Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tested Strain
2.2. Main Materials
2.3. TOR Gene Cloning
2.4. Nutritional Treatments
2.4.1. Medium Types
- (1)
- Carbon Sources
- (2)
- Nitrogen Sources
2.4.2. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Biomass in Liquid Culture
2.4.3. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Growth Rate on Solid Medium
2.4.4. Effects of Different Nutritional Treatments on the L. qinlingensis TOR Gene Expression
2.5. Terpenoid Treatments
2.5.1. Medium Types
2.5.2. Effects of Different Terpenoid Treatments on L. qinlingensis Mycelial Growth Rate
2.5.3. Effects of Different Terpenoid Treatments on the L. qinlingensis TOR Gene Expression
2.6. Statistical Analysis
3. Results
3.1. Sequence Similarity and Phylogenetic Analysis of TOR Gene in Fungi Species
3.1.1. Sequence Similarity of TOR Gene
3.1.2. Phylogenetic Analysis of TOR Genes from Fungi Species
3.2. Nutritional Treatments
3.2.1. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Biomass in Liquid Medium
3.2.2. Effects of Different Nutritional Treatments on L. qinlingensis Mycelial Growth Rate in Solid Medium
3.2.3. Effects of Different Nutritional Treatments on the L. qinlingensis TOR Gene Expression
3.3. Terpenoid Treatments
3.3.1. Effects of Different Terpenoid Treatments on L. qinlingensis Mycelial Growth Rate in Solid Medium
3.3.2. Effects of Different Terpenoid Treatments on the L. qinlingensis TOR Gene Expression
3.4. The Relationships between Different Nutrients and TOR
3.4.1. Relationships between Carbon Source, Host Nutrition and TOR
3.4.2. Relationship between Nitrogen Source and TOR
3.5. Relationship between Terpenoids and TOR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Seidl, R. Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Huo, L.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [Google Scholar] [CrossRef]
- Paine, T.D.; Raffa, K.F.; Harrington, T.C. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol. 1997, 42, 179–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Six, D.L. Niche construction theory can link bark beetle-fungus symbiosis type and colonization behavior to large scale causal chain-effects. Curr. Opin. Insect Sci. 2020, 39, 27–34. [Google Scholar] [CrossRef]
- Hofstetter, R.W.; Dinkins-Bookwalter, J.; Davis, T.S.; Klepzig, K.D. Symbiotic Associations of Bark Beetles. In Bark Beetles, Biology and Ecology of Native and Invasive Species; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 6, pp. 209–245. [Google Scholar] [CrossRef]
- Lehenberger, M.; Benkert, M.; Biedermann, P.H. Ethanol-enriched substrate facilitates ambrosia beetle fungi, but inhibits their pathogens and fungal symbionts of bark beetles. Front. Microbiol. 2021, 11, 3487. [Google Scholar] [CrossRef] [PubMed]
- Hulcr, J.; Barnes, I.; De Beer, Z.W.; Duong, T.A.; Gazis, R.; Johnson, A.J.; Villari, C. Bark beetle mycobiome: Collaboratively defined research priorities on a widespread insect-fungus symbiosis. Symbiosis 2020, 81, 101–113. [Google Scholar] [CrossRef]
- Chen, H.; Tang, M. Microstructure of blue-stain fungi (Leptographium terebrantis) associated with Dendroctonus. armandi in the xylem tissue of Pinus armandi. Acta Bot. Boreali-Occident. Sin. 2002, 22, 1391–1395. (In Chinese) [Google Scholar]
- Pu, X.J.; Chen, H.; Wang, S.J. Influences of Leptographium qinglingensis on metabolism of Pinus armandi. J. Northwest For. Univ. 2008, 23, 109. Available online: http://xblxb.paperopen.com/oa/darticle.aspx?type=view&id=80225 (accessed on 14 January 2022). (In Chinese).
