Aspergillus niger as a Biological Input for Improving Vegetable Seedling Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Aspergillus niger Inoculum Preparation
2.4. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carmona, E.; Moreno, M.T.; Avilés, M.; Ordovás, J. Use of grape marc compost as substrate for vegetable seedlings. Sci. Hortic. 2012, 137, 69–74. [Google Scholar] [CrossRef]
- Balliu, A.; MarŠić, N.K.; Gruda, N. Seedling production. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries—Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., De Pascale, S., Nicola, S., Gruda, N., Urban, L., Tany, J., Eds.; FAO: Rome, Italy, 2017; pp. 189–206. ISBN 9789251096222. [Google Scholar]
- Popsimonova, G.; Benko, B.; Karicc, L.; Gruda, N. Production systems: Integrated and organic production, and soilless culture. In Good Agricultural Practices for Greenhouse Vegetable Production in the South East European Countries—Principles for Sustainable Intensification of Smallholder Farms; Baudoin, W., Nersisyan, A., Shamilov, A., Hodder, A., Gutierrez, D., De Pascale, S., Nicola, S., Gruda, N., Urban, L., Tany, J., Eds.; FAO: Rome, Italy, 2017; pp. 207–226. ISBN 9789251096222. [Google Scholar]
- Martin-Gorriz, B.; Gallego-Elvira, B.; Martínez-Alvarez, V.; Maestre-Valero, J.F. Life cycle assessment of fruit and vegetable production in the Region of Murcia (south-east Spain) and evaluation of impact mitigation practices. J. Clean. Prod. 2020, 265, 121656. [Google Scholar] [CrossRef]
- Pérez-Jaramillo, J.E.; Mendes, R.; Raaijmakers, J.M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant. Mol. Biol. 2016, 90, 635–644. [Google Scholar] [CrossRef] [Green Version]
- Toju, H.; Peay, K.G.; Yamamichi, M.; Narisawa, K.; Hiruma, K.; Naito, K.; Fukuda, S.; Ushio, M.; Nakaoka, S.; Onoda, Y.; et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 2018, 4, 247–257. [Google Scholar] [CrossRef]
- Hussain, S.S.; Mehnaz, S.; Siddique, K.H.M. Harnessing the plant microbiome for improved abiotic stress tolerance. In Plant Microbiome: Stress Response; Microorganisms for Sustainability; Egamberdieva, D., Ahmad, P., Eds.; Springer: Singapore, 2018; Volume 5, pp. 21–43. ISBN 978-981-10-5513-3. [Google Scholar]
- Vassileva, M.; Flor-Peregrin, E.; Malusá, E.; Vassilev, N. Towards better understanding of the interactions and efficient application of plant beneficial prebiotics, probiotics, postbiotics and synbiotics. Front. Plant. Sci. 2020, 11, 1068. [Google Scholar] [CrossRef]
- Meemken, E.M.; Qaim, M. Organic agriculture, food security, and the environment. Annu. Rev. Resour. Econ. 2018, 10, 39–63. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N.; Mayerhofer, T. What is this thing called organic?—How organic farming is codified in regulations. Food Policy 2017, 68, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, S.M.; Naveed, M.; Zahir, Z.A.; Asghar, H.N. Plant-microbe interactions for sustainable agriculture: Fundamentals and recent advances. In Plant Microbe Symbiosis: Fundamentals and Advances; Arora, N.K., Ed.; Springer: New Delhi, India, 2013; pp. 51–103. ISBN 978-81-322-1287-4. [Google Scholar]
- Olanrewaju, O.S.; Glick, B.R.; Babalola, O.O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 2017, 33, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant. Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Pandey, A.; Tripathi, A.; Srivastava, P.; Choudhary, K.K.; Dikshit, A. Plant growth-promoting microorganisms in sustainable agriculture. In Role of Plant Growth Promoting Microorganisms in Sustainable Agriculture and Nanotechnology; Kumar, A., Singh, A.K., Choudhary, K.K., Eds.; Elsevier: Duxford, UK, 2019; pp. 1–19. ISBN 9780128170045. [Google Scholar]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Yang, S.; Meng, L.; Wang, B.-G. The plant hormone abscisic acid regulates the growth and metabolism of endophytic fungus Aspergillus nidulans. Sci. Rep. 2018, 8, 6504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochange, S.; Goormachtig, S.; Lopez-Raez, J.A.; Gutjahr, C. The role of strigolactones in plant–microbe interactions. In Strigolactones—Biology and Applications; Koltai, H., Prandi, C., Eds.; Springer: Cham, Switzerland, 2019; pp. 121–142. [Google Scholar]
