Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Molecular Typing
2.2. HAI Surveillance System in the ICU
2.3. Statistical Analysis
3. Results
3.1. Molecular Typing and Characteristics of A. baumannii Isolates
3.2. ICU Nosocomial Infections
3.3. Risk Factors for A. baumannii Acquisition
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, S.E.; Villedieu, A.; Bagdasarian, N.; Karah, N.; Teare, L.; Elamin, W.F. Control and Management of Multidrug Resistant Acinetobacter baumannii: A Review of the Evidence and Proposal of Novel Approaches. Infect. Prev. Pract. 2020, 2, 100077. [Google Scholar] [CrossRef] [PubMed]
- Migliara, G.; Baccolini, V.; Isonne, C.; Cianfanelli, S.; di Paolo, C.; Mele, A.; Lia, L.; Nardi, A.; Salerno, C.; Caminada, S.; et al. Prior Antibiotic Therapy and the Onset of Healthcare-Associated Infections Sustained by Multidrug-Resistant Klebsiella Pneumoniae in Intensive Care Unit Patients: A Nested Case-Control Study. Antibiotics 2021, 10, 302. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.D.; Wright, G.D. Antibacterial Drug Discovery in the Resistance Era. Nature 2016, 529, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Sharifipour, E.; Shams, S.; Esmkhani, M.; Khodadadi, J.; Fotouhi-Ardakani, R.; Koohpaei, A.; Doosti, Z.; Ej Golzari, S. Evaluation of Bacterial Co-Infections of the Respiratory Tract in COVID-19 Patients Admitted to ICU. BMC Infect. Dis. 2020, 20, 646. [Google Scholar] [CrossRef]
- Barbato, D.; Castellani, F.; Angelozzi, A.; Isonne, C.; Baccolini, V.; Migliara, G.; Marzuillo, C.; de Vito, C.; Villari, P.; Romano, F.; et al. Prevalence Survey of Healthcare-Associated Infections in a Large Teaching Hospital. Ann. Ig. 2019, 31, 423–435. [Google Scholar] [CrossRef]
- Russo, A.; Gavaruzzi, F.; Ceccarelli, G.; Borrazzo, C.; Oliva, A.; Alessandri, F.; Magnanimi, E.; Pugliese, F.; Venditti, M. Multidrug-Resistant Acinetobacter baumannii Infections in COVID-19 Patients Hospitalized in Intensive Care Unit. Infection 2021, 50, 83–92. [Google Scholar] [CrossRef]
- Baccolini, V.; Migliara, G.; Isonne, C.; Dorelli, B.; Barone, L.C.; Giannini, D.; Marotta, D.; Marte, M.; Mazzalai, E.; Alessandri, F.; et al. The Impact of the COVID-19 Pandemic on Healthcare-Associated Infections in Intensive Care Unit Patients: A Retrospective Cohort Study. Antimicrob. Resist. Infect. Control 2021, 10, 87. [Google Scholar] [CrossRef]
- Perez, S.; Innes, G.K.; Maroya, S.W.; Walters, S.; Mehr, J.; Arias, J.; Greeley, R.; Chew, D. Increase in Hospital-Acquired Carbapenem-Resistant Acinetobacter Baumannii Infection and Colonization in an Acute Care Hospital During a Surge in COVID-19 Admissions—New Jersey, February–July 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 1827–1831. [Google Scholar] [CrossRef]
- Cawcutt, K.A.; Starlin, R.; Rupp, M.E. Fighting Fear in Healthcare Workers during the COVID-19 Pandemic. Infect. Control Hosp. Epidemiol. 2020, 41, 1192–1193. [Google Scholar] [CrossRef]
- Segala, F.V.; Bavaro, D.F.; di Gennaro, F.; Salvati, F.; Marotta, C.; Saracino, A.; Murri, R.; Fantoni, M. Impact of SARS-CoV-2 Epidemic on Antimicrobial Resistance: A Literature Review. Viruses 2021, 13, 2110. [Google Scholar] [CrossRef] [PubMed]
- Pascale, R.; Bussini, L.; Gaibani, P.; Bovo, F.; Fornaro, G.; Lombardo, D.; Ambretti, S.; Pensalfine, G.; Appolloni, L.; Bartoletti, M.; et al. Carbapenem Resistant Bacteria in Intensive Care Unit during COVID-19 Pandemic: Multicenter before-after Cross Sectional Study. Infect. Control Hosp. Epidemiol. 2021, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting Chromosomal DNA Restriction Patterns Produced by Pulsed-Field Gel Electrophoresis: Criteria for Bacterial Strain Typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migliara, G.; di Paolo, C.; Barbato, D.; Baccolini, V.; Salerno, C.; Nardi, A.; Alessandri, F.; Giordano, A.; Tufi, D.; Marinelli, L.; et al. Multimodal Surveillance of Healthcare Associated Infections in an Intensive Care Unit of a Large Teaching Hospital. Ann. Ig. 2019, 31, 399–413. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN) Patient Safety Component Manual. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf (accessed on 22 December 2021).
