Whole Genome Sequence Analysis of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Strains in Kuwait
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Identification and Antimicrobial Susceptibility
2.2. Whole Genome Sequencing
2.3. Bioinformatics Analysis
2.4. Antimicrobial Resistance Gene Typing
3. Results
3.1. Characteristics of Participants
3.2. Genome Accession Numbers
3.3. Antibiotic Sensitivity Test
3.4. Whole Genome Sequencing and In Silico Data Analysis
3.5. Antimicrobial Resistance Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2018, 36, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Tan, T.T. “Future” threat of gram-negative resistance in Singapore. Ann. Acad. Med. Singap. 2008, 37, 884–890. [Google Scholar]
- Paterson, D.L. Resistance in gram-negative bacteria: Enterobacteriaceae. Am. J. Infect. Control 2006, 34, S20–S73. [Google Scholar] [CrossRef]
- Bush, K.; Fisher, J.F. Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annu. Rev. Microbiol. 2011, 65, 455–478. [Google Scholar] [CrossRef]
- Patrier, J.; Timsit, J.F. Carbapenem use in critically ill patients. Curr. Opin. Infect. Dis. 2020, 33, 86–91. [Google Scholar] [CrossRef]
- Tängdén, T.; Giske, C. Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: Clinical perspectives on detection, treatment and infection control. J. Intern. Med. 2015, 277, 501–512. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2009, 48, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chamoun, K.; Farah, M.; Araj, G.; Daoud, Z.; Moghnieh, R.; Salameh, P.; Saade, D.; Mokhbat, J.; Abboud, E.; Hamze, M.; et al. Surveillance of antimicrobial resistance in Lebanese hospitals: Retrospective nationwide compiled data. Int. J. Infect. Dis. 2016, 46, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Al-Assil, B.; Mahfoud, M.; Hamzeh, A.R. Resistance trends and risk factors of extended spectrum β-lactamases in Escherichia coli infections in Aleppo, Syria. Am. J. Infect. Control 2013, 41, 597–600. [Google Scholar] [CrossRef]
- Aljanaby, A.A.J.; Alhasnawi, H. Research Article Phenotypic and Molecular Characterization of Multidrug Resistant Klebsiella pneumoniae Isolated from Different Clinical Sources in Al-Najaf Province-Iraq. Pak. J. Biol. Sci. 2017, 20, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Badran, E.F.; Qamer Din, R.A.; Shehabi, A.A. Low intestinal colonization of Escherichia coli clone ST131 producing CTX-M-15 in Jordanian infants. J. Med. Microbiol. 2016, 65, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.; Wintermans, B.; Reuland, E.; Koek, A.; Al Naiemi, N.; Ammar, A.; Mohamed, A.A.; Vandenbroucke-Grauls, C.M.J.E. Extended-spectrum β-lactamase-and carbapenemase-producing Enterobacteriaceae isolated from Egyptian patients with suspected blood stream infection. PLoS ONE 2015, 10, e0128120–e0128127. [Google Scholar] [CrossRef] [PubMed]
- Wassef, M.; Abdelhaleim, M.; AbdulRahman, E.; Ghaith, D. The Role of OmpK35, OmpK36 Porins, and Production of beta-Lactamases on Imipenem Susceptibility in Klebsiella pneumoniae Clinical Isolates, Cairo, Egypt. Microb. Drug Resist. 2015, 21, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Al-Agamy, M.H.; Shibl, A.M.; Hafez, M.M.; Al-Ahdal, M.N.; Memish, Z.A.; Khubnani, H. Molecular characteristics of extended-spectrum β-lactamase-producing Escherichia coli in Riyadh: Emergence of CTX-M-15-producing E. coli ST131. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 4. [Google Scholar] [CrossRef] [Green Version]