- Hassan, S.; Mathesius, U. The role of flavonoids in root-rhizosphere signalling: Opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 2012, 63, 3429–3444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Costa, P.B.; van Elsas, J.D.; Mallon, C.; Borges, L.G.d.A.; Passaglia, L.M.P. Efficiency of probiotic traits in plant inoculation is determined by environmental constrains. Soil Biol. Biochem. 2020, 148, 107893. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Lopez, A.; Martos, V.; Reyes, A.; Maksimovic, I.; Eichler-Löbermann, B.; Malusà, E. Unexploited potential of some biotechnological techniques for biofertilizer production and formulation. Appl. Microbiol. Biotechnol. 2015, 99, 4983–4996. [Google Scholar] [CrossRef] [PubMed]
- Sussman, A.S. Longevity and survivability of fungi. In The Fungi—An Advanced Treatise; Ainsworth, G.C., Sussman, A.S., Eds.; Academic Press: New York, NY, USA, 1968; pp. 447–486. [Google Scholar]
- Hossain, M.M.; Sultana, F.; Islam, S. Plant growth-promoting fungi (PGPF): Phytostimulation and induced systemic resistance. In Plant-Microbe Interactions in Agro-Ecological Perspectives; Singh, D.P., Singh, H.B., Prabha, R., Eds.; Springer: Singapore, 2017; Volume 2, pp. 135–191. ISBN 9789811065934. [Google Scholar]
- Lubna; Asaf, S.; Hamayun, M.; Gul, H.; Lee, I.-J.; Hussain, A. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. J. Plant. Interact. 2018, 13, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Benhamou, N.; le Floch, G.; Vallance, J.; Gerbore, J.; Grizard, D.; Rey, P. Pythium oligandrum: An example of opportunistic success. Microbiology 2012, 158, 2679–2694. [Google Scholar] [CrossRef]
- Wonglom, P.; Ito, S.-i.; Sunpapao, A. Volatile organic compounds emitted from endophytic fungus Trichoderma asperellum T1 mediate antifungal activity, defense response and promote plant growth in lettuce (Lactuca sativa). Fungal Ecol. 2020, 43, 100867. [Google Scholar] [CrossRef]
- Santos, M.S.; Nogueira, M.A.; Hungria, M. Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed]
- Mendes, G.O.; da Silva, N.M.R.M.; Anastácio, T.C.; Vassilev, N.B.; Ribeiro, J.I.; da Silva, I.R.; Costa, M.D. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer. Microb. Biotechnol. 2015, 8, 930–939. [Google Scholar] [CrossRef]
- Mendes, G.O.; Freitas, A.L.M.; Pereira, O.L.; Silva, I.R.; Vassilev, N.B.; Costa, M.D. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann. Microbiol. 2014, 64, 239–249. [Google Scholar] [CrossRef]
- Mendes, G.O.; Galvez, A.; Vassileva, M.; Vassilev, N. Fermentation liquid containing microbially solubilized P significantly improved plant growth and P uptake in both soil and soilless experiments. Appl. Soil Ecol. 2017, 117–118, 208–211. [Google Scholar] [CrossRef]
- Lopes-Assad, M.L.; Avansini, S.H.; Rosa, M.M.; de Carvalho, J.R.P.; Ceccato-Antonini, S.R.; Carvalho, J.R.P.; Antonini, S.R.C.; de Carvalho, J.R.P.; Ceccato-Antonini, S.R. The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can. J. Microbiol. 2010, 56, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Cihangir, N. Stimulation of the gibberellic acid synthesis by Aspergillus niger in submerged culture using a precursor. World J. Microbiol. Biotechnol. 2002, 18, 727–739. [Google Scholar] [CrossRef]
- Seyis Bilkay, I.; Karakoç, Ş.; Aksöz, N. Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turk. J. Biol. 2010, 34, 313–318. [Google Scholar] [CrossRef]
- Vassilev, N.; Franco, I.; Vassileva, M.; Azcon, R. Improved plant growth with rock phosphate solubilized by Aspergillus niger grown on sugar-beet waste. Bioresour. Technol. 1996, 55, 237–241. [Google Scholar] [CrossRef]
- Araújo, V.C.; Rossati, K.F.; Xavier, L.V.; de Oliveira, V.A.; Carmo, G.J.d.S.; de Assis, G.A.; Mendes, G.d.O. Enhanced growth in nursery of coffee seedlings inoculated with the rhizosphere fungus Aspergillus niger for field transplantation. Rhizosphere 2020, 15, 100236. [Google Scholar] [CrossRef]
- SISMET Sistema de Monitoramento Meteorológico—Cooxupé (Monte Carmelo). Available online: http://sismet.cooxupe.com.br:9000/ (accessed on 20 February 2022).