- Hýsek, Š.; Löwe, R.; Turčáni, M. What happens to wood after a tree is attacked by a bark beetle? Forests 2021, 12, 1163. [Google Scholar] [CrossRef]
- Kandasamy, D.; Gershenzon, J.; Andersson, M.N.; Hammerbacher, A. Volatile organic compounds influence the interaction of the Eurasian spruce bark beetle (Ips typographus) with its fungal symbionts. ISME J. 2019, 13, 1788–1800. [Google Scholar] [CrossRef] [Green Version]
- Koontz, M.J.; Latimer, A.M.; Mortenson, L.A.; Fettig, C.J.; North, M.P. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Li, X.J.; Gao, J.M.; Chen, H.; Zhang, A.L.; Tang, M. Toxins from a symbiotic fungus, Leptographium qinlingensis associated with Dendroctonus armandi and their in vitro toxicities to Pinus armandi seedling. Eur. J. Plant Pathol. 2012, 134, 239–247. [Google Scholar] [CrossRef]
- Mergl, V.; Zemánek, T.; Šušnjar, M.; Klepárník, J. Efficiency of harvester with the debarking head at logging in spruce stands affected by bark beetle outbreak. Forests 2021, 12, 1348. [Google Scholar] [CrossRef]
- Dai, L.; Gao, H.; Chen, H. Expression levels of detoxification enzyme genes from Dendroctonus armandi (Coleoptera: Curculionidae) fed on a solid diet containing pine phloem and terpenoids. Insects 2021, 12, 926. [Google Scholar] [CrossRef] [PubMed]
- Ning, H.; Tang, M.; Chen, H. Impact of climate change on potential distribution of Chinese white pine beetle Dendroctonus armandi in China. Forests 2021, 12, 544. [Google Scholar] [CrossRef]
- Dai, L.; Ma, M.; Wang, C.; Shi, Q.; Zhang, R.R.; Chen, H. Cytochrome P450s from the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae): Expression profifiles of different stages and responses to host allelochemicals. Insect Biochem. Mol. Biol. 2015, 65, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yu, J.; Wang, C.; Chen, H. Cellulolytic bacteria associated with the gut of Dendroctonus armandi larvae (Coleoptera: Curculionidae: Scolytinae). Forests 2014, 5, 455–465. [Google Scholar] [CrossRef]
- Chen, H.; Tang, M. Spatial and temporal dynamics of bark beetles in Chinese white pine in Qinling Mountains of Shaanxi Province, China. Environ. Entomol. 2007, 36, 1124–1130. [Google Scholar] [CrossRef]
- Tang, M.; Chen, H. Effect of symbiotic fungi of Dendroctonus armandi on host trees. Sci. Silvae Sin. 1999, 35, 63–66. Available online: http://www.linyekexue.net/CN/Y1999/V35/I6/63 (accessed on 14 January 2022). (In Chinese).
- Dai, L.; Chen, H.; Li, Z.; Yu, J.; Ma, M.; Zhang, R.; Pham, T. The CYP51F1 gene of Leptographium qinlingensis: Sequence characteristic, phylogeny and transcript levels. Int. J. Mol. Sci. 2015, 16, 12014–12034. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.; Chen, H.; Yu, J.; Dai, L.; Zhang, R.; Trang Vu, T.Q. The Differential effects of the blue-stain fungus Leptographium qinlingensis on monoterpenes and sesquiterpenes in the stem of Chinese white pine (Pinus armandi) saplings. Forests 2014, 5, 2730–2749. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, J.J.; Breuil, C. Pathogenicity of Leptographium longiclavatum associated with Dendroctonus ponderosae to Penvironmentinus contorta. Can. J. For. Res. 2006, 36, 2864–2872. [Google Scholar] [CrossRef]
