Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Natural Substances and Reagents
2.2. GC-MS Analysis
2.3. GC-FID Analysis
2.4. Bacterial Strains and Growth Media
2.5. Antimicrobial Susceptibility Testing
2.6. Preparation of EOs
2.7. Broth Microdilution Susceptibility Testing
2.8. Micro-Atmosphere Diffusion Assay
2.9. Effect of EOs on Porcine Spermatozoa
2.10. Toxicity of EOs in Galleria mellonella Larvae
2.11. Statistical Analysis
3. Results
3.1. Chemical Composition of the EOs
3.2. Antimicrobial Susceptibility Testing
3.3. Broth Microdilution Susceptibility Testing
3.4. Micro-Atmosphere Diffusion Assay
3.5. Effect of EOs on Porcine Spermatozoa
3.6. Toxicity of EOs in Galleria mellonella Larvae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO Food and Agriculture Organization (FAO). World Agriculture: Towards 2015/2030. An FAO Perspective; Earthscan: London, UK, 2003. [Google Scholar]
- Kousar, S.; Rehman, N.; Javed, A.; Hussain, A.; Naeem, M.; Masood, S.; Ali, H.A.; Manzoor, A.; Khan, A.A.; Akrem, A.; et al. Intensive Poultry Farming Practices Influence Antibiotic Resistance Profiles in Pseudomonas Aeruginosa Inhabiting Nearby Soils. Infect. Drug Resist. 2021, 14, 4511–4516. [Google Scholar] [CrossRef] [PubMed]
- Fontana, C.; Patrone, V.; Lopez, C.M.; Morelli, L.; Rebecchi, A. Incidence of Tetracycline and Erythromycin Resistance in Meat-Associated Bacteria: Impact of Different Livestock Management Strategies. Microorganisms 2021, 9, 2111. [Google Scholar] [CrossRef] [PubMed]
- WHO, World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance (2014); WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Tian, M.; He, X.; Feng, Y.; Wang, W.; Chen, H.; Gong, M.; Liu, D.; Clarke, J.L.; van Eerde, A. Pollution by Antibiotics and Antimicrobial Resistance in Live Stock and Poultry Manure in China, and Countermeasures. Antibiotics 2021, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Wang, Y.; Diarra, M.S.; Alexander, T.; Stanford, K. Challenges of a one-health approach to the development of alternatives to antibiotics. Anim. Front. 2018, 8, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, W.; Thomas, L.; Coyne, L.; Rushton, J. Review: Mitigating the risks posed by intensification in livestock production: The examples of antimicrobial resistance and zoonoses. Animal 2021, 15, 100123. [Google Scholar] [CrossRef]
- Sivaramalingam, T.; McEwen, S.A.; Pearl, D.L.; Ojkic, D.; Guerin, M.T. A Temporal Study of Salmonella serovars from Environmental Samples from Poultry Breeder Flocks in Ontario between 1998 and 2008. Can. J. Vet. Res. 2013, 77, 1–11. [Google Scholar]
- Kore, K.; Asrade, B.; Demissie, K.; Aragaw, K. Characterization of Salmonella Isolated from Apparently Healthy Slaughtered Cattle and Retail Beef in Hawassa, Southern Ethiopia. Prev. Vet. Med. 2017, 147, 11–16. [Google Scholar] [CrossRef]
- Nidaullah, H.; Abirami, N.; Shamila-Syuhada, A.K.; Chuah, L.O.; Huda, N.; Tan, T.P.; Zainal Abidin, F.W.; Rusul, G. Prevalence of Salmonella in Poultry Processing Environments in Wet Markets in Penang and Perlis, Malaysia. Vet. World 2017, 10, 286–292. [Google Scholar] [CrossRef] [Green Version]
- van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- EFSA. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, e06406. [Google Scholar] [CrossRef]
- WHO. Salmonella (Non-Typhoidal); WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Fàbrega, A.; Vila, J. Salmonella enterica Serovar Typhimurium Skills to Succeed in the Host: Virulence and Regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chlebicz, A.; Śliżewska, K. Campylobacteriosis, Salmonellosis, Yersiniosis, and Listeriosis as Zoonotic Foodborne Diseases: A Review. Int. J. Environ. Res. Public Health 2018, 15, 863. [Google Scholar] [CrossRef] [Green Version]
- Gebreyes, W.A.; Jackwood, D.; de Oliveira, C.J.B.; Lee, C.-W.; Hoet, A.E.; Thakur, S. Molecular Epidemiology of Infectious Zoonotic and Livestock Diseases. Microbiol. Spectr. 2020, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Archambault, M.; Rubin, J.E. Antimicrobial Resistance in Clostridium and Brachyspira spp. and Other Anaerobes. Microbiol. Spectr. 2020, 8, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Shen, A.; Edwards, A.N.; Sarker, M.R.; Paredes-Sabja, D. Sporulation and Germination in Clostridial Pathogens. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Lepp, D.; Zhou, Y.; Ojha, S.; Mehdizadeh Gohari, I.; Carere, J.; Yang, C.; Prescott, J.F.; Gong, J. Clostridium perfringens Produces an Adhesive Pilus Required for the Pathogenesis of Necrotic Enteritis in Poultry. J. Bacteriol. 2021, 203, e00578-20. [Google Scholar] [CrossRef]
