- Sreenath, K.; Batra, P.; Vinayaraj, E.V.; Bhatia, R.; SaiKiran, K.; Singh, V.; Singh, S.; Verma, N.; Singh, U.B.; Mohan, A.; et al. Coinfections with other respiratory pathogens among patients with COVID-19. Microbiol. Spectr. 2021, 9, e0016321. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, Q.; Xiao, Y.; Wu, C.; Jiang, Z.; Liu, L.; Qu, J. Clinical and etiological analysis of co-infections and secondary infections in COVID-19 patients: An observational study. Clin. Respir. J. 2021, 15, 815–825. [Google Scholar] [CrossRef]
- Zhu, X.; Ge, Y.; Wu, T.; Zhao, K.; Chen, Y.; Wu, B.; Zhu, F.; Zhu, B.; Cui, L. Co-infection with respiratory pathogens among COVID-2019 cases. Virus Res. 2020, 285, 198005. [Google Scholar] [CrossRef]
- Coenen, S.; de la Court, J.R.; Buis, D.T.P.; Meijboom, L.J.; Schade, R.P.; Visser, C.E.; van Hest, R.; Kuijvenhoven, M.; Prins, J.M.; Nijman, S.F.M.; et al. Low frequency of community-acquired bacterial co-infection in patients hospitalized for COVID-19 based on clinical, radiological and microbiological criteria: A retrospective cohort study. Antimicrob. Resist. Infect. Control 2021, 10, 155. [Google Scholar] [CrossRef]
- Cohen, R.; Babushkin, F.; Finn, T.; Geller, K.; Alexander, H.; Datnow, C.; Uda, M.; Shapiro, M.; Paikin, S.; Lellouche, J. High rates of bacterial pulmonary co-infections and superinfections identified by multiplex PCR among critically Ill COVID-19 patients. Microorganisms 2021, 9, 2483. [Google Scholar] [CrossRef] [PubMed]
- Rothe, K.; Feihl, S.; Schneider, J.; Wallnöfer, F.; Wurst, M.; Lukas, M.; Treiber, M.; Lahmer, T.; Heim, M.; Dommasch, M.; et al. Rates of bacterial co-infections and antimicrobial use in COVID-19 patients: A retrospective cohort study in light of antibiotic stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 859–869. [Google Scholar] [CrossRef]
- Rothe, K.; Spinner, C.D.; Panning, M.; Pletz, M.W.; Rohde, G.; Rupp, J.; Witzenrath, M.; Erber, J.; Eberhardt, F.; Essig, A.; et al. Evaluation of a multiplex PCR screening approach to identify community-acquired bacterial co-infections in COVID-19: A multicenter prospective cohort study of the German Competence Network of Community-Acquired Pneumonia (CAPNETZ). Infection 2021, 49, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Søgaard, K.K.; Baettig, V.; Osthoff, M.; Marsch, S.; Leuzinger, K.; Schweitzer, M.; Meier, J.; Bassetti, S.; Bingisser, R.; Nickel, C.H.; et al. Community-acquired and hospital-acquired respiratory tract infection and bloodstream infection in patients hospitalized with COVID-19 pneumonia. J. Intensive Care 2021, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Kolenda, C.; Ranc, A.G.; Boisset, S.; Caspar, Y.; Carricajo, A.; Souche, A.; Dauwalder, O.; Verhoeven, P.O.; Vandenesch, F.; Laurent, F. Assessment of respiratory bacterial coinfections among severe acute respiratory syndrome coronavirus 2-positive patients hospitalized in intensive care units using conventional culture and BioFire, FilmArray pneumonia panel plus Assay. Open Forum Infect. Dis. 2020, 7, ofaa484. [Google Scholar] [CrossRef]
