Temporal and Spatial Patterns of Sediment Microbial Communities and Driving Environment Variables in a Shallow Temperate Mountain River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Measurements
2.2.1. Sampling Methods
2.2.2. Environmental Conditions’ Measurements
2.2.3. Metagenomic Analysis
2.3. Statistical Analysis
3. Results
3.1. Environmental Variables of Water and Sediment in the River
3.2. Sediment Microbial Community Diversity and the Driving Factors
3.3. Temporal–Spatial Patterns of Sediment Microbial Community
3.4. Effects of Environmental Factors on Microbial Community
4. Discussion
4.1. Microbial Community Structure
4.2. The Relationship between Microbial Community and Environment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Wang, C.; Bao, L.; Xie, S. Abundance and community structure of ammonia-oxidizing microorganisms in reservoir sediment and adjacent soils. Appl. Microbiol. Biotechnol. 2014, 98, 1883–1892. [Google Scholar] [CrossRef] [PubMed]
- Wagner-Döbler, I.; Pipke, R.; Timmis, K.N.; Dwyer, D.F. Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl. Environ. Microbiol. 1992, 58, 1249–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, K.; Urrutia, M.M.; Churchill, P.F.; Kukkadapu, R.K.; Roden, E.E. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. 2006, 8, 100–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Yang, X.E.; Rengel, Z. Phytoremediation facilitates removal of nitrogen and phosphorus from eutrophicated water and release from sediment. Environ. Monit. Assess. 2009, 157, 277–285. [Google Scholar] [CrossRef]
- Klein, R.; Tischler, J.S.; Mühling, M.; Schlömann, M. Bioremediation of Mine Water. Tools Appl. Biochem. Eng. Sci. 2013, 141, 109–172. [Google Scholar] [CrossRef]
- Wang, F.; Dong, W.; Zhao, Z.; Wang, H.; Li, W.; Chen, G.; Wang, F.; Zhao, Y.; Huang, J.; Zhou, T. Heavy metal pollution in urban river sediment of different urban functional areas and its influence on microbial community structure. Sci. Total Environ. 2021, 778, 146383. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Li, Y.; Zhao, H.; Qian, W. Spatial and temporal distributions of microorganisms and their role in the evolution of Erhai Lake eutrophication. Environ. Earth Sci. 2015, 74, 3887–3896. [Google Scholar] [CrossRef]
- Korlević, M.; Ristova, P.P.; Garić, R.; Amann, R.; Orlić, S. Bacterial Diversity in the South Adriatic Sea during a Strong, Deep Winter Convection Year. Appl. Environ. Microbiol. 2015, 81, 1715–1726. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Wen, G.; Liu, H.; Jian, G.; Chen, Y. Influence of initial pH on bioleaching of river sediments to achieve deep dehydration. Environ. Sci. Pollut. Res. 2019, 26, 17183–17194. [Google Scholar] [CrossRef]
- Chang, W.; Sun, J.; Pang, Y.; Zhang, S.; Xu, R. Effects of different habitats on the bacterial community composition in the water and sediments of Lake Taihu, China. Environ. Sci. Pollut. R. 2020, 27, 44983–44994. [Google Scholar] [CrossRef]
- Hunter, E.M.; Mills, H.J.; Kostka, J.E. Microbial Community Diversity Associated with Carbon and Nitrogen Cycling in Permeable Shelf Sediments. Appl. Environ. Microbiol. 2006, 72, 5689–5701. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.S. Molecular Markers for Photosynthetic Bacteria and Insights into the Origin and Spread of Photosynthesis. Adv. Bot. Res. 2013, 66, 37–66. [Google Scholar] [CrossRef]
- Hook, S.E.; Wright, A.-D.G.; McBride, B.W. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Archaea 2010, 2010, 945785. [Google Scholar] [CrossRef] [Green Version]
- Levy-Booth, D.J.; Prescott, C.E.; Grayston, S.J. Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol. Biochem. 2014, 75, 11–25. [Google Scholar] [CrossRef]
- Hou, J.; Cao, X.; Song, C.; Zhou, Y. Predominance of ammonia-oxidizing archaea andnirK-gene-bearing denitrifiers among ammonia-oxidizing and denitrifying populations in sediments of a large urban eutrophic lake (Lake Donghu). Can. J. Microbiol. 2013, 59, 456–464. [Google Scholar] [CrossRef]