- European Centre for Disease Prevention and Control (ECDC) Surveillance of Healthcare-Associated Infections and Prevention Indicators in European Intensive Care Units HAI-Net ICU Protocol, Version 2.2. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/HAI-Net-ICU-protocol-v2.2_0.pdf (accessed on 22 December 2021).
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN Surveillance Definition of Health Care-Associated Infection and Criteria for Specific Types of Infections in the Acute Care Setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Bonomo, R.A.; Tolmasky, M.E. Carbapenemases: Transforming Acinetobacter baumannii into a yet More Dangerous Menace. Biomolecules 2020, 10, 720. [Google Scholar] [CrossRef]
- Lee, H.; Lee, H. Clinical and Economic Evaluation of Multidrug-Resistant Acinetobacter baumannii Colonization in the Intensive Care Unit. Infect. Chemother. 2016, 48, 174–180. [Google Scholar] [CrossRef]
- Khurana, S.; Singh, P.; Sharad, N.; Kiro, V.V.; Rastogi, N.; Lathwal, A.; Malhotra, R.; Trikha, A.; Mathur, P. Profile of Co-Infections & Secondary Infections in COVID-19 Patients at a Dedicated COVID-19 Facility of a Tertiary Care Indian Hospital: Implication on Antimicrobial Resistance. Indian J. Med. Microbiol. 2021, 39, 147–153. [Google Scholar] [CrossRef]
- Gong, Y.; Shen, X.; Huang, G.; Zhang, C.; Luo, X.; Yin, S.; Wang, J.; Hu, F.; Peng, Y.; Li, M. Epidemiology and Resistance Features of Acinetobacter baumannii Isolates from the Ward Environment and Patients in the Burn ICU of a Chinese Hospital. J. Microbiol. 2016, 54, 551–558. [Google Scholar] [CrossRef]
- Uwingabiye, J.; Lemnouer, A.; Roca, I.; Alouane, T.; Frikh, M.; Belefquih, B.; Bssaibis, F.; Maleb, A.; Benlahlou, Y.; Kassouati, J.; et al. Clonal Diversity and Detection of Carbapenem Resistance Encoding Genes among Multidrug-Resistant Acinetobacter Baumannii Isolates Recovered from Patients and Environment in Two Intensive Care Units in a Moroccan Hospital. Antimicrob. Resist. Infect. Control 2017, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Almasaudi, S.B. Acinetobacter spp. as Nosocomial Pathogens: Epidemiology and Resistance Features. Saudi J. Biol. Sci. 2018, 25, 586–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottesman, T.; Fedorowsky, R.; Yerushalmi, R.; Lellouche, J.; Nutman, A. An Outbreak of Carbapenem-Resistant Acinetobacter baumannii in a COVID-19 Dedicated Hospital. Infect. Prev. Pract. 2021, 3, 100113. [Google Scholar] [CrossRef] [PubMed]
- Playford, E.G.; Craig, J.C.; Iredell, J.R. Carbapenem-Resistant Acinetobacter baumannii in Intensive Care Unit Patients: Risk Factors for Acquisition, Infection and Their Consequences. J. Hosp. Infect. 2007, 65, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Möhlenkamp, S.; Thiele, H. Ventilation of COVID-19 Patients in Intensive Care Units. Herz 2020, 45, 329–331. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment Options for K. pneumoniae, P. aeruginosa and A. baumannii Co-Resistant to Carbapenems, Aminoglycosides, Polymyxins and Tigecycline: An Approach Based on the Mechanisms of Resistance to Carbapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef]
- Shin, J.A.; Chang, Y.S.; Kim, H.J.; Kim, S.K.; Chang, J.; Ahn, C.M.; Byun, M.K. Clinical Outcomes of Tigecycline in the Treatment of Multidrug-Resistant Acinetobacter Baumannii Infectio. Yonsei Med. J. 2012, 53, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Rangel, K.; Chagas, T.P.G.; De-Simone, S.G. Acinetobacter baumannii Infections in Times of COVID-19 Pandemic. Pathogens 2021, 10, 1006. [Google Scholar] [CrossRef]
- Angelozzi, A.; Caminada, S.; Dorelli, B.; Sindoni, A.; Baccolini, V.; di Paolo, C.; Mele, A.; Salvatori, L.M.; Alessandri, F.; Marzuillo, C.; et al. Knowledge, Attitude, Barriers, Professional Behaviour and Possible Interventions: A Survey on Healthcareassociated Infections among the Healthcare Workers of an Intensive Care Unit in a Large Teaching Hospital in Rome. Ann. Ig. 2021, 33, 628–643. [Google Scholar] [CrossRef]