- Moghnia, O.H.; Rotimi, V.O.; Al-Sweih, N.A. Preponderance of blaKPC-Carrying Carbapenem-Resistant Enterobacterales Among Fecal Isolates from Community Food Handlers in Kuwait. Front. Microbiol. 2021, 12, 737828. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, B.S.; Chun, J.; Yong, J.H.; Lee, Y.S.; Yoo, J.S.; Yong, D.; Hong, S.G.; D’Souza, R.; Thomson, K.S.; et al. Clonality and Resistome analysis of KPC-producing Klebsiella pneumoniae strain isolated in Korea using whole genome sequencing. BioMed Res. Int. 2014, 2014, 352862. [Google Scholar] [CrossRef]
- Köser, C.U.; Ellington, M.J.; Peacock, S.J. Whole-genome sequencing to control antimicrobial resistance. Trends Genet. 2014, 30, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Didelot, X.; Bowden, R.; Wilson, D.J.; Peto, T.E.; Crook, D.W. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 2012, 13, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Moghnia, O.H.; Rotimi, V.O.; Al-Sweih, N.A. Evaluating Food Safety Compliance and Hygiene Practices of Food Handlers Working in Community and Healthcare Settings in Kuwait. Int. J. Environ. Res. Public Health 2021, 18, 1586. [Google Scholar] [CrossRef]
- Moghnia, O.H.; Rotimi, V.O.; Al-Sweih, N.A. Monitoring antibiotic resistance profiles of faecal isolates of Enterobacteriaceae and the prevalence of carbapenem-resistant isolates among food handlers in Kuwait. J. Glob. Antimicrob. Resist. 2021, 25, 370–376. [Google Scholar] [CrossRef]
- CLSI [Clinical and Laboratory Standard Institute]. Performance Standards for Antimicrobial Susceptibility Testing; 30th Informational Supplement CLSI Publication; M100–S30; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. A J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimoldi, S.G.; Gentile, B.; Pagani, C.; Di Gregorio, A.; Anselmo, A.; Palozzi, A.M.; Lista, F. Whole genome sequencing for the molecular characterization of carbapenem-resistant Klebsiella pneumoniae strains isolated at the Italian ASST Fatebenefratelli Sacco Hospital, 2012–2014. BMC Infect. Dis. 2017, 17, 666. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, H.; Liang, Y.; Yu, S.; Yu, T.; Fang, J.; Zhu, C. Diverse mobile genetic elements and conjugal transferability of sulfonamide resistance genes (sul1, sul2, and sul3) in Escherichia coli isolates from Penaeus vannamei and pork from large markets in Zhejiang, China. Front. Microbiol. 2019, 10, 1787. [Google Scholar] [CrossRef] [Green Version]
- Ito, R.; Mustapha, M.M.; Tomich, A.D.; Callaghan, J.D.; McElheny, C.L.; Mettus, R.T.; Doi, Y. Widespread fosfomycin resistance in Gram-negative bacteria attributable to the chromosomal fosA gene. MBio 2017, 8, e00749-17. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Tomich, A.D.; McElheny, C.L.; Cooper, V.S.; Stoesser, N.; Wang, M.; Sluis-Cremer, N.; Doi, Y. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J. Antimicrob. Chemother. 2016, 71, 2460–2465. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Miao, V.; Kwong, W.; Xia, R.; Davies, J. Identification of a novel fosfomycin resistance gene (fosA2) in Enterobacter cloacae from the Salmon River, Canada. Lett. Appl. Microbiol. 2011, 52, 427–429. [Google Scholar] [CrossRef]
