Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzymes
2.2. Measurement of Laccase Activity
2.3. Experimental Procedures
2.4. Isolation Procedure of Product 3a
2.5. Isolation Procedure of Products 3b, 3c and 3d
2.6. Lyophilization
Set point of the main drying | 2 h at 5 °C, then 20 °C |
Set point freezing | −20 °C |
Set point vacuum | 1.030 mbar |
Security printing | 2.560 mbar |
2.7. Analytical High-Performance Liquid Chromatography (aHPLC)
2.8. Characterization of Biotransformation Products
2.9. Characterization of Glucosamine 1a by NMR
2.10. Determination of Antibacterial Activity
2.11. Cytotoxic Activity
2.12. Animal Assays
3. Results
3.1. Analytical Screening of Aminoglycosides, Glucosamine and Laccases
3.2. Structural Elucidations
3.3. Biological Activity of the Biotransformation Products
4. Discussion
4.1. Biotransformation of Glucosamine and Aminoglycosides
4.2. Biological Activity of the Biotransformation Products
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forge, A.; Schacht, J. Aminoglycoside antibiotics. Audiol. Neurootol. 2000, 5, 3–22. [Google Scholar] [CrossRef] [PubMed]
- Böttger, E.C.; Crich, D. Aminoglycosides: Time for the resurrection of a neglected class of antibacterials? ACS Infect. Dis. 2020, 6, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Zarate, S.G.; Claure, M.L.D.; Benito-Arenas, R.; Revuelta, J.; Santana, A.G.; Bastida, A. Overcoming aminoglycoside enzymatic resistance: Design of novel antibiotics and inhibitors. Molecules 2018, 23, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, C.R.; Fang, X.; Allison, K.R. Potentiating aminoglycoside antibiotics to reduce their toxic side effects. PLoS ONE 2020, 15, e0237948. [Google Scholar] [CrossRef]
- Mikolasch, A. Laccase-mediated synthesis of novel antibiotics and amino acid derivatives. In Pharmaceutical Biocatalysis: Chemoenzymatic Synthesis of Active Pharmaceutical Ingredients; Grunwald, P., Ed.; Jenny Stanford Publishing Pte. Ltd.: Singapore, 2019; pp. 219–268. [Google Scholar]
- Agematu, H.; Tsuchida, T.; Kominato, K.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R.; Shin, T.; Murao, S. Enzymatic dimerization of penicillin-X. J. Antibiot. 1993, 46, 141–148. [Google Scholar] [CrossRef]
- Agematu, H.; Kominato, K.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R.; Shin, T.; Murao, S. Transformation of 7-(4-hydroxyphenylacetamido)cephalosporanic acid into a new cephalosporin antibiotic, 7-[1-oxaspiro(2.5)octa-6-oxo-4,7-diene-2-carboxamido]cephalosporanic acid, by laccase. Biosci. Biotechnol. Biochem. 1993, 57, 1387–1388. [Google Scholar] [CrossRef] [Green Version]
