The Proteogenome of Symbiotic Frankia alni in Alnus glutinosa Nodules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Bacterial Material
2.2. Proteome Characterization
2.3. Proteome Data
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Normand, P.; Fernandez, M.P. Frankia Brunchorst 1886, 174AL. Bergey’s Manual of Systematics of Archaea and Bacteria; Whitman, W., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar] [CrossRef]
- Navarro, E.; Bousquet, J.; Moiroud, A.; Munive, A.; Piou, D.; Normand, P. Molecular phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. Plant Soil 2003, 254, 207–217. [Google Scholar] [CrossRef]
- Lechevalier, M. Taxonomy of the genus Frankia (Actinomycetales). Int. J. Syst. Bacteriol. 1994, 44, 1–8. [Google Scholar] [CrossRef]
- Baker, D.D. Relationships among pure-cultured strains of Frankia based on host specificity. Physiol. Plant 1987, 70, 245–248. [Google Scholar] [CrossRef]
- Normand, P.; Lapierre, P.; Tisa, L.S.; Gogarten, J.P.; Alloisio, N.; Bagnarol, E.; Bassi, C.A.; Berry, A.M.; Bickhart, D.M.; Choisne, N.; et al. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res. 2007, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Nouioui, I.; Ghodhbane-Gtari, F.; del Carmen Montero-Calasanz, M.; Göker, M.; Meier-Kolthoff, J.P.; Schumann, P.; Rohde, M.; Goodfellow, M.; Fernandez, M.P.; Normand, P.; et al. Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5201–5210. [Google Scholar] [CrossRef] [PubMed]
- Alloisio, N.; Queiroux, C.; Fournier, P.; Pujic, P.; Normand, P.; Vallenet, D.; Médigue, C.; Yamaura, M.; Kakoi, K.; Kucho, K.I. The Frankia alni symbiotic transcriptome. Mol. Plant Microbe Interact. 2010, 23, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Granqvist, E.; Sun, J.; den Camp, R.O.; Pujic, P.; Hill, L.; Normand, P.; Morris, R.J.; Downie, J.A.; Geurts, R.; Oldroyd, G.E. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. New Phytol. 2015, 207, 551–558. [Google Scholar] [CrossRef]
- Cissoko, M.; Hocher, V.; Gherbi, H.; Gully, D.; Carré-Mlouka, A.; Sane, S.; Pignoly, S.; Champion, A.; Ngom, M.; Pujic, P.; et al. Actinorhizal signaling molecules: Frankia Root Hair Deforming Factor shares properties with NIN inducing factor. Front Plant Sci. 2018, 9, 1494. [Google Scholar] [CrossRef]
- Van Ghelue, M.; Lovaas, E.; Ringo, E.; Solheim, B. Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol. Plant 1997, 99, 579–587. [Google Scholar] [CrossRef]
- Clavijo, F.; Diedhiou, I.; Vaissayre, V.; Brottier, L.; Acolatse, J.; Moukouanga, D.; Crabos, A.; Auguy, F.; Franche, C.; Gherbi, H.; et al. The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol. 2015, 208, 887–903. [Google Scholar] [CrossRef]
- Gherbi, H.; Markmann, K.; Svistoonoff, S.; Estevan, J.; Autran, D.; Giczey, G.; Auguy, F.; Péret, B.; Laplaze, L.; Franche, C.; et al. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 4928–4932. [Google Scholar] [CrossRef] [PubMed]
- Griesmann, M.; Chang, Y.; Liu, X.; Song, Y.; Haberer, G.; Crook, M.B.; Billault-Penneteau, B.; Lauressergues, D.; Keller, J.; Imanishi, L.; et al. Phylogenomics reveals multiple independent losses of the nitrogen-fixing root nodule symbiosis. Science 2018, 361, 6398. [Google Scholar] [CrossRef] [PubMed]