- Gharieb, R.; Saad, M.; Abdallah, K.; Khedr, M.; Farag, E.; Abd El-Fattah, A. Insights on Toxin Genotyping, Virulence, Antibiogram Profiling, Biofilm Formation and Efficacy of Disinfectants on Biofilms of Clostridium perfringens Isolated from Poultry, Animals and Humans. J. Appl. Microbiol. 2021, 130, 819–831. [Google Scholar] [CrossRef]
- Carrasco, J.M.D.; Redondo, L.M.; Redondo, E.A.; Dominguez, J.E.; Chacana, A.P.; Miyakawa, M.E.F. Use of Plant Extracts as an Effective Manner to ControlClostridium perfringensInduced Necrotic Enteritis in Poultry. BioMed Res. Int. 2016, 2016, 3278359. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Li, Z.; Zhong, Q.; Liu, J.; Han, G.; Li, Y.; Li, C. Antibiotic resistance of fecal carriage of Escherichia coli from pig farms in China: A meta-analysis. Environ. Sci. Pollut. Res. 2022, 29, 22989–23000. [Google Scholar] [CrossRef]
- Robins-Browne, R.M.; Holt, K.; Ingle, D.; Hocking, D.M.; Yang, J.; Tauschek, M. Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Front. Cell. Infect. Microbiol. 2016, 6, 141. [Google Scholar] [CrossRef] [Green Version]
- Bernreiter-Hofer, T.; Schwarz, L.; Müller, E.; Cabal-Rosel, A.; Korus, M.; Misic, D.; Frankenfeld, K.; Abraham, K.; Grünzweil, O.; Weiss, A.; et al. The Pheno- and Genotypic Characterization of Porcine Escherichia coli Isolates. Microorganisms 2021, 9, 1676. [Google Scholar] [CrossRef] [PubMed]
- Misumi, W.; Funamori, T.; Hamada, K.; Iwamoto, J.; Fujisono, S.; Chitose, K.; Kusumoto, M. Association between Antimicrobial Treatment and Resistance of Pathogenic Escherichia Coli Isolated from Diseased Swine in Kagoshima Prefecture, Japan. J. Vet. Med. Sci. 2021, 83, 358–369. [Google Scholar] [CrossRef] [PubMed]
- OIE World Organization for Animal Health (OIE). OIE Standards, Guidelines and Resolution on Antimicrobial Resistance and the Use of Antimicrobial Agents; World Organization for Animal Health: France, Paris, 2015. [Google Scholar]
- European Union. Ban on Antibiotics as Growth Promoters in Animal Feed Enters into Effect; IP/05/1687; European Union: Brussels, Belgium, 2005. [Google Scholar]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Wernicki, A.; Nowaczek, A.; Urban-Chmiel, R. Bacteriophage Therapy to Combat Bacterial Infections in Poultry. Virol. J. 2017, 14, 179. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Edrington, T.S.; Brabban, A.; Kutter, B.; Karriker, L.; Stahl, C.; Wagstrom, E.; Anderson, R.; Poole, T.L.; Genovese, K.; et al. Evaluation of Phage Treatment as a Strategy to ReduceSalmonellaPopulations in Growing Swine. Foodborne Pathog. Dis. 2011, 8, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelzer, K.; Bielke, L.; Blake, D.P.; Cox, E.; Cutting, S.M.; Devriendt, B.; Erlacher-Vindel, E.; Goossens, E.; Karaca, K.; Lemiere, S.; et al. Vaccines as Alternatives to Antibiotics for Food Producing Animals. Part 1: Challenges and Needs. Vet. Res. 2018, 49, 70. [Google Scholar] [CrossRef] [Green Version]
- Xin, J.; Zeng, D.; Wang, H.; Sun, N.; Zhao, Y.; Dan, Y.; Pan, K.; Jing, B.; Ni, X. Probiotic Lactobacillus Johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets. Probiotics Antimicrob. Proteins 2020, 12, 184–193. [Google Scholar] [CrossRef]
- Pearlin, B.V.; Muthuvel, S.; Govidasamy, P.; Villavan, M.; Alagawany, M.; Ragab Farag, M.; Dhama, K.; Gopi, M. Role of Acidifiers in Livestock Nutrition and Health: A Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 558–569. [Google Scholar] [CrossRef] [Green Version]
- Hasunuma, T.; Kawashima, K.; Nakayama, H.; Murakami, T.; Kanagawa, H.; Ishii, T.; Akiyama, K.; Yasuda, K.; Terada, F.; Kushibiki, S. Effect of Cellooligosaccharide or Synbiotic Feeding on Growth Performance, Fecal Condition and Hormone Concentrations in Holstein Calves. Anim. Sci. J. 2011, 82, 543–548. [Google Scholar] [CrossRef]
- Lin, Z.; Ye, L.; Li, Z.; Huang, X.; Lu, Z.; Yang, Y.; Xing, H.; Bai, J.; Ying, Z. Chinese Herb Feed Additives Improved the Growth Performance, Meat Quality, and Nutrient Digestibility Parameters of Pigs. Anim. Models Exp. Med. 2020, 3, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Omonijo, F.A.; Ni, L.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C. Essential Oils as Alternatives to Antibiotics in Swine Production. Anim. Nutr. 2018, 4, 126–136. [Google Scholar] [CrossRef] [PubMed]
- European Pharmacopoeia. European Pharmacopoeia: Supplement 5.8; European Pharmacopoeia: Strasbourg, France, 2007; ISBN 9287158436. [Google Scholar]
- ISO International Organization for Standardization. ISO 9235:2013(En): Aromatic Natural RawMaterials—Vocabulary. Available online: https://www.iso.org/standard/51017.html (accessed on 24 March 2022).