- Clark, R.T.; Famoso, A.N.; Zhao, K.; Shaff, J.E.; Craft, E.J.; Bustamante, C.D.; Mccouch, S.R.; Aneshansley, D.J.; Kochian, L.V. High-throughput two-dimensional root system phenotyping platform facilitates genetic analysis of root growth and development. Plant. Cell Environ. 2013, 36, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. Nbclust: An R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Singh, D. The relative importance of characters affecting genetic divergence. Indian J. Genet. Plant. Breed. 1981, 41, 237–245. [Google Scholar]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar] [PubMed]
- Cruz, C.D. Genes: A software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 2013, 35, 271–276. [Google Scholar] [CrossRef]
- Cruz, C.D.; Regazzi, A.J.; Carneiro, P.C.S. Modelos Biométrico Aplicados ao Melhoramento Genético; UFV: Viçosa, Brazil, 2012. [Google Scholar]
- Cleland, R.E. Introduction: Nature, occurrence and functioning of plant hormones. In Biochemistry and Molecular Biology of Plant Hormones; Hooykaas, P.J.J., Hall, M.A., Libbenga, K.R., Eds.; Elsevier Science: Amsterdam, The Netherlands, 1999; Volume 33, pp. 3–22. ISBN 0 444 89825 5. [Google Scholar]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Spaepen, S. Plant hormones produced by microbes. In Principles of Plant-Microbe Interactions; Lugtenberg, B., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 247–256. ISBN 978-3-319-08574-6. [Google Scholar]
- Afzal Khan, S.; Hamayun, M.; Kim, H.Y.; Yoon, H.J.; Lee, I.J.; Kim, J.G. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 2009, 25, 829–833. [Google Scholar] [CrossRef]
- Fu, S.-F.; Wei, J.-Y.; Chen, H.-W.; Liu, Y.-Y.; Lu, H.-Y.; Chou, J.-Y. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant. Signal. Behav. 2015, 10, e1048052. [Google Scholar] [CrossRef] [Green Version]
- Zuluaga, M.Y.A.; Milani, K.M.L.; Miras-Moreno, B.; Lucini, L.; Valentinuzzi, F.; Mimmo, T.; Pii, Y.; Cesco, S.; Rodrigues, E.P.; Oliveira, A.L.M. de Inoculation with plant growth-promoting bacteria alters the rhizosphere functioning of tomato plants. Appl. Soil Ecol. 2021, 158, 103784. [Google Scholar] [CrossRef]
- Takishita, Y.; Charron, J.B.; Smith, D.L. Biocontrol rhizobacterium Pseudomonas sp. 23S induces systemic resistance in Tomato (Solanum lycopersicum L.) against bacterial canker Clavibacter michiganensis subsp. michiganensis. Front. Microbiol. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Gao, P.; Korley, F.; Martin, J.; Chen, B.T. Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings. Am. Ind. Hyg. Assoc. J. 2002, 63, 135–140. [Google Scholar] [CrossRef]