- Scott, H.; Zahra, A.; Fernandes, R.; Fries, B.C.; Thode, H.C.; Singer, A.J. Bacterial infections and death among patients with COVID-19 versus non COVID-19 patients with pneumonia. Am. J. Emerg. Med. 2022, 51, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Paparoupa, M.; Aldemyati, R.; Roggenkamp, H.; Berinson, B.; Nörz, D.; Olearo, F.; Kluge, S.; Roedl, K.; Heer, G.; Wichmann, D. The Prevalence of early- and late-onset bacterial, viral and fungal respiratory superinfections in invasively ventilated COVID-19 patients. J. Med. Virol. 2021; epub ahead of print. [Google Scholar] [CrossRef]
- Soto, A.; Quiñones-Laveriano, D.M.; Valdivia, F.; Juscamayta-López, E.; Azañero-Haro, J.; Chambi, L.; Horna, H.; Patiño, G.; Guzman, E.; de la Cruz-Vargas, J.A. Detection of viral and bacterial respiratory pathogens identified by molecular methods in COVID-19 hospitalized patients and its impact on mortality and unfavorable outcomes. Infect. Drug Resist. 2021, 14, 2795–2807. [Google Scholar] [CrossRef]
- Townsend, L.; Hughes, G.; Kerr, C.; Kelly, M.; O’Connor, R.; Sweeney, E.; Doyle, C.; O’Riordan, R.; Martin-Loeches, I.; Bergin, C.; et al. Bacterial Pneumonia Coinfection and Antimicrobial Therapy Duration in SARS-CoV-2 (COVID-19) Infection. JAC-Antimicrob. Resist. 2020, 2, dlaa071. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Amin, A.K.; Khanna, P.; Aali, A.; Mcgregor, A.; Bassett, P.; Gopal Rao, G. An observational cohort study of bacterial co-infection and implications for empirical antibiotic therapy in patients presenting with COVID-19 to hospitals in North West London. J. Antimicrob. Chemother. 2021, 76, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, T.; Kobayashi, Y.; Shimizu, Y.; Uemura, Y.; Isono, T.; Takano, K.; Nishida, T.; Kobayashi, Y.; Hosoda, C.; Takaku, Y.; et al. Frequency and significance of coinfection in patients with COVID-19 at hospital admission. Intern. Med. 2021, 60, 3709–3719. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Xia, X.; Nie, D.; Yang, H.; Jiang, Y.; Huo, X.; Guo, F.; Fang, B.; Hu, B.; Jiang, H.; et al. Respiratory bacterial pathogen spectrum among COVID-19 infected and non–COVID-19 virus infected pneumonia patients. Diagn. Microbiol. Infect. Dis. 2020, 98, 115199. [Google Scholar] [CrossRef]
- Zamora-Cintas, M.I.; López, D.J.; Blanco, A.C.; Rodriguez, T.M.; Segarra, J.M.; Novales, J.M.; Ferriol, M.F.R.; Maestre, M.M.; Sacristán, M.S. Coinfections among hospitalized patients with COVID-19 in the first pandemic wave. Diagn. Microbiol. Infect. Dis. 2021, 101, 115416. [Google Scholar] [CrossRef]
- Husain, M.; Valayer, S.; Poey, N.; Rondinaud, E.; d’Humières, C.; Visseaux, B.; Lariven, S.; Lescure, F.; Deconinck, L. Pulmonary bacterial infections in adult patients hospitalized for COVID-19 in standard wards. Infect. Dis. Now 2021, S2666-9919(21)00544-3. [Google Scholar] [CrossRef]