- Persson, T.; Battenberg, K.; Demina, I.V.; Vigil-Stenman, T.; Vanden Heuvel, B.; Pujic, P.; Facciotti, M.T.; Wilbanks, E.G.; O’Brien, A.; Fournier, P.; et al. Candidatus Frankia datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS ONE 2015, 10, e0127630. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Wibberg, D.; Vigil-Stenman, T.; Berckx, F.; Battenberg, K.; Demchenko, K.N.; Blom, J.; Fernandez, M.P.; Yamanaka, T.; Berry, A.M.; et al. Frankia-enriched metagenomes from the earliest diverging symbiotic Frankia cluster: They come in teams. Genome Biol. Evol. 2019, 11, 2273–2291. [Google Scholar] [CrossRef] [PubMed]
- Gtari, M.; Ghodhbane-Gtari, F.; Nouioui, I. Frankia soli sp. nov., an actinobacterium isolated from soil beneath Ceanothus jepsonii. Int. J. Syst. Evol. Microbiol. 2019, 70, 1203–1209. [Google Scholar] [CrossRef]
- Gueddou, A.; Sarker, I.; Sen, A.; Ghodhbane-Gtari, F.; Benson, D.R.; Armengaud, J.; Gtari, M. Effect of actinorhizal root exudates on the proteomes of Frankia soli NRRL B-16219, a strain colonizing the root tissues of its actinorhizal host via intercellular pathway. Res. Microbiol. 2021, 103900. [Google Scholar] [CrossRef]
- Pujic, P.; Alloisio, N.; Fournier, P.; Roche, D.; Sghaier, H.; Miotello, G.; Armengaud, J.; Berry, A.M.; Normand, P. Omics of the early molecular dialogue between Frankia alni and Alnus glutinosa and the cellulase synton. Environ. Microbiol. 2019, 21, 3328–3345. [Google Scholar] [CrossRef]
- Hammad, Y.; Nalin, R.; Marechal, J.; Fiasson, K.; Pepin, R.; Berry, A.M.; Normand, P.; Domenach, A.M. A possible role for phenylacetic acid (PAA) in Alnus glutinosa nodulation by Frankia. Plant Soil 2003, 254, 193–205. [Google Scholar] [CrossRef]
- Carro, L.; Pujic, P.; Alloisio, N.; Fournier, P.; Boubakri, H.; Hay, A.E.; Poly, F.; Francois, P.; Hocher, V.; Mergaert, P.; et al. Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia. ISME J. 2015, 9, 1723–1733. [Google Scholar] [CrossRef]
- Mastronunzio, J.E.; Benson, D.R. Wild nodules can be broken: Proteomics of Frankia in field-collected root nodules. Symbiosis 2010, 50, 13–26. [Google Scholar] [CrossRef]
- Alloisio, N.; Félix, S.; Maréchal, J.; Pujic, P.; Rouy, Z.; Vallenet, D.; Medigue, C.; Normand, P. Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol. Plant 2007, 13, 440–453. [Google Scholar] [CrossRef]
- Ghedira, K.; Harigua-Souiai, E.; Ben Hamda, C.; Fournier, P.; Pujic, P.; Guesmi, S.; Guizani, I.; Miotello, G.; Armengaud, J.; Normand, P.; et al. The PEG-responding desiccome of the alder microsymbiont Frankia alni. Sci. Rep. 2018, 8, 759. [Google Scholar] [CrossRef] [PubMed]
- Normand, P.; Lalonde, M. Evaluation of Frankia strains isolated from provenances of two Alnus species. Can. J. Microbiol. 1982, 28, 1133–1142. [Google Scholar] [CrossRef]
- Murry, M.A.; Fontaine, M.S.; Torrey, J.G. Growth kinetics and nitrogenase induction in Frankia sp. HFPArI3 grown in batch culture. Plant Soil 1984, 78, 61–78. [Google Scholar] [CrossRef]