- Dai, L.; Zheng, J.; Ye, J.; Chen, H. Phylogeny of Leptographium qinlingensis cytochrome P450 genes and transcription levels of six CYPs in response to different nutrition media or terpenoids. Arch. Microbiol. 2021, 204, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.; Leal, I.; Feau, N.; Dale, A.; Uzunovic, A.; Hamelin, R.C. Molecular assays to detect the presence and viability of Phytophthora ramorum and Grosmannia clavigera. PLoS ONE 2020, 15, e0221742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiGuistini, S.; Wang, Y.; Liao, N.Y.; Taylor, G.; Tanguay, P.; Feau, N.; Henrissat, B.; Chan, S.K.; Hesse-Orce, U.; Alamouti, S.M. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc. Natl. Acad. Sci. USA 2011, 108, 2504–2509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Anastacio, G.R.; Ishangulyyeva, G.; Rodriguez-Ramos, J.C.; Erbilgin, N. Mutualistic Ophiostomatoid fungi equally benefit from both a bark beetle pheromone and host tree volatiles as nutrient sources. Microb. Ecol. 2021, 81, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Lushchak, O.; Strilbytska, O.; Piskovatska, V. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech. Ageing Dev. 2017, 164, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Chakraborty, T.K.; Piscopio, A.D.; Minowa, N.; Bertinato, P. Total synthesis of rapamycin. J. Am. Chem. Soc. 1993, 115, 4419–4420. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, L.; Gao, L.; Dong, L.; Wen, H.; Song, X.; Wang, J. Rapamycin inhibits pathogen transmission in mosquitoes by promoting immune activation. PLoS Pathog. 2021, 17, e1009353. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wang, S. The role of rapamycin in health span extension via the delay of organ aging. Ageing Res. Rev. 2021, 70, 101376. [Google Scholar] [CrossRef]
- Akman, O.; Briggs, S.W.; Mowrey, W.B.; Moshé, S.L.; Galanopoulou, A.S. Antiepileptogenic effects of rapamycin in a model of infantile spasms due to structural lesions. Epilepsy 2021, 62, 1985–1999. [Google Scholar] [CrossRef]
- Abraham, R.T.; Wiederrecht, G.J. Immunopharmacology of rapamycin. Annu. Rev. Immunol. 1996, 14, 483–510. [Google Scholar] [CrossRef]
- Moirangthem, R.; Kumar, K.; Kaur, R. Two functionally redundant FK506-binding proteins regulate multidrug resistance gene expression and govern azole antifungal resistance. Antimicrob. Agents Chemother. 2021, 65, e02415-20. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Shi, P.; Zhao, X.; Shen, P.; Feng, Y.; Lu, F.; Shi, D. Cell synchronization by Rapamycin improves the developmental competence of buffalos (Bubalus bubalis) somatic cell nuclear transfer embryos. Reprod. Domest. Anim. 2021, 56, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, T.; Song, Y.; Luo, X.; Datla, R.; Ren, M. Target of rapamycin controls hyphal growth and pathogenicity through FoTIP4 in Fusarium oxysporum. Mol. Plant Pathol. 2021, 22, 1239–1255. [Google Scholar] [CrossRef] [PubMed]
- Ariño, R.; Hall, M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189, 1177–1201. [Google Scholar] [CrossRef] [Green Version]
- Barve, G.; Manjithaya, R. Cross-talk between autophagy and sporulation in Saccharomyces Cerevisiae. Yeast 2021, 38, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Heitman, J.; Movva, N.R.; Hiestand, P.C.; Hall, M.N. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1991, 88, 1948–1952. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kwon, W.; Park, S.; Kim, W.; Park, J.K.; Han, J.E.; Choi, S.K. Anticancer effects of veratramine via the phosphatidylinositol-3-kinase/serine-threonine kinase/mechanistic target of rapamycin and its downstream signaling pathways in human glioblastoma cell lines. Life Sci. 2021, 288, 120170. [Google Scholar] [CrossRef]