- Karami, Z.; Knoop, B.T.; Dofferhoff, A.S.M.; Blaauw, M.J.T.; Janssen, N.A.; van Apeldoorn, M.; Kerckhoffs, A.P.M.; van de Maat, J.S.; Hoogerwerf, J.J.; ten Oever, J. Few bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized patients with COVID-19: Results from a multicentre retrospective cohort study in The Netherlands. Infect. Dis. 2021, 53, 102–110. [Google Scholar] [CrossRef]
- Verhasselt, H.L.; Buer, J.; Dedy, J.; Ziegler, R.; Steinmann, J.; Herbstreit, F.; Brenner, T.; Rath, P.M. COVID-19 co-infection with Legionella pneumophila in 2 tertiary-care hospitals, Germany. Emerg. Infect. Dis. 2021, 27, 1535–1537. [Google Scholar] [CrossRef]
- Yang, S.; Hua, M.; Liu, X.; Du, C.; Pu, L.; Xiang, P.; Wang, L.; Liu, J. Bacterial and fungal co-infections among COVID-19 patients in intensive care unit. Microbes Infect. 2021, 23, 104806. [Google Scholar] [CrossRef]
- Alhuofie, S.T.S. An elderly COVID-19 patient with community-acquired Legionella and mycoplasma coinfections: A rare case report. Healthcare 2021, 9, 1598. [Google Scholar] [CrossRef]
- Anderson, B.; Nathani, A.; Ghamande, S.A. TP100—When coronavirus disease 2019 (COVID-19) pneumonia isn’t enough: A rare case of bacterial coinfection. Am. J. Respir. Crit. Care Med. 2021, 203, A4093. [Google Scholar]
- Argemí, G.; Somoza, M.; Andrés, M.; Llunell, A. SARS-CoV-2 and Legionella pneumophila coinfection. Enferm. Infecc. Microbiol. Clin. 2021; epub ahead of print. [Google Scholar] [CrossRef]
- Camões, J.; Lobato, C.T.; Beires, F.; Gomes, E. Legionella and SARS-CoV-2 coinfection in a patient with pneumonia—An outbreak in Northern Portugal. Cureus 2021, 13, e12476. [Google Scholar] [CrossRef] [PubMed]
- Chalker, V.J.; Adler, H.; Ball, R.; Naik, F.; Day, J.; Afshar, B.; Amin, A.K. Fatal co-infections with SARS-CoV-2 and Legionella pneumophila, England. Emerg. Infect. Dis. 2021, 27, 2950–2952. [Google Scholar] [CrossRef]
- Choappa, R.C.; Dabanch, J.; López, E. Probable caso de reinfección grave por SARS-CoV-2 con coinfección por Legionella pneumophila/probable case of severe SARS-CoV-2 reinfection with Legionella pneumophila co-infection. Rev. Chil. Infectol. 2021, 38, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Chihara, Y.; Satake, S.; Yone, A.; Makio, M.; Kitou, H.; Takeda, T. Co-infection with Legionella and SARS-CoV-2: A case report. JA Clin. Rep. 2021, 7, 62. [Google Scholar] [CrossRef]
- Subedi, Y.; Haas, C.J. Legionella coinfection in a patient with COVID-19 pneumonia. Cureus 2021, 13, e17356. [Google Scholar] [CrossRef]
- Cohen, R.; Finn, T.; Babushkin, F.; Geller, K.; Alexander, H.; Shapiro, M.; Uda, M.; Mostrchy, A.R.; Amash, R.; Shimoni, Z.; et al. High rate of bacterial respiratory tract co-infections upon admission amongst moderate to severe COVID-19 patients. Infect. Dis. 2021, 54, 134–144. [Google Scholar] [CrossRef]