- Fåhraeus, G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 1957, 16, 374–381. [Google Scholar] [CrossRef]
- Schwenke, J. Rapid, exponential growth and increased biomass yield of some Frankia strains in buffered and stirred mineral medium (BAP) with phosphatidyl choline. Plant Soil 1991, 137, 37–41. [Google Scholar] [CrossRef]
- Hartmann, E.M.; Allain, F.; Gaillard, J.C.; Pible, O.; Armengaud, J. Taking the shortcut for high-throughput shotgun proteomic analysis of bacteria. Methods Mol. Biol. 2014, 1197, 275–285. [Google Scholar]
- Klein, G.; Mathé, C.; Biola-Clier, M.; Devineau, S.; Drouineau, E.; Hatem, E.; Marichal, L.; Alonso, B.; Gaillard, J.C.; Lagniel, G.; et al. RNA-binding proteins are a major target of silica nanoparticles in cell extracts. Nanotoxicology 2016, 10, 1555–1564. [Google Scholar] [CrossRef]
- Gouveia, D.; Grenga, L.; Pible, O.; Armengaud, J. Quick microbial molecular phenotyping by differential shotgun proteomics. Environ. Microbiol. 2020, 22, 2996–3004. [Google Scholar] [CrossRef]
- Leul, M.; Normand, P.; Sellstedt, A. The organization, regulation and phylogeny of uptake hydrogenase genes in Frankia. Physiol. Plant 2007, 130, 464–470. [Google Scholar] [CrossRef]
- Richau, K.H.; Kudahettige, R.L.; Pujic, P.; Kudahettige, N.P.; Sellstedt, A. Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia. J. Biosci. 2013, 38, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Yurgel, S.N.; Qu, Y.; Rice, J.T.; Ajeethan, N.; Zink, E.M.; Brown, J.M.; Purvine, S.; Lipton, M.S.; Kahn, M.L. Specialization in a nitrogen-fixing symbiosis: Proteome differences between Sinorhizobium medicae bacteria and bacteroids. Mol. Plant-Microbe Interact. 2021, 34, 1409–1422. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.; Herouart, D.; Puppo, A.; Touati, D. Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis. Mol. Microbiol. 2000, 38, 750–759. [Google Scholar] [CrossRef]
- Santos, R.; Herouart, D.; Sigaud, S.; Touati, D.; Puppo, A. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction. Mol. Plant-Microbe Interact. 2001, 14, 86–89. [Google Scholar] [CrossRef]
- Berger, A.; Boscari, A.; Puppo, A.; Brouquisse, R. Nitrate reductases and hemoglobins control nitrogen-fixing symbiosis by regulating nitric oxide accumulation. J. Exp. Bot. 2021, 72, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Tavares, F.; Santos, C.L.; Sellstedt, A. Reactive oxygen species in legume and actinorhizal nitrogen-fixing symbioses: The microsymbiont’s responses to an unfriendly reception. Physiol. Plant 2007, 130, 344–356. [Google Scholar] [CrossRef]
- Santos, C.L.; Vieira, J.; Sellstedt, A.; Normand, P.; Moradas-Ferreira, P.; Tavares, F. Modulation of Frankia alni ACN14a oxidative stress response: Activity, expression and phylogeny of catalases. Physiol. Plant 2007, 130, 454–463. [Google Scholar] [CrossRef]
- Bown, A.W.; Shelp, B.J. Plant GABA: Not just a metabolite. Trends Plant Sci. 2016, 21, 811–813. [Google Scholar] [CrossRef]