- Fiedler, K.; Schütz, E.; Geh, S. Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int. J. Hyg. Environ. Health 2001, 204, 111–121. [Google Scholar] [CrossRef]
- Lima, M.A.S.; De Oliveira, M.D.C.F.; Pimenta, A.T.Á.; Uchôa, P.K.S. Aspergillus niger: A hundred years of contribution to the natural products chemistry. J. Braz. Chem. Soc. 2019, 30, 2029–2059. [Google Scholar] [CrossRef]
- Abdel-Rahim, A.M.; Arbab, H.A. Factors affecting spore germination in Aspergillus niger. Mycopathologia 1985, 89, 75–79. [Google Scholar] [CrossRef]
- Burges, H.D. Formulation of Microbial Biopesticides—Beneficial Microorganisms, Nematodes and Seed Treatments; Burges, H.D., Ed.; Springer Science+Business Media: Dordrecht, The Netherlands, 1998; ISBN 978-94-010-6066-0. [Google Scholar]
- Binenbaum, J.; Weinstain, R.; Shani, E. Gibberellin localization and transport in plants. Trends Plant. Sci. 2018, 23, 410–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amprayn, K.O.; Rose, M.T.; Kecskés, M.; Pereg, L.; Nguyen, H.T.; Kennedy, I.R. Plant growth promoting characteristics of soil yeast (Candida tropicalis HY) and its effectiveness for promoting rice growth. Appl. Soil Ecol. 2012, 61, 295–299. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; Cortés-Penagos, C.; López-Bucio, J. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant. Physiol. 2009, 149, 1579–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassar, A.H.; El-Tarabily, K.A.; Sivasithamparam, K. Promotion of plant growth by an auxin-producing isolate of the yeast Williopsis saturnus endophytic in maize (Zea mays L.) roots. Biol. Fertil. Soils 2005, 42, 97–108. [Google Scholar] [CrossRef]
- Miranda, S.; Ribeiro, R.; Ricci, M.; Almeida, D. Avaliação de substratos alternativos para produção de mudas de alface em bandejas. Embrapa 1998, 24, 1–6. [Google Scholar]
Treatment | Inoculation Method | Dose (Conidia Plant−1) |
---|---|---|
GR02 | In-furrow granular | 4 × 102 |
GR06 | In-furrow granular | 4 × 106 |
TS02 | Seed treatment | 4 × 102 |
TS06 | Seed treatment | 4 × 106 |
UNI | Uninoculated | 0 |
Treatment | Root Fresh Mass (g) | Shoot Fresh Mass (g) | Shoot Height (cm) | Stem Diameter 1 (mm) | Root Volume (cm³) | Total Root Length (cm) | Root Dry Mass (g) | Shoot Dry Mass (g) | Total Dry Mass (g) |
---|---|---|---|---|---|---|---|---|---|
Lettuce1 (Lactuca sativa) | |||||||||
GR02 | 0.35 | 1.13 | 6.21 | 5.87 | 0.35 | 182 | 0.037 | 0.082 | 0.119 |
GR06 | 0.3 | 1.31 | 6.58 | 5.9 | 0.29 | 183 | 0.04 | 0.096 | 0.136 |
TS02 | 0.33 | 1.13 | 6.25 | 5.91 | 0.32 | 182 | 0.042 | 0.087 | 0.129 |
TS06 | 0.37 | 1.2 | 6.37 | 6.06 | 0.36 | 192 | 0.039 | 0.093 | 0.132 |
UNI | 0.28 | 0.74 | 4.82 | 5.6 | 0.27 | 142 | 0.026 | 0.058 | 0.083 |