- Farnham, A.; Alleyne, L.; Cimini, D.; Balter, S. Legionnaires’ disease incidence and risk factors, New York, NY, USA, 2002–2011. Emerg. Infect. Dis. 2014, 20, 1795–1802. [Google Scholar] [CrossRef]
- Nori, P.; Cowman, K.; Chen, V.; Bartash, R.; Szymczak, W.; Madaline, T.; Punjabi Katiyar, C.; Jain, R.; Aldrich, M.; Weston, G.; et al. Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge. Infect. Control. Hosp. Epidemiol. 2021, 42, 84–88. [Google Scholar] [CrossRef]
- Cohen, J.F.; Korevaar, D.A.; Matczak, S.; Chalumeau, M.; Allali, S.; Toubiana, J. COVID-19–related fatalities and intensive-care-unit admissions by age groups in Europe: A meta-analysis. Front. Med. 2021, 7, 560685. [Google Scholar] [CrossRef]
- Grasselli, G.; Pesenti, A.; Cecconi, M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: Early experience and forecast during an emergency response. JAMA 2020, 323, 1545–1546. [Google Scholar] [CrossRef] [Green Version]
- Doublet, P.; Khodr, A.; Kay, E.; Gomez-Valero, L.; Jarraud, S.; Buchrieser, C.; Ginevra, C. Molecular epidemiology, phylogeny and evolution of Legionella. Infect. Genet. Evol. 2016, 43, 108–122. [Google Scholar] [CrossRef]
- Riccardo, F.; Andrianou, X.; Bella, A.; del Manso, M.; Mateo Urdiales, A.; Fabiani, M.; Bellino, S.; Boros, S.; Cristina Rota, M.; Filia, A.; et al. Epidemia COVID-19—Aggiornamento nazionale 29 Dicembre 2020; Istituto Superiore Di Sanità (ISS): Rome, Italy, 2020; Available online: https://www.iss.it/primo-piano/-/asset_publisher/o4oGR9qmvUz9/content/id/5477037 (accessed on 14 February 2022).
- Robert Koch Institute. Coronavirus Disease 2019 (COVID-19) Daily Situation Report; Robert Koch Institute: Berlin, Germany, 2020; Available online: https://www.rki.de/EN/Content/infections/epidemiology/outbreaks/COVID-19/Situationsberichte_Tab.html (accessed on 14 February 2022).
- Santé Publique France, COVID-19: Point Épidémiologique Du 31 Décembre 2020; Santé Publique France: Paris, France, 2020; Available online: https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-31-decembre-2020#:~:text=Points%20cl%C3%A9s&text=Maintien%20du%20nombre%20de%20cas,r%C3%A9animation%20%C3%A0%20un%20niveau%20%C3%A9lev%C3%A9 (accessed on 14 February 2022).
- Hussain, K.M.; Alam, M.D.U.; Ahmad, N.T. Travel trouble with Legionella in the era of COVID-19: A case report. Cureus 2021, 13, e13632. [Google Scholar] [CrossRef] [PubMed]
- Scaturro, M.; Fontana, S.; Crippa, S.; Caporali, M.G.; Seyler, T.; Veschetti, E.; Villa, G.; Rota, M.C.; Ricci, M.L. An unusually long-lasting outbreak of community-acquired Legionnaires’ disease, 2005–2008, Italy. Epidemiol. Infect. 2015, 143, 2416–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jasper, A.S.; Musuuza, J.S.; Tischendorf, J.S.; Stevens, V.W.; Gamage, S.D.; Osman, F.; Safdar, N. Are fluoroquinolones or macrolides better for treating Legionella pneumonia? A systematic review and meta-analysis. Clin. Infect. Dis. 2021, 72, 1979–1989. [Google Scholar] [CrossRef]