- Ruan, D.; Fan, Q.; Fouad, A.M.; Sun, Y.; Huang, S.; Wu, A.; Lin, C.; Kuang, Z.; Zhang, C.; Jiang, S. Effects of Dietary Oregano Essential Oil Supplementation on Growth Performance, Intestinal Antioxidative Capacity, Immunity, and Intestinal Microbiota in Yellow-Feathered Chickens. J. Anim. Sci. 2021, 99, skab033. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Zhou, X.; Wang, Y.; Chen, D.; Chen, G.; Li, Y.; He, J. Effects of Plant Essential Oil Supplementation on Growth Performance, Immune Function and Antioxidant Activities in Weaned Pigs. Lipids Health Dis. 2018, 17, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowska, D.; Sowińska, J. The Effectiveness of Peppermint and Thyme Essential Oil Mist in Reducing Bacterial Contamination in Broiler Houses. Poult. Sci. 2013, 92, 2834–2843. [Google Scholar] [CrossRef]
- Di Vito, M.; Cacaci, M.; Barbanti, L.; Martini, C.; Sanguinetti, M.; Benvenuti, S.; Tosi, G.; Fiorentini, L.; Scozzoli, M.; Bugli, F.; et al. Origanum vulgare Essential Oil vs. A Commercial Mixture of Essential Oils: In Vitro Effectiveness on Salmonella Spp. from Poultry and Swine Intensive Livestock. Antibiotics 2020, 9, 763. [Google Scholar] [CrossRef]
- Gharaibeh, M.H.; Khalifeh, M.S.; Nawasreh, A.N.; Hananeh, W.M.; Awawdeh, M.S. Assessment of Immune Response and Efficacy of Essential Oils Application on Controlling Necrotic Enteritis Induced by Clostridium perfringens in Broiler Chickens. Molecules 2021, 26, 4527. [Google Scholar] [CrossRef]
- Ambrosio, C.M.S.; Contreras-Castillo, C.J.; da Gloria, E.M. In Vitro Mechanism of Antibacterial Action of a Citrus Essential Oil on an Enterotoxigenic Escherichia Coli and Lactobacillus Rhamnosus. J. Appl. Microbiol. 2020, 129, 541–553. [Google Scholar] [CrossRef]
- Côté, H.; Pichette, A.; St-Gelais, A.; Legault, J. The Biological Activity of Monarda Didyma l. Essential Oil and Its Effect as a Diet Supplement in Mice and Broiler Chicken. Molecules 2021, 26, 3368. [Google Scholar] [CrossRef]
- Radaelli, M.; da Silva, B.P.; Weidlich, L.; Hoehne, L.; Flach, A.; da Costa, L.A.M.A.; Ethur, E.M. Antimicrobial Activities of Six Essential Oils Commonly Used as Condiments in Brazil against Clostridium perfringens. Braz. J. Microbiol. 2016, 47, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Elmi, A.; Prosperi, A.; Zannoni, A.; Bertocchi, M.; Scorpio, D.G.; Forni, M.; Foni, E.; Bacci, M.L.; Ventrella, D. Antimicrobial Capabilities of Non-Spermicidal Concentrations of Tea Tree (Melaleuca alternifolia) and Rosemary (Rosmarinus officinalis) Essential Oils on the Liquid Phase of Refrigerated Swine Seminal Doses. Res. Vet. Sci. 2019, 127, 76–81. [Google Scholar] [CrossRef]
- Fratianni, F.; de Martino, L.; Melone, A.; de Feo, V.; Coppola, R.; Nazzaro, F. Preservation of Chicken Breast Meat Treated with Thyme and Balm Essential Oils. J. Food Sci. 2010, 75, M528–M535. [Google Scholar] [CrossRef] [PubMed]
- Menezes, N.M.C.; Martins, W.F.; Longhi, D.A.; de Aragão, G.M.F. Modeling the Effect of Oregano Essential Oil on Shelf-Life Extension of Vacuum-Packed Cooked Sliced Ham. Meat Sci. 2018, 139, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P.R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; ISBN 1932633219. [Google Scholar]
- CLSI VET01. CLSI VET01 (2018): Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI: Wayne, PA, USA, 2018; ISBN 978-1-68440-093-5. [Google Scholar]
- CLSI VET08. CLSI VET08 (2018): Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI: Wayne, PA, USA, 2018; Available online: https://clsi.org/media/2321/vet08ed4_sample.pdf (accessed on 24 March 2022).