- Brooks, J.M.; Benson, D.R. Comparative metabolomics of root nodules infected with Frankia sp. strains and uninfected roots from Alnus glutinosa and Casuarina cunninghamiana reflects physiological integration. Symbiosis 2016, 70, 87–96. [Google Scholar] [CrossRef]
- Hay, A.E.; Herrera-Belaroussi, A.; Rey, M.; Fournier, P.; Normand, P.; Boubakri, H. Feed-back regulation of N-fixation in Frankia-Alnus symbiosis through amino acids contents in field and greenhouse nodules. Mol. Plant-Microbe Interact. 2019, 33, 499–508. [Google Scholar] [CrossRef]
- Prell, J.; Bourdes, A.; Karunakaran, R.; Lopez-Gomez, M.; Poole, P. Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis. J. Bacteriol. 2009, 191, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, P.; Lundquist, P.O. Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy. Planta 2004, 219, 661–672. [Google Scholar] [CrossRef]
- Bown, A.W.; Shelp, B.J. The metabolism and functions of gamma-aminobutyric acid. Plant Physiol. 1997, 115, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Suh, S.; Guan, C.; Tsay, Y.F.; Moran, N.; Oh, C.J.; An, C.S.; Demchenko, K.N.; Pawlowski, K.; Lee, Y. A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol. 2004, 134, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Carro, L.; Persson, T.; Pujic, P.; Alloisio, N.; Fournier, P.; Boubakri, H.; Pawlowski, K.; Normand, P. Organic acids metabolism in Frankia alni. Symbiosis 2016, 70, 37–48. [Google Scholar] [CrossRef]
- Farkas, A.; Maróti, G.; Dürgő, H.; Györgypál, Z.; Lima, R.M.; Medzihradszky, K.F.; Kereszt, A.; Mergaert, P.; Kondorosi, É. Medicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms. Proc. Natl. Acad. Sci. USA 2014, 111, 5183–5188. [Google Scholar] [CrossRef]
- Alexandre, A.; Laranjo, M.; Oliveira, S. Global transcriptional response to heat shock of the legume symbiont Mesorhizobium loti MAFF303099 comprises extensive gene downregulation. DNA Res. 2014, 21, 195–206. [Google Scholar] [CrossRef]
- Brígido, C.; Alexandre, A.; Oliveira, S. Transcriptional analysis of major chaperone genes in salt-tolerant and salt-sensitive mesorhizobia. Microbiol. Res. 2012, 167, 623–629. [Google Scholar] [CrossRef]
- Ribbe, M.W.; Burgess, B.K. The chaperone GroEL is required for the final assembly of the molybdenum-iron protein of nitrogenase. Proc. Natl. Acad. Sci. USA 2001, 98, 5521–5525. [Google Scholar] [CrossRef]
- Durighello, E.; Christie-Oleza, J.A.; Armengaud, J. Assessing the exoproteome of marine bacteria, lesson from a RTX-Toxin abundantly secreted by Phaeobacter strain DSM 17395. PLoS ONE 2014, 9, e89691. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Natale, D.A.; Garkavtsev, I.V.; Tatusova, T.A.; Shankavaram, U.T.; Rao, B.S.; Kiryutin, B.; Galperin, M.Y.; Fedorova, N.D.; Koonin, E.V. The COG database: New developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001, 29, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Vallenet, D.; Calteau, A.; Cruveiller, S.; Gachet, M.; Lajus, A.; Josso, A.; Mercier, J.; Renaux, A.; Rollin, J.; Rouy, Z.; et al. MicroScope in 2017: An expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res. 2017, 45, D517–D528. [Google Scholar] [CrossRef] [PubMed]