- Goncalves Mendes Neto, A.; Lo, K.B.; Wattoo, A.; Salacup, G.; Pelayo, J.; DeJoy, R.; Bhargav, R.; Gul, F.; Peterson, E.; Albano, J.; et al. Bacterial infections and patterns of antibiotic use in patients with COVID-19. J. Med. Virol. 2021, 93, 1489–1495. [Google Scholar] [CrossRef]
- Verroken, A.; Scohy, A.; Gérard, L.; Wittebole, X.; Collienne, C.; Laterre, P.F. Co-infections in COVID-19 critically Ill and antibiotic management: A prospective cohort analysis. Crit. Care 2020, 24, 410. [Google Scholar] [CrossRef]
- Pérez-Lazo, G.; Silva-Caso, W.; del Valle-Mendoza, J.; Morales-Moreno, A.; Ballena-López, J.; Soto-Febres, F.; Martins-Luna, J.; Carrillo-Ng, H.; del Valle, L.J.; Kym, S.; et al. Identification of coinfections by viral and bacterial pathogens in COVID-19 hospitalized patients in Peru: Molecular diagnosis and clinical characteristics. Antibiotics 2021, 10, 1358. [Google Scholar] [CrossRef]
- Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M.; et al. Microbial co-infections in COVID-19: Associated microbiota and underlying mechanisms of pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef]
- Riccò, M.; Vezzosi, L.; Odone, A.; Signorelli, C. Invasive meningococcal disease on the workplaces: A systematic review. Reggio Emilia Acta Biomed. 2017, 88, 337–351. [Google Scholar] [CrossRef]
- Riccò, M.; Vezzosi, L.; Balzarini, F.; Mezzoiuso, A.G.; Ranzieri, S.; Vaccaro, F.G.; Odone, A.; Signorelli, C. Epidemiology of leprosy in Italy (1920–2019): A comprehensive review on existing data. Acta Biomed. 2019, 90, 7–14. [Google Scholar] [CrossRef]
- Esterhuizen, T.M.; Thabane, L. Con: Meta-analysis: Some key limitations and potential solutions. Nephrol. Dial. Transplant. 2016, 31, 882–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imrey, P.B. Limitations of meta-analyses of studies with high heterogeneity. JAMA Netw. Open 2020, 3, e1919325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, W.M.; Picot, N.; van Belkum, A. Laboratory tests for Legionnaire’s disease. Infect. Dis. Clin. N. Am. 2017, 31, 167–178. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Country | Timeframe | Setting | Total Sample (No.) | ICU (No., %) | Age (Years, Median) | Males (%) | Sampled for LD (No., %) | Methods | Design | Positive Cases (No., %) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Adler et al. [40] | 2020 | UK | March–April 2020 | ICU + normal ward | 195 | n.a. | n.a. | n.a. | 31, 15.9% | LUAT | Retrospective | 1, 0.5% |
Baskaran et al. [41] | 2021 | UK | March–May 2020 | ICU | 254 | 254, 100% | 59 | 64.5% | 254, 100% | LUAT | Retrospective | 3, 0.5% |
Chaudhry et al. [42] | 2022 | India | June 2020–January 2021 | ICU + normal ward | 194 | n.a. | 50 | 71.7% | 194, 100% | LUAT | Retrospective | 0, - |
Chen et al. [44] | 2021 | China | January–March 2020 | ICU + normal ward | 408 | n.a. | 61 | 55.9% | 45, 11,0% | PCR | Retrospective | 0, - |