- CLSI. CLSI (2018). Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI: Wayne, PA, USA, 2018; Available online: https://clsi.org/media/1930/m100ed28_sample.pdf (accessed on 24 March 2022).
- VET01-S2. VET01-S2 (2013): Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Second Informational Supplement; CLSI: Wayne, PA, USA, 2013. [Google Scholar]
- CLSI M31-A3. CLSI M31-A3 (2008): Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals: Approved Standards, 3rd ed.; CLSI: Wayne, PA, USA, 2008; Volume 28, ISBN 1-56238-659-X. [Google Scholar]
- CRAB. Molecole Prototipo e Loro Equivalenti In Vitro—Revisione 5. Centro Di Referenza Nazionale per l’Antibiotico Resistenza. 2021. Available online: https://www.izslt.it/crab/linee-guida-per-linterpretazione-delle-prove-di-sensibilita-ai-chemioantibiotici-in-vitro-per-un-utilizzo-nella-terapia-clinica/ (accessed on 24 March 2022).
- OIE Manual. OIE Manual 2019: Laboratory Methodologies for Bacterial Antimicrobial Susceptibility Testing; OIE: France, Paris, 2019; Volume Cap.2.1.1. [Google Scholar]
- Rodriguez-Tudela, J.; Arendrup, M.; Barchiesi, F.; Bille, J.; Chryssanthou, E.; Cuenca-Estrella, M.; Dannaoui, E.; Denning, D.; Donnelly, J.; Dromer, F.; et al. EUCAST Definitive Document EDef 7.1: Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin. Microbiol. Infect. 2008, 14, 398–405. [Google Scholar] [CrossRef]
- Elmi, A.; Ventrella, D.; Barone, F.; Carnevali, G.; Filippini, G.; Pisi, A.; Benvenuti, S.; Scozzoli, M.; Bacci, M.L. In Vitro Effects of Tea Tree Oil (Melaleuca alternifolia Essential Oil) and Its Principal Component Terpinen-4-Ol on Swine Spermatozoa. Molecules 2019, 24, 1071. [Google Scholar] [CrossRef] [Green Version]
- Fantinati, P.; Zannoni, A.; Bernardini, C.; Forni, M.; Tattini, A.; Seren, E.; Bacci, M.L. Evaluation of Swine Fertilisation Medium (SFM) Efficiency in Preserving Spermatozoa Quality during Long-Term Storage in Comparison to Four Commercial Swine Extenders. Animal 2009, 3, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Elmi, A.; Ventrella, D.; Barone, F.; Filippini, G.; Benvenuti, S.; Pisi, A.; Scozzoli, M.; Bacci, M.L. Thymbra capitata (L.) Cav. and Rosmarinus officinalis (L.) Essential Oils: In Vitro Effects and Toxicity on Swine Spermatozoa. Molecules 2017, 22, 2162. [Google Scholar] [CrossRef] [Green Version]
- Harding, C.R.; Schroeder, G.; Collins, J.W.; Frankel, G. Use of Galleria mellonella as a Model Organism to Study Legionella pneumophila Infection. J. Vis. Exp. 2013, 81, e50964. [Google Scholar] [CrossRef] [Green Version]
- Truzzi, E.; Marchetti, L.; Bertelli, D.; Benvenuti, S. Attenuated Total Reflectance–Fourier Transform Infrared (ATR–FTIR) Spectroscopy Coupled with Chemometric Analysis for Detection and Quantification of Adulteration in Lavender and Citronella Essential Oils. Phytochem. Anal. 2021, 32, 907–920. [Google Scholar] [CrossRef]
- Truzzi, E.; Benvenuti, S.; Bertelli, D.; Francia, E.; Ronga, D. Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula × intermedia Emeric Ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules 2021, 26, 6157. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Salami, S.A.; Nazeri, V.; Maggi, F.; Craker, L. Essential Oil Profile of Oregano (Origanum vulgare L.) Populations Grown under Similar Soil and Climate Conditions. Ind. Crops Prod. 2018, 119, 183–190. [Google Scholar] [CrossRef]
- OECD-FAO Organization for Economic Co-Operation and Development (OECD); Food and Agriculture Organization (FAO). OECD-FAO Agricultural Outlook 2021–2030; OECD: Paris, France; FAO: Rome, Italy, 2021. [Google Scholar]
- O’Neill, J. The Review on Antimicrobial Resistance. Tackling Drug Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance: London, UK, 2016. [Google Scholar]
- European Parliamentary Research Service. Antibiotics on Farms: Europe Starts to Curb Bad Practices; European Science-Media Hub: Brussels, Belgium, 2019. [Google Scholar]
- Munk, P.; Knudsen, B.E.; Lukjacenko, O.; Duarte, A.S.R.; van Gompel, L.; Luiken, R.E.C.; Smit, L.A.M.; Schmitt, H.; Garcia, A.D.; Hansen, R.B.; et al. Abundance and Diversity of the Faecal Resistome in Slaughter Pigs and Broilers in Nine European Countries. Nat. Microbiol. 2018, 3, 898–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO Antibiotic World Health Organization (WHO). WHO Guidelines on Use of Medically Important Antimicrobials in Food-Producing Animals; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- EPHA, 2022 European Public Health Alliance (EPHA). Report I Ending Routine Farm Antibiotic Use in Europe through Improving Animal Health and Welfare; EPHA: Brussels, Beigium, 2022. [Google Scholar]
- CDC. CDC Website. Available online: https://www.cdc.gov/ (accessed on 24 March 2022).