- Snitkin, E.S.; Zelazny, A.M.; Thomas, P.J.; Stock, F.; NISC Comparative Sequencing Program Group; Henderson, D.K.; Palmore,, T.N.; Segre, J.A. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci. Transl. Med. 2012, 4, 148ra116. [Google Scholar] [CrossRef] [Green Version]
- Caméléna, F.; Morel, F.; Merimèche, M.; Decousser, J.W.; Jacquier, H.; Clermont, O.; Darty, M.; Mainardis, M.; Cambau, E.; Tenaillon, O.; et al. IAME Resistance Group Genomic characterization of 16S rRNA methyltransferase-producing Escherichia coli isolates from the Parisian area, France. J. Antimicrob. Chemother. 2020, 75, 1726–1735. [Google Scholar] [CrossRef]
- Nasiri, G.; Peymani, A.; Farivar, T.N.; Hosseini, P. Molecular epidemiology of aminoglycoside resistance in clinical isolates of Klebsiella pneumoniae collected from Qazvin and Tehran provinces, Iran. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2018, 64, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Q.; Lin, H.; Zhou, W.; Qian, C.; Sun, Z.; Lin, L.; Liu, H.; Lu, J.; Lin, X.; et al. High-Level Aminoglycoside Resistance in Human Clinical Klebsiella pneumoniae Complex Isolates and Characteristics of armA-Carrying IncHI5 Plasmids. Front. Microbiol. 2021, 12, 636396. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Bogaki, M.; Nakamura, M.; Yamanaka, L.M.; Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 1991, 35, 1647–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magesh, H.; Kamatchi, C.; Vaidyanathan, R.; Sumathi, G. Identification of plasmid-mediated quinolone resistance genes qnrA1, qnrB1 and aac(6’)-1b-cr in a multiple drug-resistant isolate of Klebsiella pneumoniae from Chennai. Indian J. Med. Microbiol. 2011, 29, 262–268. [Google Scholar] [CrossRef]
- Yuan, L.; Zhai, Y.J.; Wu, H.; Sun, H.R.; He, Z.P.; Wang, Y.B.; Pan, Y.S.; Kuang, N.N.; Hu, G.Z. Identification and prevalence of RND family multidrug efflux pump oqxAB genes in Enterococci isolates from swine manure in China. J. Med. Microbiol. 2018, 67, 733–739. [Google Scholar] [CrossRef]
Strain ID | Isolates | Population | Nationality | Age Group | Gender | Governorate | Accession Number |
---|---|---|---|---|---|---|---|
E1-112 | E. coli | Healthy | Filipino | 40–49 | F | Farwaniya | SRX8356292 |
E2-466 | E. coli | Patient | Kuwaiti | 50–59 | M | Capital/(IBS) | SRX8356293 |
E3-471 | E. coli | Patient | Kuwaiti | 70–79 | F | Hawali/(MK) | SRX8356294 |
E4-485 | E. coli | Patient | Kuwaiti | 20–29 | F | Capital/(Bab) | SRX8356295 |
K1-245 | K. pneumoniae | Healthy | Indian | 29–39 | M | Hawali | SRX8344629 |
K2-351 | K. pneumoniae | Healthy | Indian | 29–39 | F | Farwaniya | SRX8344630 |
K3-441 | K. pneumoniae | Patient | Canadian | 80–89 | M | Hawali/(MK) | SRX8344631 |
K4-500 | K. pneumoniae | Patient | Kuwaiti | 1–9 | M | Farwaniya/(FA) | SRX8344632 |
Antimicrobial Agents | Bacterial Isolates (Minimum Inhibitory Concentrations Breakpoints in µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