- Ariño, J.; Velázquez, D.; Casamayor, A. Ser/Thr protein phosphatases in fungi: Structure, regulation and function. Microb. Cell 2019, 6, 217. [Google Scholar] [CrossRef] [Green Version]
- Dennis, P.B.; Fumagalli, S.; Thomas, G. Target of rapamycin (TOR): Balancing the opposing forces of protein synthesis and degradation. Curr. Opin. Genet. Dev. 1999, 9, 49–54. [Google Scholar] [CrossRef]
- Layoun, A.; Goldberg, A.A.; Baig, A.; Eng, M.; Attias, O.; Nelson, K.; Schmeing, T.M. Regulation of protein kinase Cδ nuclear import and apoptosis by mechanistic target of rapamycin complex-1. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Schmelzle, T.; Hall, M.N. TOR, a central controller of cell growth. Cell 2000, 103, 253–262. [Google Scholar] [CrossRef] [Green Version]
- Fingar, D.C.; Blenis, J. Target of rapamycin (TOR): An integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 2004, 23, 3151–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sommer, L.A.M.; Dames, S.A. Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase ‘target of rapamycin’ by NMR and CD spectroscopy. FEBS Lett. 2014, 588, 1755–1766. [Google Scholar] [CrossRef] [Green Version]
- Reinke, A.; Chen, J.C.Y.; Aronova, S. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem. 2006, 281, 31616–31626. [Google Scholar] [CrossRef]
- Kasahara, K. Physiological function of FKBP12, a primary target of rapamycin/FK506: A newly identified role in transcription of ribosomal protein genes in yeast. Curr. Genet. 2021, 67, 383–388. [Google Scholar] [CrossRef]
- Morozumi, Y.; Shiozaki, K. Conserved and divergent mechanisms that control TORC1 in yeasts and mammals. Genes 2021, 12, 88. [Google Scholar] [CrossRef]
- So, Y.S.; Lee, D.G.; Idnurm, A.; Ianiri, G.; Bahn, Y.S. The TOR pathway plays pleiotropic roles in growth and stress responses of the fungal pathogen Cryptococcus neoformans. Genetics 2019, 212, 1241–1258. [Google Scholar] [CrossRef]
- Werth, E.G.; Mcconnell, E.W.; Lianez, I.C. Investigating the effect of target of rapamycin kinase inhibition on the Chlamydomonas reinhardtii phosphoproteome: From known homologs to new targets. New Phytol. 2019, 221, 247–260. [Google Scholar] [CrossRef] [Green Version]
- O’Leary, B.M.; Oh, G.G.K.; Lee, C.P.; Millar, A.H. Metabolite regulatory interactions control plant respiratory metabolism via Target of Rapamycin (TOR) kinase activation. Plant Cell 2019, 32, 666–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julien, C.; Faiza, T.; Jaideep, M.; Adnane, S. Integration of growth and cell size via the TOR pathway and the Dot6 transcription factor in Candida albicans. Genetics 2019, 211, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Jessica, J.; Umarah, M.; Andrea, L.; Camila, C.; Andrew, W.; Dirk, S.; Patrick, G. The target of rapamycin kinase affects biomass accumulation and cell cycle progression by altering carbon/nitrogen balance in synchronized Chlamydomonas reinhardtii cells. Plant J. 2018, 93, 355–376. [Google Scholar] [CrossRef] [Green Version]
- Maegawa, K.; Takii, R.; Ushimaru, T. Evolutionary conservation of TORC1 components, TOR, Raptor, and LST8, between rice and yeast. Mol. Genet. Genom. 2015, 290, 2019–2030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanigawa, M.; Yamamoto, K.; Nagatoishi, S.; Nagata, K.; Noshiro, D.; Noda, N.N.; Maeda, T. A glutamine sensor that directly activates TORC1. Commun. Biol. 2021, 4, 1–11. [Google Scholar] [CrossRef]