- Casaux, M.L.; Caffarena, R.D.; Schild, C.O.; Giannitti, F.; Riet-Correa, F.; Fraga, M. Antibiotic Resistance in Salmonella enterica Isolated from Dairy Calves in Uruguay. Braz. J. Microbiol. 2019, 50, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Qu, D.; Zhang, X.; Shen, J.; Cui, S.; Shi, Y.; Xi, M.; Sheng, M.; Zhi, S.; Meng, J. Prevalence and Characterization of Salmonella serovars in Retail Meats of Marketplace in Shaanxi, China. Int. J. Food Microbiol. 2010, 141, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.P.; Das, S.C.; Dhaka, P.; Vijay, D.; Kumar, M.; Mukhopadhyay, A.K.; Chowdhury, G.; Chauhan, P.; Singh, R.; Dhama, K.; et al. Molecular Characterization and Antimicrobial Resistance Profile of Clostridium perfringens Type A Isolates from Humans, Animals, Fish and Their Environment. Anaerobe 2017, 47, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Slavić, D.; Boerlin, P.; Fabri, M.; Klotins, K.C.; Zoethout, J.K.; Weir, P.E.; Bateman, D. Antimicrobial Susceptibility of Clostridium perfringens Isolates of Bovine, Chicken, Porcine, and Turkey Origin from Ontario. Can. J. Vet. Res. 2011, 75, 89–97. [Google Scholar]
- Osman, K.M.; Elhariri, M. Antibiotic Resistance of Clostridium perfringens Isolates from Broiler Chickens in Egypt. OIE Rev. Sci. Et Tech. 2013, 32, 841–850. [Google Scholar] [CrossRef]
- Caruso, G.G. Antibiotic Resistance in Escherichia Coli from Farm Livestock and Related Analytical Methods: A Review. J. AOAC Int. 2018, 101, 916–922. [Google Scholar] [CrossRef]
- van de Vel, E.; Sampers, I.; Raes, K. A Review on Influencing Factors on the Minimum Inhibitory Concentration of Essential Oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of Rosemary, Oregano, and a Commercial Blend of Essential Oils in Broiler Chickens: In Vitro Antimicrobial Activities and Effects on Growth Performance. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [CrossRef]
- Hussein, K.N.; Molnár, T.; Pinter, R.; Toth, A.; Ayari, E.; Friedrich, L.; Dalmadi, I.; Kiskó, G. In vitro antimicrobial activity of plant active components against Pseudomonas lundensis and Listeria monocytogenes. Prog. Agric. Eng. Sci. 2021, 16, 163–172. [Google Scholar] [CrossRef]
- Garzoli, S.; Turchetti, G.; Giacomello, P.; Tiezzi, A.; Masci, V.L.; Ovidi, E. Liquid and Vapour Phase of Lavandin (Lavandula × intermedia) Essential Oil: Chemical Composition and Antimicrobial Activity. Molecules 2019, 24, 2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondello, F.; Girolamo, A.; Scaturro, M.; Ricci, M.L. Determination of Legionella Pneumophila Susceptibility to Melaleuca alternifolia Cheel (Tea Tree) Oil by an Improved Broth Micro-Dilution Method under Vapour Controlled Conditions. J. Microbiol. Methods 2009, 77, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.N.H.; Graham, L.; Adukwu, E.C. In Vitro Antifungal Activity of Cinnamomum zeylanicum Bark and Leaf Essential Oils against Candida Albicans and Candida Auris. Appl. Microbiol. Biotechnol. 2020, 104, 8911–8924. [Google Scholar] [CrossRef] [PubMed]