Coenen et al. [46] | 2021 | Netherlands | February–March 2020 | ICU + normal ward | 281 | 46, 16.4% | 69 | 62.1% | 35, 12.5% | LUAT | Retrospective | 0, - |
Cohen et al. [72] | 2021 | Israel | June 2020–March 2021 | ICU + normal ward | 887 | 101, 11.4% | 69 | 86.4% | 115, 13.0% | PCR | Retrospective | 1, 0.9% |
Contou et al. [23] | 2020 | France | March–April 2020 | ICU | 92 | 100% | 61 | 68.8% | 88, 95.7% | PCR | Retrospective | 0, - |
He et al. [58] | 2020 | China | February 2020 | ICU + normal ward | 194 | n.a. | 70 | 64.0% | 194, 100% | PCR | Retrospective | 0, - |
Hughes et al. [26] | 2020 | UK | February–March 2020 | ICU + normal ward | 836 | n.a. | 64 | 64.3% | 246, 29.4% | LUAT | Retrospective | 0, - |
Husain et al. [60] | 2021 | France | February–April 2020 | Only non ICU | 784 | n.a. | 64 | 71.7% | 491, 62.4% | LUAT | Retrospective | 0, - |
Ishiguro et al. [57] | 2021 | Japan | February 2020–January 2021 | ICU + normal ward | 298 | n.a. | 61 | 57.5% | 298, 100% | LUAT | Retrospective | 2, 0.7% |
Karami et al. [61] | 2021 | Netherlands | March–May 2020 | ICU + normal ward | 925 | n.a. | 65 | 75.6% | 199, 21.5% | LUAT | Retrospective | 0, - |
Kolenda et al. [51] | 2020 | France | March–April 2020 | ICU | 99 | 100% | 66 | 69.0% | 99, 100% | PCR | Prospective | 1, 1.0% |
Paparoupa et al. [53] | 2021 | Germany | March–November 2020 | ICU | 102 | 100% | 65 | 71.0% | 102, 100% | PCR | Retrospective | 0, - |
Rothe et al. [48] | 2021 | Germany | February–April 2020 | ICU + normal ward | 140 | 106, 40.0% | 69 | 64.7% | 140, 100% | LUAT | Retrospective | 0, - |
Rothe et al. [49] | 2021 | Germany | March 2020–March 2021 | ICU + normal ward | 200 | 47, 23.5% | 68 | 61.2% | 200, 100% | PCR | Retrospective | 3, 1.5% |
Rouzé et al. [24] | 2021 | EU (various countries) | February–March 2020 | ICU | 568 | 100% | 59 | 73.0% | 55, 9.7% | LUAT | Prospective | 0, - |
Scott et al. [52] | 2022 | USA | February–May 2020 | ICU + normal ward | 1389 | 327, 23.5% | 61 | 79.0% | 1050, 75.6% | LUAT | Retrospective | 5, 0.4% |
Søgaard et al. [50] | 2021 | Switzerland | February–May 2020 | ICU + normal ward | 220 | 41, 18.6% | n.a. | n.a. | 162, 73.6% | LUAT | Retrospective | 0, - |
Soto et al. [54] | 2021 | Peru | Septmber–December 2020 | ICU + normal ward | 93 | 29, 31.1% | 62 | 71.0% | 69, 74.2% | PCR | Retrospective | 0, - |
Sreenath et al. [43] | 2021 | India | June 2020–January 2021 | ICU + normal ward | 191 | 139, 72.8% | 48 | 48.0% | 191, 100% | PCR | Retrospective | 1, 0.5% |
Townsend et al. [55] | 2020 | Ireland | March–April 2020 | ICU + normal ward | 117 | 40, 34.2% | 45 | 51.0% | 84, 71.8% | LUAT | Retrospective | 0, - |
Verhasselt et al. [62] | 2021 | Germany | March–July 2020 | ICU + normal ward | 93 | 40, 43.0% | 63 | 66.7% | 93, 100% | LUAT | Retrospective | 1, 1.1% |
Wang et al. [56] | 2021 | UK | March–April 2020 | ICU + normal ward | 1396 | 226, 16.2% | 59 | 63.5% | 308, 22.1% | LUAT | Retrospective | 0, - |