- Zhao, D.-Y.; Luo, J.; Zeng, J.; Wang, M.; Yan, W.-M.; Huang, R.; Wu, Q.L. Effects of submerged macrophytes on the abundance and community composition of ammonia-oxidizing prokaryotes in a eutrophic lake. Environ. Sci. Pollut. Res. 2013, 21, 389–398. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Zhang, J.; Zhou, X.; Wu, C. Abundance and Diversity of Ammonia-Oxidizing Microorganisms in the Sediments of Jinshan Lake. Curr. Microbiol. 2014, 69, 751–757. [Google Scholar] [CrossRef]
- Lu, S.; Liao, M.; Xie, C.; He, X.; Li, D.; He, L.; Chen, J. Seasonal dynamics of ammonia-oxidizing microorganisms in freshwater aquaculture ponds. Ann. Microbiol. 2015, 65, 651–657. [Google Scholar] [CrossRef]
- Wei, H.; Lin, X. Shifts in the relative abundance and potential rates of sediment ammonia-oxidizing archaea and bacteria along environmental gradients of an urban river–estuary–adjacent sea continuum. Sci. Total Environ. 2021, 771, 144824. [Google Scholar] [CrossRef]
- Long, Y.; Jiang, X.; Guo, Q.; Li, B.; Xie, S. Sediment nitrite-dependent methane-oxidizing microorganisms temporally and spatially shift in the Dongjiang River. Appl. Microbiol. Biotechnol. 2017, 101, 401–410. [Google Scholar] [CrossRef]
- Karner, M.B.; Delong, E.F.; Karl, D. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 2001, 409, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.L.; Ye, Q.; Huang, Z.; Li, W.; Chen, J.; Song, Z.; Zhao, W.; Bagwell, C.; Inskeep, W.P.; Ross, C.; et al. Global Occurrence of Archaeal amoA Genes in Terrestrial Hot Springs. Appl. Environ. Microbiol. 2008, 74, 6417–6426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehtovirta-Morley, L.E.; Stoecker, K.; Vilcinskas, A.; Prosser, J.I.; Nicol, G.W. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. USA 2011, 108, 15892–15897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens-Habbena, W.; Qin, W.; Horak, R.E.; Urakawa, H.; Schauer, A.J.; Moffett, J.W.; Armbrust, E.V.; Ingalls, A.E.; Devol, A.H.; Stahl, D.A. The production of nitric oxide by marine ammonia-oxidizing archaea and inhibition of archaeal ammonia axidation by a nitric oxide scavenger. Environ. Microbiol. 2014, 17, 2261–2274. [Google Scholar] [CrossRef]
- Boer, W.D.; Kowalchuk, G.A. Nitrification in Acid Soils: Micro-Organisms and Mechanisms. Soil Bio. Biochem. 2001, 33, 853–866. [Google Scholar] [CrossRef]
- Zhang, W. Enrichment and Culture of Nitrifying Bacteria and PCR Amplification of Ammonia Monooxygenase Gene Fragment; Zhejiang University: Hangzhou, China, 2002. [Google Scholar]
- Campos, M.; Rilling, J.I.; Acuña, J.J.; Valenzuela, T.; Larama, G.; Peña-Cortés, F.; Ogram, A.; Jaisi, D.P.; Jorquera, M.A. Spatiotemporal variations and relationships of phosphorus, phosphomonoesterases, and bacterial communities in sediments from two Chilean rivers. Sci. Total Environ. 2021, 776, 145782. [Google Scholar] [CrossRef]
- Li, B.; Ding, S.M.; Fan, C.X.; Zhong, J.C.; Zhang, L.; Yin, H.B.; Zhao, B. Distributions of nitrogen and phosphorus in interstitial waters in the sediments of Fubao Bay in Lake Dianchi and their relationships with the activities of microbe and alkaline phosphatase in the surface sediments. J. Lake Sci. 2008, 20, 420–427. [Google Scholar]
- Xia, X.H.; Dongye, M.X.; Zhou, J.M.; Tian, S.P.; Zhang, Z.; Peng, Y.H. Geochemistry and Influence to Environment of Phosphorus in Modern Sediment in Dianchi Lake. Acta Sedimentol. Sin. 2002, 20, 416–420. [Google Scholar]
- Wang, Y.C.; Wan, G.J.; Wang, S.L.; Li, S.H.; Huang, R.G. Forms of phosphorus in sediments of lake Baihua and Lake Hongfeng, Guizhou. Acta Mineral. Sin. 2000, 20, 61–66. [Google Scholar]