- Mikolasch, A.; Niedermeyer, T.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Gesell, M.; Hessel, S.; Jülich, W.D.; et al. Novel penicillins synthesized by biotransformation using laccase from Trametes spec. Chem. Pharm. Bull. 2006, 54, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Mikolasch, A.; Niedermeyer, T.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Gesell Salazar, M.; Hessel, S.; Jülich, W.D.; et al. Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem. Pharm. Bull. 2007, 55, 412–416. [Google Scholar] [CrossRef] [Green Version]
- Mikolasch, A.; Hessel, S.; Gesell Salazar, M.; Neumann, H.; Manda, K.; Gördes, D.; Schmidt, E.; Thurow, K.; Hammer, E.; Lindequist, U.; et al. Synthesis of new N-analogous corollosporine derivatives with antibacterial activity by laccase-catalyzed amination. Chem. Pharm. Bull. 2008, 56, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Mikolasch, A.; Manda, K.; Schlüter, R.; Lalk, M.; Witt, S.; Seefeldt, S.; Hammer, E.; Schauer, F.; Jülich, W.D.; Lindequist, U. Comparative analyses of laccase-catalyzed amination reactions for production of novel beta-lactam antibiotics. Biotechnol. Appl. Biochem. 2012, 59, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, A.; Hildebrandt, O.; Schlüter, R.; Hammer, E.; Witt, S.; Lindequist, U. Targeted synthesis of novel beta-lactam antibiotics by laccase-catalyzed reaction of aromatic substrates selected by pre-testing for their antimicrobial and cytotoxic activity. Appl. Microbiol. Biotechnol. 2016, 100, 4885–4899. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, A.; Hammer, E.; Witt, S.; Lindequist, U. Laccase-catalyzed derivatization of 6-aminopenicillanic, 7-aminocephalosporanic and 7-aminodesacetoxycephalosporanic acid. AMB Express 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Mikolasch, A.; Hahn, V. Laccase-catalyzed derivatization of antibiotics with sulfonamide or sulfone structures. Microorganisms 2021, 9, 2199. [Google Scholar] [CrossRef] [PubMed]
- Jonas, U.; Hammer, E.; Schauer, F.; Bollag, J.M. Transformation of 2-hydroxydibenzofuran by laccases of the white rot fungi Trametes versicolor and Pycnoporus cinnabarinus and characterization of oligomerization products. Biodegradation 1997, 8, 321–328. [Google Scholar] [CrossRef]
- Eggert, C.; Temp, U.; Eriksson, K.E.L. The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Appl. Environ. Microb. 1996, 62, 1151–1158. [Google Scholar] [CrossRef] [Green Version]
- Berka, R.M.; Schneider, P.; Golightly, E.J.; Brown, S.H.; Madden, M.; Brown, K.M.; Halkier, T.; Mondorf, K.; Xu, F. Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl. Environ. Microbiol. 1997, 63, 3151–3157. [Google Scholar] [CrossRef] [Green Version]
- Bourbonnais, R.; Paice, M.G. Oxidation of non-phenolic substrates—An expanded role for lactase in lignin biodegradetions. FEBS Lett. 1990, 267, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Breitmaier, E.; Voelter, W. Carbon-13 NMR Spectroscopy, High-Resolution Methods and Applications in Organic Chemistry and Biochemistry, 3rd Revised Edition ed.; Wiley-VCH: New York, NY, USA, 1987; p. 515. [Google Scholar]