E1-112 | E2-466 | E3-471 | E4-485 | K1-245 | K2-351 | K3-441 | K4-500 | |
Amikacin | 3 | 6 | 2 | >256 | 1 | 1.8 | 32 | 4 |
Amoxacillin-Clavulinic acid | 32 | 16 | 32 | 32 | 3 | 1.5 | 8 | >256 |
Ampicillin | >256 | >256 | >256 | >256 | 12 | 48 | >256 | >256 |
Aztreonam | 0.125 | >256 | 48 | 64 | 0.032 | 0.047 | >256 | >256 |
Cefepime | 0.094 | 64 | 2 | >256 | 0.047 | 0.047 | 3 | 24 |
Cefotaxime | 0.094 | 32 | 32 | >256 | 0.064 | 4 | 24 | 32 |
Cefoxitin | >256 | 24 | >256 | >256 | 3 | 4 | 4 | 8 |
Ceftazidime | 1 | 64 | 24 | >256 | 0.19 | 16 | >256 | 128 |
Ceftriaxone | 0.75 | >256 | 64 | >256 | 0.047 | 0.064 | 32 | >256 |
Cefuroxime | 16 | >256 | >256 | >256 | 2 | 2 | 48 | >256 |
Cephalothin | >256 | >256 | >256 | >256 | 4 | 4 | >256 | >256 |
Ciprofloxacin | 0.023 | 32 | 32 | 0.006 | 0.032 | 0.064 | 32 | 0.75 |
Colistin | 0.25 | 0.25 | 0.25 | 0.125 | 0.75 | 0.75 | 0.19 | 0.38 |
Ertapenem | 1 | 3 | 12 | 4 | 1 | 0.047 | 1.5 | 4 |
Gentamicin | 1.5 | 16 | 1.5 | 1024 | 0.19 | 0.38 | 0.5 | 1.5 |
Imipenem | 6 | 0.25 | 1 | 3 | 0.25 | 0.125 | 0.25 | 0.25 |
Meropenem | 0.25 | 0.125 | 0.75 | 2 | 0.19 | 3 | 0.047 | 0.19 |
Piperacillin | 1.5 | >256 | >256 | >256 | 3 | 4 | >256 | >256 |
Tetracycline | 12 | >256 | >256 | >256 | 4 | 3 | 48 | 128 |
Genomic Data | E. coli Isolates | K. pneumoniae Isolates | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1-112 | E2-466 | E3-471 | E4-485 | K1-245 | K2-351 | K3-441 | K4-500 | |||||||||
Raw reeds | ||||||||||||||||
Total Sequences | 5,707,885 | 4,791,414 | 4,590,486 | 5,474,281 | 5,266,901 | 6,780,089 | 5,566,937 | 4,870,982 | ||||||||
Sequence length | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | ||||||||
QCed reads | ||||||||||||||||
Total Sequences | 5,588,157 | 4,679,003 | 4,490,667 | 5,345,636 | 5,157,922 | 6,632,494 | 5,452,319 | 4,758,468 | ||||||||
percent recovery | 97.9 | 97.7 | 97.8 | 97.7 | 97.9 | 97.8 | 97.9 | 97.7 | ||||||||
Sequence length | 50–140 | 50–140 | 50–140 | 50–140 | 50–140 | 50–140 | 50–140 | 50–140 | ||||||||
% GC | 56 | 50 | 50 | 50 | 56 | 57 | 57 | 57 | ||||||||
Assembled draft genomes | ||||||||||||||||
bp | n | bp | n | bp | n | bp | n | bp | n | bp | n | bp | n | bp | n | |
Average contig size | 91,266 | 37,944 | 46,693 | 51,063 | 52,230 | 67,804 | 75,180 | 79,693 | ||||||||
Largest contig | 2,195,272 | 379,433 | 607,340 | 419,025 | 321,557 | 1,510,665 | 979,843 | 512,237 | ||||||||
Sum of base pairs | 4,745,810 | 52 | 5,236,280 | 138 | 5,369,672 | 115 | 5,463,758 | 107 | 5,536,425 | 106 | 5,424,328 | 80 | 5,337,760 | 71 | 5,498,821 | 69 |
N50 | 560,222 | 2 | 124,277 | 13 | 183,231 | 9 | 186,146 | 10 | 139,608 | 14 | 272,188 | 5 | 375,813 | 5 | 294,715 | 7 |
N60 | 450,229 | 3 | 102,180 | 18 | 136,220 | 13 | 155,202 | 14 | 116,907 | 18 | 233,142 | 7 | 288,935 | 7 | 257,159 | 9 |
N70 | 344,880 | 4 | 79,987 | 23 | 124,445 | 17 | 95,100 | 19 | 87,397 | 24 | 195,143 | 9 | 204,896 | 9 | 174,886 | 12 |
N80 | 259,295 | 5 | 52,823 | 32 | 85,546 | 22 | 86,334 | 25 | 57,439 | 31 | 141,140 | 12 | 171,091 | 12 | 124,552 | 16 |
N90 | 136,066 | 8 | 29,561 | 45 | 38,747 | 32 | 48,438 | 33 | 31,232 | 44 | 101,299 | 17 | 83,691 | 16 | 86,473 | 21 |
N100 | 502 | 52 | 500 | 138 | 524 | 115 | 503 | 107 | 510 | 106 | 501 | 80 | 503 | 71 | 513 | 69 |