- Jayaprakasha, G.K.; Rao, L.J.M. Chemistry, Biogenesis, and Biological Activities of Cinnamomum zeylanicum. Crit. Rev. Food Sci. Nutr. 2011, 51, 547–562. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Abdel-Moneim, A.M.E.; Mohammed, N.G.; Khafaga, A.F.; Bin-Jumah, M.; Othman, S.I.; Allam, A.A.; Elnesr, S.S. Cinnamon (Cinnamomum zeylanicum) Oil as a Potential Alternative to Antibiotics in Poultry. Antibiotics 2020, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Castro, J.C.; Pante, G.C.; Centenaro, B.M.; De Almeida, R.T.R.; Pilau, E.; Filho, B.P.D.; Mossini, S.A.G.; Filho, B.A.D.A.; Matioli, G.; Junior, M.M. Antifungal and antimycotoxigenic effects of Zingiber officinale, Cinnamomum zeylanicum and Cymbopogon martinii essential oils against Fusarium verticillioides. Food Addit. Contam. Part A 2020, 37, 1531–1541. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.-Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Van, N.T.B.; Vi, O.T.; Yen, N.T.P.; Nhung, N.T.; Van Cuong, N.; Kiet, B.T.; Van Hoang, N.; Hien, V.B.; Thwaites, G.; Campell, J.; et al. Minimum inhibitory concentrations of commercial essential oils against common chicken pathogenic bacteria and their relationship with antibiotic resistance. J. Appl. Microbiol. 2021, 132, 1025–1035. [Google Scholar] [CrossRef]
- Yanakiev, S. Effects of Cinnamon (Cinnamomum spp.) in Dentistry: A Review. Molecules 2020, 25, 4184. [Google Scholar] [CrossRef]
- FEMA. FEMA Website. Available online: https://www.femaflavor.org/ (accessed on 24 March 2022).
- Marcos-Arias, C.; Eraso, E.; Madariaga, L.; Quindós, G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement. Altern. Med. 2011, 11, 119. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Khan, A.; Khan, L.A.; Manzoor, N. In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. J. Med. Microbiol. 2010, 59, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Mith, H.; Duré, R.; Delcenserie, V.; Zhiri, A.; Daube, G.; Clinquart, A. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Sci. Nutr. 2014, 2, 403–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, M.K.; Chae, S.-W.; Im, G.J.; Chung, J.-W.; Song, J.-J. Eugenol: A Phyto-Compound Effective against Methicillin-Resistant and Methicillin-Sensitive Staphylococcus aureus Clinical Strain Biofilms. PLoS ONE 2015, 10, e0119564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Zheng, H.; Tang, Y.; Yu, W.; Gong, Q. Eugenol inhibits quorum sensing at sub-inhibitory concentrations. Biotechnol. Lett. 2013, 35, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.M.; Izadi, M.; Abdollahi, M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef]
- Bampidis, V.; Azimonti, G.; Bastos, M.d.L.; Christensen, H.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; Mayo, B.; et al. Safety and Efficacy of an Essential Oil from Origanum vulgare Ssp. Hirtum (Link) Ietsw. for All Animal Species. EFSA J. 2019, 17, e05909. [Google Scholar] [CrossRef] [Green Version]
- Migliorini, M.J.; Boiago, M.M.; Roza, L.F.; Barreta, M.; Arno, A.; Robazza, W.S.; Galvão, A.C.; Galli, G.M.; Machado, G.; Baldissera, M.D.; et al. Oregano Essential Oil (Origanum vulgare) to Feed Laying Hens and Its Effects on Animal Health. Anais Academia Brasileira Ciencias 2019, 91, e20170901. [Google Scholar] [CrossRef] [Green Version]
- Cid-Chevecich, C.; Müller-Sepúlveda, A.; Jara, J.A.; López-Muñoz, R.; Santander, R.; Budini, M.; Escobar, A.; Quijada, R.; Criollo, A.; Díaz-Dosque, M.; et al. Origanum vulgare L. Essential Oil Inhibits Virulence Patterns of Candida Spp. and Potentiates the Effects of Fluconazole and Nystatin in Vitro. BMC Complement. Med. Ther. 2022, 22, 39. [Google Scholar] [CrossRef]
- Vasconcelos, N.G.; Croda, J.; Silva, K.E.; Motta, M.L.L.; Maciel, W.G.; Limiere, L.C.; Simionatto, S. Origanum vulgare L. essential oil inhibits the growth of carbapenem-resistant gram-negative bacteria. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180502. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Garcia, I.; Silva-Espinoza, B.; Ortega-Ramirez, L.; Leyva, J.; Siddiqui, M.W.; Valenzuela, M.R.C.; Gonzalez-Aguilar, G.; Zavala, J.F.A. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int. J. Mol. Sci. 2020, 21, 9653. [Google Scholar] [CrossRef] [PubMed]