- Niedermeyer, T.H.J.; Mikolasch, A.; Lalk, M. Nuclear amination catalyzed by fungal laccases: Reaction products of p-hydroquinones and primary aromatic amines. J. Org. Chem. 2005, 70, 2002–2008. [Google Scholar] [CrossRef]
- Manda, K.; Goerdes, D.; Mikolasch, A.; Hammer, E.; Schmidt, E.; Thurow, K.; Schauer, F. Carbon-oxygen bond formation by fungal laccases: Cross-coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols. Appl. Microbiol. Biotechnol. 2007, 76, 407–416. [Google Scholar] [CrossRef]
- Mikolasch, A.; Hahn, V.; Manda, K.; Pump, J.; Illas, N.; Gördes, D.; Lalk, M.; Salazar, M.G.; Hammer, E.; Jülich, W.D.; et al. Laccase-catalyzed cross-linking of amino acids and peptides with dihydroxylated aromatic compounds. Amino Acids 2010, 39, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Hahn, V.; Davids, T.; Lalk, M.; Schauer, F.; Mikolasch, A. Enzymatic cyclizations using laccases: Multiple bond formation between dihydroxybenzoic acid derivatives and aromatic amines. Green Chem. 2010, 12, 879–887. [Google Scholar] [CrossRef]
- Fukuda, T.; Uchida, H.; Suzuki, M.; Miyamoto, H.; Morinaga, H.; Nawata, H.; Uwajima, T. Transformation products of bisphenol A by a recombinant Trametes vilosa laccase and their estrogenic activity. J. Chem. Technol. Biotechnol. 2004, 79, 1212–1218. [Google Scholar] [CrossRef]
- Ramalingam, B.; Sana, B.; Seayad, J.; Ghadessy, F.J.; Sullivan, M.B. Towards understanding of laccase-catalysed oxidetive oligomerisation of dimeric lignin model compounds. RSC Adv. 2017, 7, 11951–11958. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, K.; Freyer, A.; Minard, R.D.; Bollag, J.M. Enzyme-mediated coupling of 3,4-dichloroanilin and ferulic acid: A model for pollutant binding to humic materials. Environ. Sci. Technol. 1994, 28, 210–215. [Google Scholar] [CrossRef]
- Bollag, J.M.; Liu, S.Y.; Minard, R.D. Enzymatic oligomerization of vanillic acid. Soil Biol. Biochem. 1982, 14, 157–163. [Google Scholar] [CrossRef]
- Manda, K.; Hammer, E.; Mikolasch, A.; Niedermeyer, T.; Dec, J.; Jones, A.D.; Benesi, A.J.; Schauer, F.; Bollag, J.M. Laccase-induced cross-coupling of 4-aminobenzoic acid with para-dihydroxylated compounds 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide and 2,5-dihydroxybenzoic acid methyl ester. J. Mol. Catal. B-Enzym. 2005, 35, 86–92. [Google Scholar] [CrossRef]
- Hahn, V.; Mikolasch, A.; Manda, K.; Gördes, D.; Thurow, K.; Schauer, F. Derivatization of amino acids by fungal laccases: Comparison of enzymatic and chemical methods. J. Mol. Catal. B-Enzym. 2009, 60, 76–81. [Google Scholar] [CrossRef]
- Hahn, V.; Mikolasch, A.; Weitemeyer, J.; Petters, S.; Davids, T.; Lalk, M.; Lackmann, J.W.; Schauer, F. Ring-closure mechanisms mediated by laccase to synthesize phenothiazines, phenoxazines, and phenazines. ACS Omega 2020, 5, 14324–14339. [Google Scholar] [CrossRef]