N_count | 390 | 575 | 287 | 1358 | 1158 | 881 | 196 | 1458 | ||||||||
Gaps | 4 | 6 | 3 | 14 | 12 | 9 | 2 | 15 |
Genomic Data | E. coli Isolates | K. pneumoniae Isolates | ||||||
---|---|---|---|---|---|---|---|---|
E1-112 | E2-466 | E3-471 | E4-485 | K1-245 | K2-351 | K3-441 | K4-500 | |
contigs/scaffolds | 52 | 138 | 115 | 107 | 106 | 80 | 71 | 69 |
bases | 4,745,810 | 5,236,280 | 5,369,672 | 5,463,758 | 5,536,425 | 5,424,328 | 5,337,760 | 5,498,821 |
gene | 4489 | 4916 | 5091 | 5224 | 5289 | 5092 | 5020 | 5228 |
CDS * | 4417 | 4845 | 5015 | 5149 | 5218 | 5015 | 4949 | 5156 |
tRNA * | 69 | 67 | 73 | 71 | 68 | 74 | 69 | 70 |
mRNA * | 4489 | 4916 | 5091 | 5224 | 5289 | 5092 | 5020 | 5228 |
rRNA * | 2 | 3 | 2 | 3 | 2 | 2 | 1 | 1 |
tmRNA * | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
CRISPR * | – | 1 | 1 | 2 | – | – | – | – |
Resistance to Antibiotics | Escherichia coli Isolates | Klebsiella pneumoniae Isolates | ||||||
---|---|---|---|---|---|---|---|---|
Antimicrobial Resistance Genes | ||||||||
E1-112 | E2-466 | E3-471 | E4-485 | K1-245 | K2-351 | K3-441 | K4-500 | |
Beta-lactam | blaACT | blaEC blaCTX-M-15 blaOXA-1 | blaKPC-2 blaCMY-4 blaTEM | blaEC blaCMY-6 blaCTX-M-15 | blaKPC-29 blaOXA-48 | blaSHV-11 | blaOKP-B blaSHV-12 | blaSHV-11 blaTEM-1 blaCTX-M-15 blaOXA-1 |
Fosfomycin | fosA uhpT_E350Q | fosA uhpT_E350Q | fosA | fosA | fosA | fosA | ||
Aminoglycoside | aadA5 aac(3)-IIa | aph(6)-Id aph(3″)-Ib aadA2 | aac(6′)-Ib3 | aph(6)-Id aph(3″)-Ib | aac(6′)-Ib aadA1 | aph(6)-Id, aph(3″)-Ib | ||
Sulfonamide | sul1 | sul2, sul1 | sul1 | sul1 | sul1 | sul2 | ||
Quinolone | oqxA oqxB | aac(6′)-Ib-cr5 | oqxA oqxB | oqxB17 oqxA10 | oqxA oqxB | oqxA oqxB | ||
gyrA_D87N gyrA_S83L parC_S80I parE_S458A | gyrA_D87N gyrA_S83L parE_I355T parC_S80I | gyrA_D87N gyrA_S83F | qnrB1 | |||||
Phenicol | floR | catA2 | ||||||
Chloramphenicol efflux pump | cmlA5 | |||||||
Quaternary ammonium efflux pump | qacEdelta1 | qacEdelta1 | qacEdelta1 | qacEdelta1 | ||||
Tetracycline | tet(B) | tet(B) | tet(A) | tet(A) | ||||
Fosmidomycin | cyaA_S352T | cyaA_S352T | cyaA_S352T | |||||
Trimethoprim | dfrA17 | dfrA12 | dfrA14 | |||||
Macrolide | mph(A) | mph(A) erm(B) | mph(A) erm(B) | |||||
Bleomycin | ble | |||||||
Colistin | pmrB_R256G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moghnia, O.H.; Al-Sweih, N.A. Whole Genome Sequence Analysis of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Strains in Kuwait. Microorganisms 2022, 10, 507. https://doi.org/10.3390/microorganisms10030507
Moghnia OH, Al-Sweih NA. Whole Genome Sequence Analysis of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Strains in Kuwait. Microorganisms. 2022; 10(3):507. https://doi.org/10.3390/microorganisms10030507
Chicago/Turabian StyleMoghnia, Ola H., and Nourah A. Al-Sweih. 2022. "Whole Genome Sequence Analysis of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Strains in Kuwait" Microorganisms 10, no. 3: 507. https://doi.org/10.3390/microorganisms10030507
APA StyleMoghnia, O. H., & Al-Sweih, N. A. (2022). Whole Genome Sequence Analysis of Multidrug Resistant Escherichia coli and Klebsiella pneumoniae Strains in Kuwait. Microorganisms, 10(3), 507. https://doi.org/10.3390/microorganisms10030507