Yang et al. [63] | 2021 | China | January–April 2020 | ICU | 20 | 100% | 50 | 42.6% | 20, 100% | PCR | Retrospective | 0, - |
Zamora-Cintas et al. [59] | 2021 | Spain | March–May 2020 | ICU + normal ward | 703 | 15, 7.7% | 61 | 45.0% | 15, 2.1% | LUAT | Retrospective | 0, - |
Zhu et al. [45] | 2020 | China | February–March 2020 | ICU + normal ward | 257 | 17, 6.6% | 51 | 53.7% | 257, 100% | PCR | Retrospective | 0, - |
Sampled Population (No. 10,936, %) | No. of Studies (No. 27, %) | No. of Samples (No. 5035, %) | Positive Cases (No. 18, %) | Prevalence of L. pneumophila RR (95% CI) | |
---|---|---|---|---|---|
Timeframe | |||||
first semester, 2020 | 9073, 83.0% | 21, 77.8% | 3968, 78.8% | 11, 61.1% | 1.000 (REFERENCE) |
Subsequent months | 1863, 17.0% | 6, 22.2% | 1067, 21.2% | 7, 38.9% | 6.508 (1.909; 22.190) |
Area | |||||
European Countries | 7005, 64.1% | 17, 63.0% | 2602, 51.7% | 9, 50.0% | 1.000 (REFERENCE) |
United States | 1389, 12.7% | 1, 3.7% | 1050, 20.0% | 5, 27.8% | 1.377 (0.462; 4.098) |
China | 879, 8.0% | 4, 14.8% | 516, 10.2% | 0, - | 0.280 (0.016; 4.825) |
India | 385, 3.5% | 2, 7.4% | 385, 7.6% | 1, 5.6% | 0.750 (0.095; 5.911) |
Japan | 298, 2.7% | 1, 3.7% | 298, 5.9% | 2, 11.1% | 1.940 (0.421; 8.938) |
Israel | 887, 8.1% | 1, 3.7% | 115, 2.3% | 1, 5.6% | 2.514 (0.321; 19.676) |
Peru | 93, 0.9% | 1, 3.7% | 69, 1.4% | 0, - | 2.095 (0.122; 35.776) |
Clinical Setting | |||||
ICU only | 1135, 10.4% | 6, 22.2% | 618, 12.3% | 4, 22.2% | 1.000 (REFERENCE) |
ICU + non intensive settings | 9017, 82.5% | 20, 74.1% | 3926, 78.0% | 14, 77.8% | 0.551 (0.182; 1.668) |
Non intensive settings only | 784, 7.2% | 1, 3.7% | 491, 9.8% | 0, - | 0.157 (0.008; 2.969) |
Study design | |||||
Retrospective | 10,269, 93.9% | 25, 92.6% | 4881, 96.9% | 17, 94.4% | 1.000 (REFERENCE) |
Prospective | 667, 6.1% | 2, 7.3% | 154, 3.1% | 1, 5.6% | 1.864 (0.250; 13.920) |
Diagnostic procedure | |||||
LUAT | 8396, 76.7% | 16, 59.3% | 3655, 72.6% | 12, 66.7% | 1.000 (REFERENCE) |
PCR | 2543, 23.3% | 11, 40.7% | 1380, 27.4% | 6, 33.3% | 1.324 (0.497; 3.521) |
Total Incident Cases | ||
---|---|---|
IRR | 95% CI | |
Studies performed during the “First Wave” | 0.796 | 0.735; 0.863 |
Studies performed outside of Europe | 0.609 | 0.564; 0.658 |
Diagnosis through Urinary Antigens | 0.688 | 0.622; 0.760 |
Studies on ICU only | 9.009 | 6.923; 11.725 |
Median Age (+1 year) | 1.055 | 1.047; 1.062 |
Male gender (+1%) | 1.119 | 1.112; 1.125 |
Sampling rate over incident cases (+1%) | 1.042 | 1.039; 1.044 |
Variable | No. 19, % | Average ± SD |
---|---|---|
Male gender | 16, 84.2% | |
Age (years) | 61.9 ± 16.1 | |
Age ≥ 65 years | 11, 57.9% | |
Country of origin | ||
France | 7, 36.8% | |
Japan | 2, 10.5% | |
UK | 2, 10.5% | |
Chile | 1, 5.3% | |
Italy | 1, 5.3% | |
Germany | 1, 5.3% | |
Portugal | 1, 5.3% | |
Saudi Arabia | 1, 5.3% | |
Spain | 1, 5.3% | |
USA | 1, 5.3% | |
Settings of the infection, SARS-CoV-2 * | ||
Community | 13, 68.4% | |
Travel | 3, 15.8% | |