- Deprez, M.A.; Eskes, E.; Winderickx, J.; Wilms, T. The TORC1-Sch9 pathway as a crucial mediator of chronological lifespan in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2018, 18, foy048. [Google Scholar] [CrossRef]
- Novarina, D.; Guerra, P.; Milias-Argeitis, A. Vacuolar localization via the N-terminal domain of Sch9 is required for TORC1-dependent phosphorylation and downstream signal transduction. J. Mol. Biol. 2021, 433, 167326. [Google Scholar] [CrossRef]
- Fukuda, T.; Shiozaki, K. The Rag GTPase-Ragulator complex attenuates TOR complex 1 signaling in fission yeast. Autophagy 2018, 14, 1105–1106. [Google Scholar] [CrossRef]
- Laribee, R.N.; Weisman, R. Nuclear functions of TOR: Impact on transcription and the epigenome. Genes 2020, 11, 641. [Google Scholar] [CrossRef]
- Wullschleger, S.; Loewith, R.; Oppliger, W. Molecular organization of target of rapamycin complex 2. J. Biol. Chem. 2005, 280, 30697–30704. [Google Scholar] [CrossRef] [Green Version]
- Cohen, A.; Habib, A.; Laor, D.; Yadav, S.; Kupiec, M.; Weisman, R. TOR complex 2 in fission yeast is required for chromatin-mediated gene silencing and assembly of heterochromatic domains at subtelomeres. J. Biol. Chem. 2018, 293, 8138–8150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, M.N.; Thorner, J. Regulation of TORC2 function and localization by Rab5 GTPases in Saccharomyces cerevisiae. Cell Cycle 2019, 18, 1084–1094. [Google Scholar] [CrossRef] [PubMed]
- Neufeld, T.P. TOR-dependent control of autophagy: Biting the hand that feeds. Curr. Opin. Cell Biol. 2010, 22, 157–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernansaiz-Ballesteros, R.D.; Földi, C.; Cardelli, L.; Nagy, L.G.; Csikász-Nagy, A. Evolution of opposing regulatory interactions underlies the emergence of eukaryotic cell cycle checkpoints. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Morozumi, Y.; Hishinuma, A.; Furusawa, S.; Sofyantoro, F.; Tatebe, H.; Shiozaki, K. Fission yeast TOR complex 1 phosphorylates Psk1 through an evolutionarily conserved interaction mediated by the TOS motif. J. Cell Sci. 2021, 134, jcs258865. [Google Scholar] [CrossRef]
- Stracka, D.; Jozefczuk, S.; Rudroff, F.; Sauer, U.; Hall, M.N. Nitrogen source activates TOR (target of rapamycin) complex 1 via glutamine and independently of Gtr/Rag proteins. J. Biol. Chem. 2014, 289, 25010–25020. [Google Scholar] [CrossRef] [Green Version]
- Peter, G.J.; Düring, L.; Ahmed, A. Carbon catabolite repression regulates amino acid permeases in Saccharomyces cerevisiae via the TOR signaling pathway. J. Biol. Chem. 2006, 281, 5546–5552. [Google Scholar] [CrossRef] [Green Version]
- Keeling, C.I.; Bohlmann, J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol. 2006, 170, 657–675. [Google Scholar] [CrossRef]
- Ott, D.S.; Yanchuk, A.D.; Huber, D.P.W.; Wallin, K.F. Genetic variation of lodgepole pine, Pinus contorta var. latifolia, chemical and physical defenses that affect mountain pine beetle, Dendroctonus ponderosae, attack and tree mortality. J. Chem. Ecol. 2011, 37, 1002–1012. [Google Scholar] [CrossRef]
Key Reagents | Reagent Source |
---|---|
Total RNA Extractor (Trizol) | Sangon Biotech (Shanghai) Co., Ltd. |
DH5 α Competent cell | Sangon Biotech (Shanghai) Co., Ltd. |
HiScript® III 1st Strand cDNA Synthesis Kit (+gDNA wiper) | Vazyme Biotech Co., Ltd. |