- Farsalinos, K.; Poulas, K.; Kouretas, D.; Vantarakis, A.; Leotsinidis, M.; Kouvelas, D.; Docea, A.O.; Kostoff, R.; Gerotziafas, G.T.; Antoniou, M.N.; et al. Improved Strategies to Counter the COVID-19 Pandemic: Lockdowns vs. Primary and Community Healthcare. Toxicol. Rep. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Silva, M.T.; Galvao, T.F.; Chapman, E.; da Silva, E.N.; Barreto, J.O.M. Dissemination Interventions to Improve Healthcare Workers’ Adherence with Infection Prevention and Control Guidelines: A Systematic Review and Meta-Analysis. Implement. Sci. 2021, 16, 92. [Google Scholar] [CrossRef]
- Baccolini, V.; D’Egidio, V.; de Soccio, P.; Migliara, G.; Massimi, A.; Alessandri, F.; Tellan, G.; Marzuillo, C.; de Vito, C.; Ranieri, M.V.; et al. Effectiveness over Time of a Multimodal Intervention to Improve Compliance with Standard Hygiene Precautions in an Intensive Care Unit of a Large Teaching Hospital. Antimicrob. Resist. Infect. Control 2019, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, B.; Liu, G.; Ran, J.; Lian, X.; Huang, X.; Wang, N.; Huang, Z. A Multi-Center Study on the Risk Factors of Infection Caused by Multi-Drug Resistant Acinetobacter baumannii. BMC Infect. Dis. 2018, 18, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henig, O.; Weber, G.; Hoshen, M.B.; Paul, M.; German, L.; Neuberger, A.; Gluzman, I.; Berlin, A.; Shapira, C.; Balicer, R.D. Risk Factors for and Impact of Carbapenem-Resistant Acinetobacter baumannii Colonization and Infection: Matched Case–Control Study. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2063–2068. [Google Scholar] [CrossRef] [PubMed]
- Meschiari, M.; Kaleci, S.; Orlando, G.; Selmi, S.; Santoro, A.; Bacca, E.; Menozzi, M.; Franceschini, E.; Puzzolante, C.; Bedini, A.; et al. Risk Factors for Nosocomial Rectal Colonization with Carbapenem-Resistant Acinetobacter baumannii in Hospital: A Matched Case–Control Study. Antimicrob. Resist. Infect. Control 2021, 10, 69. [Google Scholar] [CrossRef]
- Moghnieh, R.; Siblani, L.; Ghadban, D.; el Mchad, H.; Zeineddine, R.; Abdallah, D.; Ziade, F.; Sinno, L.; Kiwan, O.; Kerbaj, F.; et al. Extensively Drug-Resistant Acinetobacter Baumannii in a Lebanese Intensive Care Unit: Risk Factors for Acquisition and Determination of a Colonization Score. J. Hosp. Infect. 2016, 92, 47–53. [Google Scholar] [CrossRef]
- Hoque, M.N.; Akter, S.; Mishu, I.D.; Islam, M.R.; Rahman, M.S.; Akhter, M.; Islam, I.; Hasan, M.M.; Rahaman, M.M.; Sultana, M.; et al. Microbial Co-Infections in COVID-19: Associated Microbiota and Underlying Mechanisms of Pathogenesis. Microb. Pathog. 2021, 156, 104941. [Google Scholar] [CrossRef]
- Ogutlu, A.; Guclu, E.; Karabay, O.; Calica Utku, A.; Tuna, N.; Yahyaoglu, M. Effects of Carbapenem Consumption on the Prevalence of Acinetobacter Infection in Intensive Care Unit Patients. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Garnacho-Montero, J.; Ortiz-Leyba, C.; Fernández-Hinojosa, E.; Aldabó-Pallás, T.; Cayuela, A.; Marquez-Vácaro, J.A.; Garcia-Curiel, A.; Jiménez-Jiménez, F.J. Acinetobacter baumannii Ventilator-Associated Pneumonia: Epidemiological and Clinical Findings. Intensive Care Med. 2005, 31, 649–655. [Google Scholar] [CrossRef]
- Corbella, X.; Montero, A.; Pujol, M.; Domínguez, M.A.; Ayats, J.; Argerich, M.J.; Garrigosa, F.; Ariza, J.; Gudiol, F. Emergence and Rapid Spread of Carbapenem Resistance during a Large and Sustained Hospital Outbreak of Multiresistant Acinetobacter baumannii. J. Clin. Microbiol. 2000, 38, 4086–4095. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.T.; Wang, J.T.; Chen, C.J.; Chang, S.C. Association between Antibiotic Usage and Subsequent Colonization or Infection of Extensive Drug-Resistant Acinetobacter baumannii: A Matched Case-Control Study in Intensive Care Units. Diagn. Microbiol. Infect. Dis. 2008, 62, 298–305. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The Antibiotic Resistance Crisis Part 1: Causes and Threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Review on Antimicrobial Resistance Chaired by Jim O’Neill. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. Available online: https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf (accessed on 22 December 2021).