NCBI Accession | FRAAL # | Gene | Functional Description | Fold Change | COG | Distribution | % NSAF Nodule |
---|---|---|---|---|---|---|---|
WP_009741523.1 | FRAAL6813 | nifH | Nitrogenase iron protein NifH | 291.33 | P | S | 0.009 |
WP_011607845.1 | FRAAL6811 | nifK | Nitrogenase molybdenum–iron protein subunit beta NifK | 279.00 | C | S | 0.005 |
WP_011607832.1 | FRAAL6798 | korB | 2-Oxoglutarate ferredoxin oxidoreductase subunit beta KorB | 91.50 | C | S | 0.002 |
WP_011606600.1 | FRAAL5516 | ATPase | 89.00 | O | C1 | 0.003 | |
WP_011607846.1 | FRAAL6812 | nifD | Nitrogenase molybdenum–iron protein subunit alpha NifD | 86.17 | C | S | 0.002 |
WP_041939983.1 | FRAAL6802 | nifU | Iron–sulfur cluster assembly accessory protein NifU | 84.17 | O | S | 0.004 |
WP_041939982.1 | FRAAL6799 | korA | 2-Oxoglutarate ferredoxin oxidoreductase subunit alpha KorA | 82.00 | C | S | 0.001 |
WP_011602860.1 | FRAAL1673 | mopB | Molybdenum-binding protein MopB | 64.17 | R | S | 0.004 |
WP_011605156.1 | FRAAL4025 | ddnB | F420H(2)-dependent quinone nitroreductase, DdnB | 44.33 | J | S | 0.003 |
WP_011607839.1 | FRAAL6805 | nifW | Nitrogenase-stabilizing/protective protein NifW | 40.33 | P | S | 0.003 |
WP_041939985.1 | FRAAL6808 | nifX | Nitrogen fixation protein NifX | 33.83 | - | S | 0.002 |
WP_011602101.1 | FRAAL0868 | tetR | TetR family transcriptional regulator | 33.09 | K | C1 | 0.002 |
WP_011607841.1 | FRAAL6807 | nif | Associated nitrogen fixation protein NifX | 23.83 | - | S | 0.003 |
WP_011604521.1 | FRAAL3374 | mer | Coenzyme F420-dependent N(5),N(10)-methylenetetrahydromethanopterin reductase | 22.83 | C | f | 0.001 |
WP_011604385.1 | FRAAL3236 | ddn | Deazaflavin-dependent nitroreductase | 18.83 | - | C1 | 0.001 |
WP_011601860.1 | FRAAL0611 | ybaB | Nucleoid-associated protein | 17.67 | O | A | 0.001 |
WP_011603220.1 | FRAAL2049 | Glycosyl transferase | 15.50 | M | C1c, C2 | 0.000 | |
WP_011601350.1 | FRAAL0082 | arfA | Ammonia release factor ArfA | 13.33 | M | f | 0.001 |
WP_011606048.1 | FRAAL4934 | fadA | 3-Ketoacyl-CoA thiolase | 12.91 | I | A | 0.003 |
WP_011602036.1 | FRAAL0800 | thiC | Phosphomethylpyrimidine synthase | 12.80 | H | A | 0.000 |
WP_041939400.1 | FRAAL3855 | fdxI | 4Fe-4S iron–sulfur binding ferredoxin | 12.67 | C | A | 0.001 |
WP_011601559.1 | FRAAL0301 | Transcriptional regulator | 12.38 | T | c1 | 0.000 | |
WP_011603772.1 | FRAAL2618 | Acetyl-CoA acetyltransferase | 11.83 | I | A | 0.000 | |
WP_011607074.1 | FRAAL6022 | gad | Gamma-aminobutyraldehyde dehydrogenase | 11.56 | C | A | 0.000 |
WP_011604927.1 | FRAAL3789 | Thioesterase | 10.88 | R | C1, C3, C4 | 0.001 | |
WP_011603462.1 | FRAAL2298 | folD | Methylenetetrahydrofolate dehydrogenase FolD | 10.86 | H | A | 0.001 |
WP_011605870.1 | FRAAL4755 | Membrane phosphatase | 10.80 | K | A | 0.000 | |
WP_011607913.1 | FRAAL6878 | rsmG | Ribosomal RNA small subunit methyltransferase G | 10.77 | M | A | 0.001 |
WP_011607828.1 | FRAAL6795 | qorB | Quinone oxydoreductase QorB | 10.67 | M | C1, C3, C4 | 0.001 |