- Numpaque, M.A.; Oviedo, L.A.; Gil Gonzalez, J.H.; García, C.M.; Durango, D.L. Thymol and carvacrol: Biotransformation and antifungal activity against the plant pathogenic fungi Colletotrichum acutatum and Botryodiplodia theobromae. Trop. Plant Pathol. 2011, 36, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Navarro Triviño, F.J.; Cuenca-Barrales, C.; Ruiz-Villaverde, R. Eugenol Allergy Mimicking Recurrent Aphthous Stomatitis and Burning Mouth Syndrome. Contact Dermat. 2019, 81, 462–463. [Google Scholar] [CrossRef] [PubMed]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The Bioactivity and Toxicological Actions of Carvacrol. Crit. Rev. Food Sci. Nutr. 2014, 55, 304–318. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Ademiluyi, A.O.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Aburel, O.M.; Pavel, I.Z.; Dănilă, M.D.; Lelcu, T.; Roi, A.; Lighezan, R.; Muntean, D.M.; Rusu, L.C. Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. Oxidative Med. Cell. Longev. 2021, 2021, 3165159. [Google Scholar] [CrossRef]
- Piatek, M.; Sheehan, G.; Kavanagh, K. Galleria mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics 2021, 10, 1545. [Google Scholar] [CrossRef]
- Arsene, M.; Viktorovna, P.; Davares, A. Galleria mellonella (greater wax moth) as an eco-friendly in vivo approach for the assessment of the acute toxicity of medicinal plants: Application to some plants from Cameroon. Open Veter. J. 2021, 11, 651. [Google Scholar] [CrossRef]
- Tsai, C.J.Y.; Loh, J.M.S.; Proft, T. Galleria mellonella Infection Models for the Study of Bacterial Diseases and for Antimicrobial Drug Testing. Virulence 2016, 7, 214–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
D 1 | Species | Strains | Origin | Year |
---|---|---|---|---|
ST1 | S. Tiphymurium | 343104/3 | Chicken | 2017 |
ST2 | S. Tiphymurium | 19173 | Pigeon | 2018 |
ST3 | S. Tiphymurium | 344349 | Quail | 2020 |
Cp4 | C. perfringens | 318422 | Chicken | 2021 |
Cp5 | C. perfringens | 107318 | Chicken | 2021 |
Cp6 | C. perfringens | 320897 | Chicken | 2021 |
Ec7 | E. coli | 135169 | Swine | 2021 |
Ec8 | E. coli | 421464 | Swine | 2020 |
Ec9 | E. coli | 140412 | Swine | 2021 |
Ec10 | E. coli | 124723 | Swine | 2021 |
Components | LRI1 | L. × intermedia | L. angustifolia | M. alternifolia | E. globus | M. leucadendron | O. vulgare | C. zeylanicum | C. limon | M. piperita | GR-OLI |
---|---|---|---|---|---|---|---|---|---|---|---|
α-pinene | 933 | 0.40 | 0.20 | 4.71 | 2.91 | 3.61 | 0.98 | 0.09 | 2.09 | 0.90 | 0.92 |
β-pinene | 976 | 0.39 | 0.11 | 0.03 | 0.50 | 0.36 | 0.15 | 0.02 | 14.82 | 1.42 | 1.17 |
myrcene | 992 | 0.93 | 1.06 | 0.71 | 0.68 | 0.39 | 1.51 | - | 1.53 | 0.16 | 0.58 |
α-terpinene | 1015 | 0.14 | - | 9.73 | 0.18 | 0.24 | 1.06 | - | 0.25 | - | 0.81 |
p-cymene | 1024 | 0.65 | 0.17 | 3.97 | - | 1.28 | 7.04 | 1.64 | 0.18 | 0.18 | 4.52 |
limonene | 1029 | - | 0.82 | 1.85 | - | - | 0.47 | 0.26 | 67.8 | 2.57 | 8.89 |
1,8 cineole | 1032 | 4.74 | 0.65 | 2.20 | 91.44 | 77.30 | - | 0.22 | - | 6.47 | 6.95 |
cis-ocimene | 1039 | 0.83 | 8.51 | - | - | - | - | - | - | - | 0.38 |
trans-ocimene | 1049 | 0.50 | 1.22 | - | 0.03 | - | 0.05 | - | 0.13 | - | 0.23 |
γ-terpinene | 1059 | 0.11 | 0.17 | 20.64 | 2.06 | 0.96 | 5.50 | - | 8.61 | 0.05 | 4.10 |
terpinolene | 1090 | - | - | 3.14 | - | - | 0.15 | - | 0.35 | - | 0.39 |