- Hahn, V.; Mikolasch, A.; Wende, K.; Bartrow, H.; Lindequist, U.; Schauer, F. Synthesis of model morpholine derivatives with biological activities by laccase-catalysed reactions. Biotechnol. Appl. Biochem. 2009, 54, 187–195. [Google Scholar] [CrossRef]
- Herter, S.; Michalik, D.; Mikolasch, A.; Schmidt, M.; Wohlgemuth, R.; Bornscheuer, U.; Schauer, F. Laccase-mediated synthesis of 2-methoxy-3-methyl-5-(alkylamino)- and 3-methyl-2,5-bis(alkylamino)-1,4-benzoquinones. J. Mol. Catal. B-Enzym. 2013, 90, 91–97. [Google Scholar] [CrossRef]
- Bruyneel, F.; Enaud, E.; Billottet, L.; Vanhulle, S.; Marchand-Brynaert, J. Regioselective synthesis of 3-hydroxyorthanilic acid and its biotransformation into a novel phenoxazinone dye by use of laccase. Eur. J. Org. Chem. 2008, 2008, 70–79. [Google Scholar] [CrossRef]
- Eggert, C. Laccase-catalyzed formation of cinnabarinic acid is responsible for antibacterial activity of Pycnoporus cinnabarinus. Microbiol. Res. 1997, 152, 315–318. [Google Scholar] [CrossRef]
- Osiadacz, J.; Al-Adhami, A.J.H.; Bajraszewska, D.; Fischer, P.; Peczynska-Czoch, W. On the use of Trametes versicolor laccase for the conversion of 4-methyl-3-hydroxyanthranilic acid to actinocin chromophore. J. Biotechnol. 1999, 72, 141–149. [Google Scholar] [CrossRef]
- Abdel-Mohsen, H.T.; Conrad, J.; Beifuss, U. Laccase-catalyzed synthesis of catechol thioethers by reaction of catechols with thiols using air as an oxidant. Green Chem. 2014, 16, 90–95. [Google Scholar] [CrossRef]
- Wellington, K.W.; Gordon, G.E.R.; Ndlovu, L.A.; Steenkamp, P. Laccase-catalyzed C-S and C-C coupling for a one-pot synthesis of 1,4-naphthoquinone sulfides and 1,4-naphthoquinone sulfide dimers. Chemcatchem 2013, 5, 1570–1577. [Google Scholar] [CrossRef]
Coupling Partner | Laccase Substrate 2a | MtL | PcL | TsC | |
---|---|---|---|---|---|
Concentration | Concentration | Number of Heteromolecular Products | |||
1a Glucosamine | 1 mM | 1 mM | 6 | 5 (+MP) (a) | 5 (+MP) |
2 mM | 2 mM | 6 | Nep (b) | nep | |
5 mM | 1 mM | 1 (+MP) | 7 | 7 | |
10 mM | 1 mM | nep | 6 (+MP) | nep | |
1b Kanamycin | 1 mM | 1 mM | >10 | >10 | >10 |
2 mM | 2 mM | >10 | nep | >10 | |
5 mM | 1 mM | >10 | >10 | >10 | |
10 mM | 1 mM | nep | >10 | nep | |
1c Tobramycin | 1 mM | 1 mM | >10 | >10 | >10 |
2 mM | 2 mM | >10 | nep | >10 | |
5 mM | 1 mM | >10 | >10 | >10 | |
10 mM | 1 mM | nep | >10 | nep | |
1d Gentamicin | 1 mM | 1 mM | >10 | >10 | >10 |
2 mM | 2 mM | >10 | nep | nep | |
5 mM | 1 mM | >10 | >10 | >10 | |
10 mM | 1 mM | nep | >10 | nep |
1H Assignments | HSQC Correlations | HMBC Correlations |
---|---|---|
3a1 α-D-glucosamine product | ||
3.27 (a) (m, 3J = 5.6 Hz, 4H, H-13) | 40.67 (a) (C-13) | 59.73 (a) (C-14), 168.85 (C-11) |
3.43 (m, 1H, H-4) | 68.77 (C-4) | 70.83 (C-4a) |