WP_011606846.1 | FRAAL5774 | dxr | 1-Deoxy-D-xylulose 5-phosphate reductoisomerase Dxr | 10.54 | I | A | 0.001 |
WP_050997128.1 | FRAAL3342 | ssuA | Sulfonate transport system substrate-binding SsuA | 10.50 | P | C1, C2, C4 | 0.000 |
WP_041938619.1 | FRAAL0128 | purF | Amidophosphoribosyltransferase PurF | 9.86 | F | A | 0.000 |
WP_009742300.1 | FRAAL5827 | DNA-binding protein HU-beta, NS1 (HU-1) | 9.76 | L | A | 0.016 | |
WP_041939818.1 | FRAAL6056 | ATP-binding protein | 9.60 | - | A | 0.004 | |
WP_041939008.1 | FRAAL1862 | rpiB | Ribose 5-phosphate isomerase RplB | 9.07 | G | A | 0.003 |
WP_011601953.1 | FRAAL0711 | Transcriptional regulator | 8.76 | K | C1, C1c, C3, C4 | 0.002 | |
WP_009737569.1 | FRAAL4338 | bfrA | Bacterioferritin BfrA | 8.49 | P | A | 0.004 |
WP_011602931.1 | FRAAL1747 | Putative carboxyvinyl–carboxyphosphonate phosphorylmutase | 8.43 | G | C1, C1c, C4 | 0.000 | |
WP_041938916.1 | FRAAL1429 | hpnD | Phytoene synthase HpnD | 8.40 | I | A | 0.003 |
WP_011604375.1 | FRAAL3226 | bkdC | Branched-chain alpha-keto acid dehydrogenase subunit BkdC | 8.14 | C | A | 0.000 |
WP_041940119.1 | FRAAL0708 | Lipid esterase | 7.91 | R | C1, C2, C3, C4 | 0.000 | |
WP_011602626.1 | FRAAL1431 | fppS | Farnesyl diphosphate synthase | 7.75 | H | A | 0.002 |
WP_041939587.1 | FRAAL4898 | LuxR family transcriptional regulator | 7.67 | K | C1, C1c, C3, C4 | 0.000 | |
WP_011606077.1 | FRAAL4963 | adk | Adenylate kinase | 7.50 | F | A | 0.001 |
WP_011604508.1 | FRAAL3361 | Short-chain fatty acid–CoA ligase | 7.43 | I | A | 0.000 | |
WP_011604193.1 | FRAAL3044 | Transcriptional regulator | 7.36 | K | f | 0.000 | |
WP_041939680.1 | FRAAL5348 | cspA | Cold shock protein | 7.33 | K | A | 0.002 |
WP_011602011.1 | FRAAL0771 | dgc | Diguanylate cyclase | 7.17 | T | f | 0.000 |
WP_011607242.1 | FRAAL6192 | Adenylate kinase | 7.17 | F | A | 0.001 | |
WP_041939231.1 | FRAAL2835 | adh | Acyl-CoA dehydrogenase | 6.71 | I | A | 0.000 |
WP_011606204.1 | FRAAL5096 | pks | Polyketide cyclase/dehydrase and lipid transport | 6.56 | - | A | 0.001 |
WP_050997247.1 | FRAAL5736 | ftsK | Cell division protein FtsK | 6.43 | D | A | 0.000 |
WP_011604554.1 | FRAAL3408 | Alpha/beta hydrolase | 6.37 | R | f | 0.001 | |
WP_041938863.1 | FRAAL1156 | sucC | Succinyl-CoA synthetase subunit beta SucC | 6.14 | C | A | 0.012 |
WP_011605559.1 | FRAAL4438 | Sugar-phosphate dehydrogenase | 6.08 | C | A | 0.002 | |
WP_041939760.1 | FRAAL5796 | smc | Chromosome segregation protein Smc | 6.04 | D | A | 0.000 |
WP_041939603.1 | FRAAL4991 | thiF | Thiamine biosynthesis protein ThiF | 6.00 | H | f | 0.000 |
WP_041938832.1 | FRAAL0997 | hemL | Glutamate-1-semialdehyde aminotransferase HemL | 5.93 | H | A | 0.001 |
WP_011603632.1 | FRAAL2475 | glbN | Truncated hemoglobin GlbN | 5.87 | R | f | 0.001 |
WP_011601393.1 | FRAAL0129 | purM | Phosphoribosylaminoimidazole synthetase PurM | 5.77 | F | A | 0.001 |
WP_041938655.1 | FRAAL0282 | Putative integrase/resolvase | 5.71 | L | f | 0.000 | |
WP_011603454.1 | FRAAL2289 | Putative two-component oxygen sensor kinase | 5.67 | T | A | 0.000 | |