- Manchanda, V.; Sinha, S.; Singh, N. Multidrug Resistant Acinetobacter. J. Glob. Infect. Dis. 2010, 2, 291–304. [Google Scholar] [CrossRef]
- El-Gamal, M.I.; Brahim, I.; Hisham, N.; Aladdin, R.; Mohammed, H.; Bahaaeldin, A. Recent Updates of Carbapenem Antibiotics. Eur. J. Med. Chem. 2017, 131, 185–195. [Google Scholar] [CrossRef]
- Yusef, D.; Hayajneh, W.A.; Bani Issa, A.; Haddad, R.; Al-Azzam, S.; Lattyak, E.A.; Lattyak, W.J.; Gould, I.; Conway, B.R.; Bond, S.; et al. Impact of an Antimicrobial Stewardship Programme on Reducing Broad-Spectrum Antibiotic Use and Its Effect on Carbapenem-Resistant Acinetobacter baumannii (CRAb) in Hospitals in Jordan. J. Antimicrob. Chemother. 2021, 76, 516–523. [Google Scholar] [CrossRef]
- Lopez-Canovas, L.; Martinez Benitez, M.B.; Herrera Isidron, J.A.; Flores Soto, E. Pulsed Field Gel Electrophoresis: Past, Present, and Future. Anal. Biochem. 2019, 573, 17–29. [Google Scholar] [CrossRef]
PFGE Pattern A | PFGE Pattern B | |||
---|---|---|---|---|
n (%) | n (%) | |||
Isolate type | ||||
Healthcare-associated infection | ||||
VAP | 18 (34.6) | 10 (20.0) | ||
CAUTI | 2 (3.8) | 4 (8.0) | ||
BUO | 2 (3.8) | 2 (4.0) | ||
CRBSI | 1 (1.9) | 2 (4.0) | ||
Colonization | ||||
Bronchial aspirate | 8 (15.4) | 10 (20.0) | ||
Central venous catheter | 0 (0.0) | 2 (4.0) | ||
Urine | 0 (0.0) | 2 (4.0) | ||
Abdominal drainage | 1 (2.0) | 0 (0.0) | ||
Rectal swab | 20 (38.5) | 18 (36.0) | ||
Room of detection | ||||
Room 1 | 1 (1.9) | 7 (14.0) | ||
Room 2 | 0 (0.0) | 9 (18.0) | ||
Room 3 | 4 (7.7) | 0 (0.0) | ||
Room 4 | 4 (7.7) | 11 (22.0) | ||
Room 5 | 5 (9.6) | 10 (20.0) | ||
Isolation room | 5 (9.6) | 0 (0.0) | ||
Large Room | 33 (63.5) | 13 (26.0) |
Colonization or Infection by A. baumannii | ||||
---|---|---|---|---|
Yes | No | p-Value | ||
Patients | 71 | 122 | ||
Observation time, person-days | 1654 | 1363 | ||
Age (years) | 63 (54–71) | 65 (57–74) | 0.220 | |
Gender | 0.506 | |||
Male | 48 (67.6) | 88 (72.1) | ||
Female | 23 (32.4) | 34 (27.9) | ||
Preexisting comorbidity | ||||
Hypertension | 32 (45.1) | 53 (43.4) | 0.957 | |
Diabetes mellitus | 12 (16.9) | 23 (18.9) | 0.734 | |
Cancer | 7 (9.9) | 13 (10.7) | 0.861 | |
Chronic obstructive pulmonary disease | 6 (8.5) | 12 (9.8) | 0.750 | |
Cardiovascular disease | 8 (11.3) | 10 (8.2) | 0.479 | |
Chronic liver failure | 0 (0.0) | 1 (0.8) | 0.999 | |
Chronic kidney failure | 1 (1.4) | 12 (9.8) | 0.034 | |
Neutropenia | 0 (0.0) | 3 (2.5) | 0.299 | |
Transplant | 0 (0.0) | 1 (0.8) | 0.999 | |
Asthma | 4 (5.6) | 3 (2.5) | 0.264 | |
Bronchiectasis | 0 (0.0) | 1 (0.8) | 0.999 | |
SAPS II score | 33 (26–39) | 35 (28–43) | 0.176 | |
ICU deaths | 52 (73.2) | 68 (55.7) | 0.016 | |
Mortality rate (95% CI) per 1000 patient-days | 31.4 (23.4–41.2) | 49.9 (38.7–63.2) | 0.012 | |