3.45 (t, 3J = 5.6 Hz, 4H, H-14) | 59.73 (C-14) | 40.67 (C-13) |
3.73 (m, 1H, H-3) | 73.63 (C-3) | 52.33 (C-10a), 68.77 (C-4), 88.94 (C-1) |
4.05 (m, J = 2.5 Hz, J = 10.8 Hz, 1H, H-10a) | 52.33 (C-10a) | 73.63 (C-3) |
5.45 (d, 3J = 3.2 Hz, 1H, H-1) | 88.94 (C-1) | 73.63 (C-3) |
5.85 (d, 3J = 10.1 Hz, 1H, H-7) | 126.15 (C-7) | 86.73 (C5a), 94.95 (C-9), (168.85 (C-11)) (b), ((182.21 (C-8))) (c) |
6.50 (d, 3J = 10.1 Hz, 1H, H-6) | 138.64 (C-6) | ((86.73 (C-5a))), ((94.95 (C-9))), 165.90 C-9a, 182.21 (C-8) |
9.75 (s(broad), 2H, H-12) | - | 40.67 (C-13), 59.73 (C-14), (94.95 (C-9), 168.85 (C-11) |
11.84 (s, 1H, NH, H-10) | - | 52.33 (C-10a), 86.73 (C-5a), 88.94 (C-1), 94.95 (C-9), ((165.90 C-9a)) |
3a2 β-D-glucosamine product | ||
3.27 (m, 3J = 5.6 Hz, 2H, H-13) | 40.67 (C-13) | 59.73 (C-14), 168.85 (C-11) |
3.43 (m, 1H, H-4) | 68.77 (C-4) | 70.83 (C-4a) |
3.45 (t, 3J = 5.6 Hz, 2H, H-14) | 59.73 (C-14) | 40.67 (C-13) |
3.52 (m, 2H, H-4a, H-3) | 70.83 (C-4a), 76.68 (C-3) | 54.64 (C-10a), 68.77 (C-4), 76.68 (C-3), 86.73 (C-5a), 93.66 (C-1) |
3.62 (d, J = 10.3 Hz, 2H, H-15) | 63.37 (C-15) | 68.77 (C-4), 76.68 (C-3) |
3.74 (m, 1H, H-10a) | 54.64 (C-10a) | 93.66 (C-1) |
4.66 (d, 3J = 7.9 Hz, 1H, H-1) | 93.66 (C-1) | 54.64 C-10a, 76.68 C-3) |
5.87 (d, 3J = 10.1 Hz, 1H, H-7) | 126.15 (C-7) | 86.73 (C5a), 94.95 (C-9), (168.85 (C-11)), ((182.21 (C-8))) |
6.51 (d, 3J = 10.1 Hz, 1H, H-6) | 138.64 (C-6) | ((86.73 (C-5a))), ((94.95 (C-9))), 165.90 C-9a, 182.21 (C-8) |
9.75 (s(broad), 2H, H-12) | - | 40.67 (C-13), 59.73 (C-14), (94.95 (C-9), 168.85 (C-11) |
11.90 (s, 1H, NH, H-10) | - | 54.64 (C-10a), (68.77 (C-4)), (76.68 (C-3)), 86.73 (C-5a), 94.95 (C-9), (165.90 C-9a) |
3a1 α-D-Glucosamine Product | 3b Kanamycin Product | 3d Gentamicin Product |
---|---|---|
3.27–5.45 ppm CHs of the glycosidic structural part | 3–6 ppm CHs of the glycosidic structural part | 3–6 ppm CHs of the glycosidic structural part |
5.85 (a) (d, 3J = 10.1 Hz, 1H, H-7) | 6.38 (d, 3J = 10.2 Hz, 1H, H-7) | 6.52 (d, 3J = 10.2 Hz, 1H, H-7) |
6.50 (d, 3J = 10.1 Hz, 1H, H-6) | 6.57 (d, 3J = 10.2 Hz, 1H, H-6) | 6.67 (d, 3J = 10.2 Hz, 1H, H-6) |
9.75 (s(broad), 2H, H-12) | 9.73 (s(broad), 2H, H-12) | 9.72 (s(broad), 2H, H-12) |
11.84 (s, 1H, NH, H-10) | 12.98 (s, 1H, NH, H-10) | 13.16 (s, 1H, NH, H-10) |
Compound | Amount [µmol] | S. aureus ATCC 6538 | S. aureus 34289 (d) | S. aureus 36881 (d) | S. aureus 38418 (d) | S. aureus 315 (d) | S. epi. 847 (d) | S. epi. 125 (d) | S. haem. 535 (d) |
---|---|---|---|---|---|---|---|---|---|
1a | 0.127 | r (a) | r | r | r | r | r | r | r |
0.063 | r | r | r | r | r | r | r | r | |
0.0127 | r | r | r | r | r | r | r | r | |
1b | 0.127 | 24 (b) | r | r | 24 | r | r | r | 16 |
(1.5) (c) | (1.6) | (0.6) | |||||||
0.063 | 20 | r | r | 20 | r | r | r | r | |
(0.6) | (0.8) | ||||||||
0.0127 | 16 | r | r | 12 | r | r | r | r | |
(1.0) | (1.0) | ||||||||