- Reigstad, L.J.; Richter, A.; Daims, H.; Urich, T.; Schwark, L.; Schleper, C. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol. Ecol. 2008, 64, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Kalanetra, K.M.; Bano, N.; Hollibaugh, J.T. Ammonia-oxidizing archaea in the Arctic Ocean and Antarctic coastal waters. Environ. Microbial. 2009, 11, 2434–2445. [Google Scholar] [CrossRef]
- Avrahami, S.; Werner, L.; Ralf, C. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environ. Microbiol. 2003, 5, 691–705. [Google Scholar] [CrossRef]
- Stres, B.; Stopar, D.; Mahne, I.; Hacin, J.; Resman, L.; Pal, L.; Fuka, M.M.; Leskovec, S.; Danevčič, T.; Mandic-Mulec, I. Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol. Ecol. 2008, 66, 110–122. [Google Scholar] [CrossRef] [Green Version]
- American Public Health Association (APHA); American Water Works Association (AWWA); Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 1995. [Google Scholar]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Liu, J.; Chen, X.; Shu, H.-Y.; Lin, X.-R.; Zhou, Q.-X.; Bramryd, T.; Shu, W.-S.; Huang, L.-N. Microbial community structure and function in sediments from e-waste contaminated rivers at Guiyu area of China. Environ. Pollut. 2018, 235, 171–179. [Google Scholar] [CrossRef]
- Newberry, C.J.; Webster, G.; Cragg, B.A.; Parkes, R.J.; Weightman, A.; Fry, J.C. Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ. Microbiol. 2004, 6, 274–287. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Kato, C.; Horikoshi, K. Bacterial diversity in deep-sea sediments from different depths. Biodivers. Conserv. 1999, 8, 659–677. [Google Scholar] [CrossRef]
- Marchesi, J.R.; Weightman, A.J.; Cragg, B.A.; Parkes, R.J.; Fry, J.C. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbial. Ecol. 2001, 34, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.; Henriques, I.; Ribeiro, D.; Correia, A.; Bodelier, P.; Cruz, J.; de Brito, A.G.; Nogueira, R. Bacterial Diversity and Geochemical Profiles in Sediments from Eutrophic Azorean Lakes. Geomicrobiol. J. 2012, 29, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Cai, Y.Q.; Li, B.; Dong, Y.B.; Li, Y. Characteristics of microbial community structure in Guishui River sediment in Beijing. Acta Ecol. Sin. 2019, 39, 7592–7601. [Google Scholar]
- Zhao, L.J.; Liu, Y.G.; Wang, Y.; Zhao, R.; Ren, W.; Xu, M.Z. Bacterial community structure and diversity of sediments in a typical plateau lakeshore. Microbiol. China 2020, 47, 401–410. [Google Scholar]
- Kirchman, D.L. The ecology of Cytophaga–Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 2002, 39, 91–100. [Google Scholar] [CrossRef]
- Zhou, P.; Ma, Y.; Zhang, W.; Xue, Y.; Ventosa, A.; Grant, W.D. Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 2003, 8, 45–51. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, G.; Jiang, H.; Yu, B.; Chapman, L.R.; Lucas, C.R.; Fields, M.W. Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology. Microb. Ecol. 2006, 51, 65–82. [Google Scholar] [CrossRef]
- Zhong, L.Q.; Li, B.; Wang, M.H.; Zhang, S.Y.; Jiang, H.C.; Chen, X.H.; Zhu, J.; Bian, W.J. Analysis of microbial community structure and their environmental impact factors in the sediment of channel catfish ponds. J. Fish. Sci. China 2020, 27, 893–905. [Google Scholar]
- Tang, C.C. Performance and Mechanism of Algal-Bacteial Symbiosis System Based on Sequencing Bactch Biofilm-Sludge Reactor for Nitrogen and Phosphorus Removal; Harbin Institute of Technology: Harbin, China, 2018. [Google Scholar]
- Zhang, Z.; Han, Y.; Xu, C.; Han, H.; Zhong, D.; Zheng, M.; Ma, W. Effect of low-intensity direct current electric field on microbial nitrate removal in coal pyrolysis wastewater with low COD to nitrogen ratio. Bioresour. Technol. 2019, 287, 121465. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, B.; Tang, X.; Liu, S. Metagenomic insights into functional traits variation and coupling effects on the anammox community during reactor start-up. Sci. Total Environ. 2019, 687, 50–60. [Google Scholar] [CrossRef]