Hospital | 2, 10.5% | |
Undefined | 2, 10.5% | |
Settings of the infection, LD * | ||
Community | 13, 68.4% | |
Travel | 3, 15.8% | |
Hospital | 2, 10.5% | |
Undefined | 1, 5.3% | |
Other | 2, 10.5% | |
Admission to the ICU | 16, 84.2% | |
Length of stay in ICU (days) ** | 17.7 ± 8.0 | |
Intubation ** | 7, 36.8% | |
Length of intubation (days) ** | 12.9 ± 7.6 | |
Risk factors | ||
Obesity | 3, 15.8% | |
Hypertension | 4, 21.1% | |
Steroid Therapy | 5, 26.3% | |
Smoking History | 5, 26.3% | |
Cardiovascular Disease | 6, 31.6% | |
Chronic Respiratory Disease | 1, 5.3% | |
Chronic Kidney Disease | 2, 10.5% | |
Diabetes | 4, 21.1% | |
Cancer | 3, 15.7% | |
Asthma | 2, 10.5% | |
Rheumatoid Arthritis | 1, 5.3% | |
Number of Risk Factors > 1 | 15, 78.9% | |
Outcome | ||
Discharge | 9, 47.4% | |
Ongoing | 5, 26.3% | |
Death | 5, 26.3% |
Variable | ICU (No. 16, %) | p Value | Death (No. 5, %) | p Value |
---|---|---|---|---|
Male gender | 13, 81.3% | 1.000 | 3, 60.0% | 0.155 |
Age ≥ 65 years | 10, 62.5% | 0.546 | 5, 100% | 0.045 |
European Area | 11, 68.8% | 1.000 | 4, 80.0% | 1.000 |
Community Settings of SARS-CoV-2 infection | 10, 62.5% | 0.517 | 3, 60.0% | 1.000 |
Community Settings of LD infection | 10, 62.5% | 0.517 | 3, 60.0% | 1.000 |
Risk factors | ||||
Obesity | 3, 18.8% | 1.000 | 0, - | 0.530 |
Hypertension | 4, 25.0% | 1.000 | 2, 40.0% | 0.272 |
Steroid Therapy | 5, 31.3% | 0.530 | 2, 40.0% | 0.570 |
Smoking History | 5, 31.3% | 0.530 | 1, 20.0% | 1.000 |
Cardiovascular Disease | 6, 37.5% | 0.517 | 2, 40.0% | 1.000 |
Chronic Respiratory Disease | 1, 6.3% | 1.000 | 0, - | 1.000 |
Chronic Kidney Disease | 2, 12.5% | 1.000 | 2, 40.0% | 0.058 |
Diabetes | 3, 18.8% | 0.530 | 1, 20.0% | 1.000 |
Cancer | 3, 18.8% | 1.000 | 1, 20.0% | 1.000 |
Asthma | 2, 12.5% | 1.000 | 1, 20.0% | 0.468 |
Rheumatoid Arthritis | 1, 6.3% | 1.000 | 0, - | 1.000 |
Any Risk Factor | 14, 87.5% | 0.097 | 5, 100% | 0.530 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccò, M.; Ferraro, P.; Peruzzi, S.; Zaniboni, A.; Ranzieri, S. SARS-CoV-2–Legionella Co-Infections: A Systematic Review and Meta-Analysis (2020–2021). Microorganisms 2022, 10, 499. https://doi.org/10.3390/microorganisms10030499
Riccò M, Ferraro P, Peruzzi S, Zaniboni A, Ranzieri S. SARS-CoV-2–Legionella Co-Infections: A Systematic Review and Meta-Analysis (2020–2021). Microorganisms. 2022; 10(3):499. https://doi.org/10.3390/microorganisms10030499
Chicago/Turabian StyleRiccò, Matteo, Pietro Ferraro, Simona Peruzzi, Alessandro Zaniboni, and Silvia Ranzieri. 2022. "SARS-CoV-2–Legionella Co-Infections: A Systematic Review and Meta-Analysis (2020–2021)" Microorganisms 10, no. 3: 499. https://doi.org/10.3390/microorganisms10030499
APA StyleRiccò, M., Ferraro, P., Peruzzi, S., Zaniboni, A., & Ranzieri, S. (2022). SARS-CoV-2–Legionella Co-Infections: A Systematic Review and Meta-Analysis (2020–2021). Microorganisms, 10(3), 499. https://doi.org/10.3390/microorganisms10030499