SED | 0.0462 | 0.1330 | 0.4370 | 0.0993 | 0.0474 | 13.9000 | 0.0043 | 0.0087 | 0.0109 |
LSD 5% | 0.0939 | 0.2703 | 0.8880 | 0.2018 | 0.0963 | 28.2448 | 0.0087 | 0.0177 | 0.0221 |
Melon (Cucumis melo) | |||||||||
GR02 | 0.66 | 1.58 | 13.46 | 3.48 | 0.51 | 181 | 0.028 | 0.11 | 0.138 |
GR06 | 0.66 | 1.64 | 13.03 | 3.47 | 0.52 | 176 | 0.026 | 0.106 | 0.132 |
TS02 | 0.69 | 1.7 | 13.55 | 3.49 | 0.53 | 186 | 0.03 | 0.118 | 0.148 |
TS06 | 0.73 | 1.65 | 13.26 | 3.44 | 0.53 | 189 | 0.028 | 0.118 | 0.148 |
UNI | 0.69 | 1.42 | 10.49 | 3.21 | 0.64 | 229 | 0.032 | 0.112 | 0.14 |
SED | 0.0759 | 0.0866 | 0.5870 | 0.0839 | 0.0439 | 14.5000 | 0.0023 | 0.0074 | 0.0089 |
LSD 5% | 0.1542 | 0.1760 | 1.1928 | 0.1705 | 0.0892 | 29.4640 | 0.0046 | 0.0149 | 0.0181 |
Pepper (Capsicum annuum) | |||||||||
GR02 | 0.64 | 1.8900 | 23.3300 | 2.8100 | 0.5100 | 189.0000 | 0.0530 | 0.2000 | 0.2530 |
GR06 | 0.56 | 1.82 | 22.9 | 3.02 | 0.45 | 182 | 0.05 | 0.195 | 0.245 |
TS02 | 0.62 | 1.84 | 22.91 | 2.7 | 0.54 | 192 | 0.054 | 0.192 | 0.246 |
TS06 | 0.54 | 1.73 | 22.43 | 2.82 | 0.45 | 192 | 0.049 | 0.186 | 0.235 |
UNI | 0.34 | 0.95 | 14.91 | 2.44 | 0.41 | 155 | 0.036 | 0.109 | 0.145 |
SED | 0.0426 | 0.0869 | 0.7220 | 0.1200 | 0.0572 | 9.5900 | 0.0038 | 0.0117 | 0.0146 |
LSD 5% | 0.0866 | 0.1766 | 1.4671 | 0.2438 | 0.1162 | 19.4869 | 0.0077 | 0.0238 | 0.0297 |
Scarlet eggplant (Solanum gilo) | |||||||||
GR02 | 0.69 | 1.46 | 15.52 | 2.96 | 0.67 | 248 | 0.07 | 0.213 | 0.283 |
GR06 | 0.74 | 1.64 | 16.37 | 3.05 | 0.72 | 265 | 0.069 | 0.233 | 0.302 |
TS02 | 0.71 | 1.47 | 15.92 | 2.94 | 0.66 | 262 | 0.076 | 0.217 | 0.293 |
TS06 | 0.7 | 1.46 | 15.25 | 3.06 | 0.66 | 256 | 0.075 | 0.215 | 0.29 |
UNI | 0.54 | 0.75 | 8.01 | 2.27 | 0.54 | 226 | 0.055 | 0.112 | 0.167 |
SED | 0.0526 | 0.1280 | 0.6510 | 0.1230 | 0.0561 | 8.2700 | 0.0039 | 0.0160 | 0.0191 |
LSD 5% | 0.1069 | 0.2601 | 1.3228 | 0.2499 | 0.1140 | 16.8046 | 0.0079 | 0.0325 | 0.0388 |
Watermelon (Citrullus lanatus) | |||||||||
GR02 | 0.79 | 1.44 | 12.77 | 3.31 | 0.39 | 168 | 0.019 | 0.107 | 0.126 |
GR06 | 0.64 | 1.47 | 13.37 | 3.34 | 0.4 | 157 | 0.018 | 0.104 | 0.122 |
TS02 | 0.7 | 1.58 | 13.8 | 3.31 | 0.48 | 174 | 0.021 | 0.11 | 0.131 |
TS06 | 0.74 | 1.48 | 13.49 | 3.26 | 0.45 | 172 | 0.02 | 0.109 | 0.129 |
UNI | 0.46 | 1.08 | 9.22 | 3.02 | 0.37 | 179 | 0.023 | 0.088 | 0.11 |
SED | 0.0984 | 0.0688 | 0.5110 | 0.0665 | 0.0446 | 20.0000 | 0.0019 | 0.0041 | 0.0048 |
LSD 5% | 0.1999 | 0.1398 | 1.0384 | 0.1351 | 0.0907 | 40.6400 | 0.0038 | 0.0083 | 0.0097 |
Tomato (Solanum lycopersicum) | |||||||||
GR02 | 0.54 | 2.23 | 26.58 | 3.07 | 0.51 | 233 | 0.045 | 0.254 | 0.297 |