- Chen, X.; Xu, P.; Yang, C.; Wang, S.; Lu, Q.; Sun, X. Study of enhanced nitrogen removal efficiency and microbial characteristics of an improved two-stage A/O process. Environ. Technol. 2020, 18, 4306–4316. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Field, D.; Swift, P.; Newbold, L.; Oliver, A.; Smyth, T.; Somerfield, P.J.; Huse, S.; Joint, I. The seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 2010, 11, 3132–3139. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Steele, J.A.; Caporaso, J.G.; Steinbrück, L.; Reeder, J.; Temperton, B.; Huse, S.; McHardy, A.C.; Knight, R.; Joint, I.; et al. Defining seasonal marine microbial community dynamics. ISME J. 2012, 6, 298–308. [Google Scholar] [CrossRef] [Green Version]
- Gamfeldt, L.; Hillebrand, H.; Jonsson, P.R. Species richness changes across two trophic levels simultaneously affect prey and consumer biomass. Ecol. Lett. 2005, 8, 696–703. [Google Scholar] [CrossRef]
- Weis, J.J.; Cardinale, B.J.; Forshay, K.J.; Ives, A.R. Effects of species diversity on community biomass production change over the course of succession. Ecology 2007, 88, 929–939. [Google Scholar] [CrossRef]
- Schmidtke, A.; Gaedke, U.; Weithoff, G. A mechanistic basis for under-yielding in phytoplankton communities. Ecology 2010, 91, 212–221. [Google Scholar] [CrossRef]
Explained Variables | Observed Species | Shannon–Wiener | Simpson Diversity | Chao1 Diversity | Bacteroidetes Abundance | Proteobacteria Abundance |
---|---|---|---|---|---|---|
WT | 0.25 | −0.29 | ||||
DO | −0.30 | −0.29 | 0.15 | |||
EC | −0.27 | −0.36 | −0.40 | −0.28 | −0.23 | 0.36 |
pH | −0.28 | −0.34 | ||||
Tur | 0.59 | 0.31 | 0.20 | 0.55 | −0.13 | |
TN | 0.23 | |||||
TP | −0.32 | −0.14 | −0.33 | |||
S-TN | 0.12 | |||||
S-TP | 0.24 | −0.10 |
Explained Variables | DF | χ2 Values | p | AIC | RMSEA |
---|---|---|---|---|---|
Observed species | 1 | 0.021 | 0.884 | 52.021 | <0.001 |
Shannon–Wiener | 1 | 0.522 | 0.470 | 26.522 | <0.001 |
Simpson Diversity | 2 | 1.492 | 0.474 | 37.492 | <0.001 |
Chao1 index Diversity | 1 | 1.319 | 0.251 | 53.319 | 0.050 |
Bacteroidetes abundance | 2 | 0.618 | 0.734 | 50.618 | <0.001 |
Proteobacteria abundance | 5 | 8.188 | 0.146 | 68.188 | 0.050 |
Symbol | Scientific Name | Symbol | Scientific Name |
---|---|---|---|
S1 | Bacteroidetes | S2 | Proteobacteria |
S3 | Crenarchaeota | S4 | Unidentified_Bacteria |
S5 | Chloroflexi | S6 | Actinobacteria |
S7 | Thaumarchaeota | S8 | Acidobacteria |
S9 | Firmicutes | S10 | Planctomycetes |
S11 | Cyanobacteria | S12 | Desulfobacterota |
S13 | Euryarchaeota | S14 | Gemmatimonadetes |
S15 | Myxococcota | S16 | Methylomirabilota |
S17 | Nitrospirae | S18 | Latescibacteria |
S19 | Verrucomicrobia | S20 | Nanoarchaeota |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, W.; Zhang, H.; Guo, Y.; Wang, Z.; Huang, T. Temporal and Spatial Patterns of Sediment Microbial Communities and Driving Environment Variables in a Shallow Temperate Mountain River. Microorganisms 2022, 10, 816. https://doi.org/10.3390/microorganisms10040816
Tian W, Zhang H, Guo Y, Wang Z, Huang T. Temporal and Spatial Patterns of Sediment Microbial Communities and Driving Environment Variables in a Shallow Temperate Mountain River. Microorganisms. 2022; 10(4):816. https://doi.org/10.3390/microorganisms10040816
Chicago/Turabian StyleTian, Wang, Huayong Zhang, Yuhao Guo, Zhongyu Wang, and Tousheng Huang. 2022. "Temporal and Spatial Patterns of Sediment Microbial Communities and Driving Environment Variables in a Shallow Temperate Mountain River" Microorganisms 10, no. 4: 816. https://doi.org/10.3390/microorganisms10040816
APA StyleTian, W., Zhang, H., Guo, Y., Wang, Z., & Huang, T. (2022). Temporal and Spatial Patterns of Sediment Microbial Communities and Driving Environment Variables in a Shallow Temperate Mountain River. Microorganisms, 10(4), 816. https://doi.org/10.3390/microorganisms10040816