HiScript® III RT SuperMix for qPCR (+gDNA wiper) | Vazyme Biotech Co., Ltd. |
ChamQ Universal SYBR qPCR Master Mix | Vazyme Biotech Co., Ltd. |
TreliefTM SoSoo Cloning Kit Ver.2 | Tsingke Biotechnology Co., Ltd. |
E.Z.N.A. Gel Extraction Kit | Omega Bio-Tek Co., Ltd. |
DMSO/turpentine | Moklin Biotechnology Co., Ltd. |
(+)-α-pinene/(−)-α-pinene | Shanghai Aladdin Bio-Technology Co., Ltd. |
(−)-β-pinene/(+)-3-carene | Shanghai Aladdin Bio-Technology Co., Ltd. |
(+)-limonene/mix-monoterpene | Shanghai Aladdin Bio-Technology Co., Ltd. |
P. armandii Franch | Northwest A&F University (Yangling, China) |
P. tabuliformis Carr | Northwest A&F University (Yangling, China) |
Gene (Primer) | |
TOR: Fragment amplification | |
F: GGAACTTCTCCCGGGTCATG | Sangon Biotech (Shanghai) Co., Ltd. |
R: GGTGGCCATCCTGTGGCACG | Sangon Biotech (Shanghai) Co., Ltd. |
q-PCR F: TCTCCTTAACATTGAGCACCG | Sangon Biotech (Shanghai) Co., Ltd. |
R: ATAGCCAAACACCTCCACC | Sangon Biotech (Shanghai) Co., Ltd. |
EF1: Fragment amplification | |
F: GCTGCTGTCCGTGTTGAA | Sangon Biotech (Shanghai) Co., Ltd. |
R: GGTTGTAGCCGACCTTCTT | Sangon Biotech (Shanghai) Co., Ltd. |
q-PCR F: CTTGGTGGTGTCCATCTTGTT | Sangon Biotech (Shanghai) Co., Ltd. |
R: CCGCTGGTACGGGTGAGTT | Sangon Biotech (Shanghai) Co., Ltd. |
Gene | Blastp Matches in Gene Bank | Identity% | |
---|---|---|---|
Species | Accession No. | ||
TOR2-kinase | Ophiostoma piceae | EPE03876.1 | 93.35 |
TOR-kinase | Sporothrix brasiliensis | XP_040620360.1 | 92.75 |
TOR-kinase | Grosmannia clavigera | XP_014169801.1 | 88.22 |
TOR-kinase | Sporothrix insectorum | OAA65494.1 | 88.22 |
TOR2-kinase | Fusarium culmorum | PTD02212.1 | 84.89 |
TOR2-kinase | Fusarium graminearum | PCD20916.1 | 84.89 |
TOR2-kinase | Colletotrichum chlorophyti | OLN94152.1 | 85.50 |
TOR2-kinase | Fusarium oxysporum | KAG7412775.1 | 84.59 |
TOR-kinase-like | Trichoderma longibrachiatum | PTB77317.1 | 85.50 |
TOR 2-kinase | Colletotrichum tanaceti | TKW85705.1 | 85.80 |
TOR 2-kinase | Colletotrichum incanum | KZL74444.1 | 85.50 |
TOR-kinase | Trichoderma parareesei | OTA01228.1 | 85.50 |
TOR 2-kinase | Colletotrichum aenigma | XP_037171942.1 | 85.50 |
TOR 2-kinase | Colletotrichum asianum | KAF0318508.1 | 85.50 |
TOR 2-kinase | Colletotrichum shisoi | TQN71010.1 | 85.80 |
TOR-kinase-like | Trichoderma reesei | XP_006964956.1 | 85.50 |
TOR 2-kinase | Colletotrichum siamense | XP_036488359.1 | 85.50 |
TOR 2-kinase | Colletotrichum viniferum | KAF4919045.1 | 85.50 |
TOR 2-kinase | Colletotrichum camelliae | KAH0430715.1 | 85.50 |
TOR 2-kinase | Colletotrichum incanum | OHW92381.1 | 85.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.; Gan, T.; Tang, M.; Chen, H. Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms 2022, 10, 503. https://doi.org/10.3390/microorganisms10030503
An H, Gan T, Tang M, Chen H. Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms. 2022; 10(3):503. https://doi.org/10.3390/microorganisms10030503
Chicago/Turabian StyleAn, Huanli, Tian Gan, Ming Tang, and Hui Chen. 2022. "Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis" Microorganisms 10, no. 3: 503. https://doi.org/10.3390/microorganisms10030503
APA StyleAn, H., Gan, T., Tang, M., & Chen, H. (2022). Molecular Mechanism of Overcoming Host Resistance by the Target of Rapamycin Gene in Leptographium qinlingensis. Microorganisms, 10(3), 503. https://doi.org/10.3390/microorganisms10030503