GR06 | 0.55 | 2.21 | 26.66 | 2.98 | 0.53 | 205 | 0.04 | 0.268 | 0.308 |
TS02 | 0.51 | 2.33 | 26.67 | 3.03 | 0.48 | 185 | 0.041 | 0.256 | 0.294 |
TS06 | 0.58 | 2.38 | 26.55 | 3.15 | 0.53 | 190 | 0.042 | 0.262 | 0.301 |
UNI | 0.4 | 1.57 | 18.2 | 2.97 | 0.41 | 195 | 0.047 | 0.221 | 0.261 |
SED | 0.0458 | 0.1160 | 0.8070 | 0.1040 | 0.0440 | 8.1900 | 0.0026 | 0.0129 | 0.0145 |
LSD 5% | 0.0931 | 0.2357 | 1.6398 | 0.2113 | 0.0894 | 16.6421 | 0.0053 | 0.0262 | 0.0295 |
Kale (Brassica oleracea) | |||||||||
GR02 | 0.4 | 1.7 | 13.96 | 2.81 | 0.42 | nd 2 | 0.053 | 0.25 | 0.303 |
GR06 | 0.42 | 1.64 | 13.8 | 3.02 | 0.43 | nd | 0.054 | 0.259 | 0.313 |
TS02 | 0.42 | 1.7 | 14.21 | 2.7 | 0.43 | nd | 0.055 | 0.259 | 0.314 |
TS06 | 0.36 | 1.64 | 14.17 | 2.82 | 0.37 | nd | 0.053 | 0.259 | 0.311 |
UNI | 0.41 | 1.19 | 11.7 | 2.44 | 0.39 | nd | 0.05 | 0.22 | 0.27 |
SED | 0.0431 | 0.0834 | 0.2880 | 0.1270 | 0.0483 | nd | 0.0034 | 0.0118 | 0.0131 |
LSD 5% | 0.0876 | 0.1695 | 0.5852 | 0.2581 | 0.0981 | nd | 0.0068 | 0.0240 | 0.0266 |
Variable | Lettuce | Tomato | Kale | Scarlet Eggplant | Watermelon | Melon | Pepper |
---|---|---|---|---|---|---|---|
Root fresh mass | 0 | 6.19 | 0.06 | 0.88 | 1.58 | 0.44 | 4.66 |
Shoot fresh mass | 26.6 | 9.34 | 5.71 | 0.54 | 19.22 | 0 | 10.91 |
Shoot height | 15.97 | 65.1 | 5.94 | 33.99 | 61.2 | 57.15 | 10.83 |
Stem diameter 1 | 12.9 | 3.95 | 0.19 | 3.56 | 3.19 | 14.12 | 0 |
Root volume | 7.92 | 0 | 0.06 | 1.52 | 6.84 | 9.11 | 0 |
Total root length | 13.75 | 12.58 | nd 2 | 0 | 1.44 | 17.62 | 0.71 |
Root dry mass | 7.98 | 2.84 | 6.45 | 25.33 | 0 | 0.66 | 12.3 |
Shoot dry mass | 0 | 0 | 81.59 | 34.17 | 0 | 0.91 | 60.58 |
Total dry mass | 14.89 | 0 | 0 | 0 | 6.53 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mundim, G.d.S.M.; Maciel, G.M.; Mendes, G.d.O. Aspergillus niger as a Biological Input for Improving Vegetable Seedling Production. Microorganisms 2022, 10, 674. https://doi.org/10.3390/microorganisms10040674
Mundim GdSM, Maciel GM, Mendes GdO. Aspergillus niger as a Biological Input for Improving Vegetable Seedling Production. Microorganisms. 2022; 10(4):674. https://doi.org/10.3390/microorganisms10040674
Chicago/Turabian StyleMundim, Gustavo de Souza Marques, Gabriel Mascarenhas Maciel, and Gilberto de Oliveira Mendes. 2022. "Aspergillus niger as a Biological Input for Improving Vegetable Seedling Production" Microorganisms 10, no. 4: 674. https://doi.org/10.3390/microorganisms10040674
APA StyleMundim, G. d. S. M., Maciel, G. M., & Mendes, G. d. O. (2022). Aspergillus niger as a Biological Input for Improving Vegetable Seedling Production. Microorganisms, 10(4), 674. https://doi.org/10.3390/microorganisms10040674