Total length of ICU stay, days | 22 (13–28) | 9 (6–14) | <0.001 | |
Total use of urinary catheter, days | 22 (13–28) | 8.5 (6–14) | <0.001 | |
Total use of central venous catheter, days | 16 (6–24) | 5 (0–10) | <0.001 | |
Total use of mechanical ventilation, days | 17 (6–24) | 6 (2–10) | <0.001 | |
Antibiotic consumption * | ||||
Carbapenems | 34 (47.9) | 30 (24.6) | <0.001 | |
Extended-spectrum cephalosporins | 14 (19.7) | 21 (17.2) | 0.663 | |
Glycopeptides | 39 (54.9) | 67 (54.9) | 0.999 | |
Macrolides | 41 (57.8) | 59 (48.4) | 0.208 | |
Oxazolidinones | 10 (14.1) | 10 (8.2) | 0.196 | |
Penicillins | 41 (57.8) | 79 (64.8) | 0.333 |
Colonization or Infection by A. baumannii | ||
---|---|---|
OR (95% CI) | p-Value | |
Age (years) | 1.00 (0.97–1.03) | 0.865 |
Sex (male) | 1.20 (0.60–2.39) | 0.611 |
Preexisting comorbidity (yes) | 0.87 (0.44–1.72) | 0.691 |
SAPS II score | 0.98 (0.94–1.01) | 0.181 |
Mechanical ventilation, days | 1.01 (0.97–1.05) | 0.643 |
Previous consumption of carbapenems (yes) | 4.15 (1.78–9.64) | 0.001 |
Previous consumption of extended-spectrum cephalosporins (yes) | 1.03 (0.43–2.45) | 0.942 |
Previous consumption of glycopeptides (yes) | 0.82 (0.39–1.71) | 0.591 |
Previous consumption of macrolides (yes) | 1.80 (0.93–3.51) | 0.083 |
Previous consumption of oxazolidinones (yes) | 0.91 (0.29–2.82) | 0.872 |
Previous consumption of penicillins (yes) | 1.02 (0.49–2.12) | 0.960 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceparano, M.; Baccolini, V.; Migliara, G.; Isonne, C.; Renzi, E.; Tufi, D.; De Vito, C.; De Giusti, M.; Trancassini, M.; Alessandri, F.; et al. Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms 2022, 10, 722. https://doi.org/10.3390/microorganisms10040722
Ceparano M, Baccolini V, Migliara G, Isonne C, Renzi E, Tufi D, De Vito C, De Giusti M, Trancassini M, Alessandri F, et al. Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms. 2022; 10(4):722. https://doi.org/10.3390/microorganisms10040722
Chicago/Turabian StyleCeparano, Mariateresa, Valentina Baccolini, Giuseppe Migliara, Claudia Isonne, Erika Renzi, Daniela Tufi, Corrado De Vito, Maria De Giusti, Maria Trancassini, Francesco Alessandri, and et al. 2022. "Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors" Microorganisms 10, no. 4: 722. https://doi.org/10.3390/microorganisms10040722
APA StyleCeparano, M., Baccolini, V., Migliara, G., Isonne, C., Renzi, E., Tufi, D., De Vito, C., De Giusti, M., Trancassini, M., Alessandri, F., Ceccarelli, G., Pugliese, F., Villari, P., Angiulli, M., Battellito, S., Bellini, A., Bongiovanni, A., Caivano, L., Castellani, M., ... Marzuillo, C. (2022). Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms, 10(4), 722. https://doi.org/10.3390/microorganisms10040722