WP_011604752.1 | FRAAL3613 | Diacylglycerol O-acyltransferase | 5.67 | - | f | 0.000 | |
WP_011602534.1 | FRAAL1337 | pkn | Serine/threonine protein kinase | 5.50 | T | F | 0.000 |
WP_011603231.1 | FRAAL2064 | acnA | Aconitate hydratase AcnA | 5.44 | C | A | 0.006 |
WP_011605678.1 | FRAAL4561 | sufE | (2Fe-2S)-Binding protein SufE | 5.40 | P | A | 0.001 |
WP_050997107.1 | FRAAL2825 | Putative N-fatty-acyl-amino acid synthase | 5.38 | E | A | 0.001 | |
WP_011606156.1 | FRAAL5045 | ahpE | Peroxiredoxin AhpE | 5.31 | O | A | 0.009 |
WP_041939398.1 | FRAAL3827 | bra | Branched-chain amino acid ABC transporter ATP-binding protein | 5.18 | E | A | 0.001 |
WP_011607046.1 | FRAAL5991 | rshA | Anti-sigma factor RshA | 5.12 | T | A | 0.004 |
WP_011602689.1 | FRAAL1499 | cysO | Sulfur carrier protein CysO | 5.07 | H | A | 0.002 |
WP_011602425.1 | FRAAL1224 | Acetyl-CoA synthetase | 5.04 | I | A | 0.001 | |
WP_011602282.1 | FRAAL1055 | pyrE | Orotate phosphoribosyltransferase pyrE | 5.00 | F | A | 0.001 |
WP_041939967.1 | FRAAL6738 | purS | Phosphoribosylformylglycinamidine synthase PurS | 4.92 | F | f | 0.001 |
WP_041939945.1 | FRAAL6664 | purE | Phosphoribosylaminoimidazole carboxylase PurE | 4.90 | F | A | 0.003 |
WP_035923438.1 | FRAAL6556 | crp | Crp/Fnr family transcriptional regulator | 4.83 | T | A | 0.005 |
WP_011606876.1 | FRAAL5804 | rnc | Ribonuclease III rnc | 4.82 | K | A | 0.000 |
WP_011604517.1 | FRAAL3370 | fklB | Peptidyl–prolyl cis–trans isomerase FklB | 4.80 | O | A | 0.003 |
WP_041939534.1 | FRAAL4560 | sufC | Fe–S cluster assembly ATPase SufC | 4.62 | O | A | 0.004 |
WP_011603306.1 | FRAAL2141 | ruvB | Holliday junction DNA helicase RuvB | 4.60 | L | A | 0.000 |
WP_011605202.1 | FRAAL4072 | pks | Polyketide synthase | 4.56 | Q | f | 0.000 |
WP_011601665.1 | FRAAL0409 | Acetyl-CoA acetyltransferase | 4.53 | I | A | 0.000 | |
WP_011606938.1 | FRAAL5877 | etfA | Electron transfer flavoprotein EtfA | 4.48 | C | A | 0.007 |
WP_011601417.1 | FRAAL0156 | gdhB | Glutamate dehydrogenase GdhB | 4.47 | E | f | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujic, P.; Alloisio, N.; Miotello, G.; Armengaud, J.; Abrouk, D.; Fournier, P.; Normand, P. The Proteogenome of Symbiotic Frankia alni in Alnus glutinosa Nodules. Microorganisms 2022, 10, 651. https://doi.org/10.3390/microorganisms10030651
Pujic P, Alloisio N, Miotello G, Armengaud J, Abrouk D, Fournier P, Normand P. The Proteogenome of Symbiotic Frankia alni in Alnus glutinosa Nodules. Microorganisms. 2022; 10(3):651. https://doi.org/10.3390/microorganisms10030651
Chicago/Turabian StylePujic, Petar, Nicole Alloisio, Guylaine Miotello, Jean Armengaud, Danis Abrouk, Pascale Fournier, and Philippe Normand. 2022. "The Proteogenome of Symbiotic Frankia alni in Alnus glutinosa Nodules" Microorganisms 10, no. 3: 651. https://doi.org/10.3390/microorganisms10030651
APA StylePujic, P., Alloisio, N., Miotello, G., Armengaud, J., Abrouk, D., Fournier, P., & Normand, P. (2022). The Proteogenome of Symbiotic Frankia alni in Alnus glutinosa Nodules. Microorganisms, 10(3), 651. https://doi.org/10.3390/microorganisms10030651