1c | 0.127 | 24 | r | 26 | 28 | r | r | 12 | 22 |
(0.6) | (1.2) | (1.0) | (1.6) | (0.6) | |||||
0.063 | 22 | r | 24 | 24 | r | r | 10 | 20 | |
(0.4) | (0.2) | (0.8) | (0.6) | (0.9) | |||||
0.0127 | 16 | r | 16 | 18 | r | r | r | r | |
(1.0) | (1.4) | (1.0) | |||||||
1d | 0.127 | 24 | 26 | 26 | 26 | 26 | r | r | 18 |
(1.1) | (0.9) | (1.8) | (1.6) | (1.1) | (0.6) | ||||
0.063 | 22 | 24 | 22 | 22 | 24 | r | r | 16 | |
(0.8) | (0.8) | (1.3) | (1.2) | (1.8) | (1.5) | ||||
0.0127 | 16 | 22 | 20 | 20 | 20 | r | r | 10 | |
(1.3) | (1.1) | (0.8) | (0.6) | (1.0) | (0.6) | ||||
2a | 0.127 | r | r | r | r | r | r | r | r |
0.063 | r | r | r | r | r | r | r | r | |
0.0127 | r | r | r | r | r | r | r | r | |
3a | 0.127 | r | r | r | r | r | r | r | r |
0.063 | r | r | r | r | r | r | r | r | |
0.0127 | r | r | r | r | r | r | r | r | |
3b | 0.127 | 24 | r | r | 22 | r | r | r | 10(0.0) |
(1.3) | (0.6) | r | |||||||
0.063 | 20 | r | r | 20 | r | r | r | ||
(0.9) | (0.7) | r | |||||||
0.0127 | 14 | r | r | 14 | r | r | r | ||
(1.0) | (1.4) | ||||||||
3c | 0.127 | 26 | r | 26 | 26 | r | r | 20 | 22 |
(1.0) | (1.2) | (1.0) | (1.6) | (0.4) | |||||
0.063 | 24 | r | 24 | 24 | r | r | 16 | 20 | |
(0.4) | (0.2) | (0.8) | r | (0.8) | (1.4) | ||||
0.0127 | 20 | r | 18 | 20 | r | r | r | ||
(0.6) | (1.0) | (1.4) | |||||||
3d | 0.127 | 24 | 28 | 26 | 26 | 28 | 10 | 12 | 18 |
(1.6) | (1.0) | (2.0) | (1.6) | (1.2) | (1.7) | (1.5) | (0.6) | ||
0.063 | 22 | 24 | 22 | 22 | 24 | r | r | 16 | |
(0.6) | (0.8) | (1.5) | (1.2) | (1.8) | (1.5) | ||||
0.0127 | 18 | 20 | 20 | 20 | 18 | r | r | 10 | |
(1.2) | (1.0) | (0.6) | (0.6) | (1.0) | (0.6) |
Compound | Dose | Survived/Treated Mice n/n | Survived/Control Mice n/n |
---|---|---|---|
1b | 2 × 1.0 mg (50 mg/kg) | 3/3 | 0/5 |
1c | 2 × 1.0 mg (50 mg/kg) | 3/3 | 0/5 |
1d | 2 × 1.0 mg (50 mg/kg) | 3/3 | 0/5 |
3b | 2 × 1.0 mg (50 mg/kg) | 2/3 | 0/5 |
3c | 2 × 1.0 mg (50 mg/kg) | 3/3 | 0/5 |
3d | 2 × 1.0 mg (50 mg/kg) | 3/3 | 0/5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikolasch, A.; Lindequist, U.; Witt, S.; Hahn, V. Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine. Microorganisms 2022, 10, 626. https://doi.org/10.3390/microorganisms10030626
Mikolasch A, Lindequist U, Witt S, Hahn V. Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine. Microorganisms. 2022; 10(3):626. https://doi.org/10.3390/microorganisms10030626
Chicago/Turabian StyleMikolasch, Annett, Ulrike Lindequist, Sabine Witt, and Veronika Hahn. 2022. "Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine" Microorganisms 10, no. 3: 626. https://doi.org/10.3390/microorganisms10030626
APA StyleMikolasch, A., Lindequist, U., Witt, S., & Hahn, V. (2022). Laccase-Catalyzed Derivatization of Aminoglycoside Antibiotics and Glucosamine. Microorganisms, 10(3), 626. https://doi.org/10.3390/microorganisms10030626