linalool | 1109 | 35.16 | 39.69 | 0.39 | - | 1.94 | 1.48 | 4.27 | 0.08 | 0.13 | 3.23 |
α-fenchol | 1116 | 0.26 | 1.13 | - | - | - | - | 0.12 | - | - | - |
camphor | 1147 | 6.82 | 0.20 | - | - | - | - | - | - | - | - |
menthone | 1160 | - | - | - | - | - | - | - | 0.03 | 28.07 | - |
borneol | 1169 | 3.03 | 0.86 | - | - | 0.45 | 0.19 | - | - | - | 0.41 |
isomenthone | 1169 | - | - | - | - | - | - | - | - | 9.56 | - |
terpinen-4-ol | 1181 | 3.48 | 3.95 | 40.77 | 0.05 | 2.93 | 0.53 | 0.26 | 0.08 | - | 3.98 |
menthol | 1183 | - | - | - | - | - | - | - | - | 36.00 | - |
p-cymen-8-ol | 1185 | - | 0.09 | - | - | 5.56 | - | - | - | - | - |
α-terpineol | 1193 | 0.87 | 1.5 | 4.40 | - | - | - | 0.31 | 0.14 | 0.44 | 2.07 |
myrtenal | 1195 | 0.39 | - | 1.37 | - | - | - | - | - | - | - |
geraniol | 1261 | - | - | - | - | - | - | 0.28 | - | - | 2.28 |
linalyl acetate | 1268 | 27.97 | 26.39 | - | - | - | - | - | - | - | - |
geranial | 1275 | - | - | - | - | - | - | - | 1.19 | - | 0.17 |
trans-cinnamaldehyde | 1277 | - | - | - | - | - | - | - | - | - | 14.96 |
eugenol | 1287 | - | - | - | - | - | - | 70.43 | - | - | - |
lavandulyl acetate | 1295 | 2.22 | 2.43 | - | - | - | - | - | - | - | - |
thymol | 1296 | - | - | - | - | - | 2.78 | - | - | - | 3.47 |
menthyl acetate | 1298 | - | - | - | - | - | - | - | - | 4.8 | - |
carvacrol | 1308 | - | - | - | - | - | 66.98 | 0.49 | - | - | 35.61 |
citronellyl acetate | 1358 | - | - | - | - | - | - | - | - | - | 1.14 |
neryl acetate | 1369 | 0.28 | 0.52 | - | - | - | - | 5.84 | 0.27 | - | - |
β-caryophyllene | 1426 | 1.72 | 2.10 | 0.03 | - | 0.47 | 1.64 | 4.83 | 0.14 | 2.95 | 2.33 |
aromadendrene | 1446 | - | - | 1.20 | - | - | - | - | - | - | - |
β-farnesene | 1462 | 1.24 | 1.36 | - | - | - | - | - | - | - | 0.33 |
D 1 | NA | AN | AMC | AMP | APR | KZ | CT | ENR | FFC | CN | K | TIL | SXT | TE | AX | B | DXT | E | MY | PV | SP | T | TY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ST1 | S | S | S | S | S | S | S | S | S | S | S | S | S | S | - | - | - | - | - | - | - | - | - |
ST2 | S | S | I | R | S | I | S | S | S | R | S | R | S | R | - | - | - | - | - | - | - | - | - |
ST3 | S | S | I | R | S | I | S | S | S | S | S | R | R | S | - | - | - | - | - | - | - | - | - |
Cp4 | - | - | - | - | - | - | - | - | - | - | - | - | - | S | S | S | S | S | R | S | S | S | S |
Cp5 | - | - | - | - | - | - | - | - | - | - | - | - | - | R | R | S | R | R | R | R | S | S | S |
Cp6 | - | - | - | - | - | - | - | - | - | - | - | - | - | S | S | S | S | S | R | S | S | S | S |
Ec7 | S | R | S | R | S | S | S | S | R | R | R | R | R | R | - | - | - | - | - | - | - | - | - |
Ec8 | R | R | R | R | S | R | S | R | R | R | R | R | R | R | - | - | - | - | - | - | - | - | - |
Ec9 | S | R | R | R | R | R | R | S | R | R | R | R | R | R | - | - | - | - | - | - | - | - | - |
Ec10 | S | S | S | I | S | S | S | S | S | S | S | R | S | S | - | - | - | - | - | - | - | - | - |
% v/v | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
D 1 | E. globus | O. vulgare | M. alternifolia | L. angustifolia | M. leucadendron | C. limon | C. zeylanicum | L. × hybrida | M. piperita | mGR-OLI |
ST1 | 1.33 ± 0.58 | 0.06 ± 0 | 0.42 ± 0.14 | 0.5 ± 0 | 1 ± 0 | 2 ± 0 | 0.06 ± 0 | 0.5 ± 0 | 0.25 ± 0 | 0.08 ± 0.04 |
ST2 | 1 ± 0 | 0.13 ± 0 | 0.67 ± 0.29 | 1.67 ± 0.58 | 1 ± 0 | >2 ± 0 | 0.10 ± 0.04 | >2 ± 1.53 | >2 ± 0 | 0.25 ± 0 |
ST3 | 1 ± 0 | 0.10 ± 0.04 | 0.58 ± 0.38 | 1.17 ± 0.76 | 1 ± 0 | >2 ± 0 | 0.10 ± 0.04 | 1.17 ± 0.76 | >2 ± 1.88 | 0.15 ± 0.10 |
Cp4 | 2 ± 0 | 0.25 ± 0 | 0.83 ± 0.29 | 1.17 ± 0.76 | 2 ± 0 | >2 ± 0 | 0.05 ± 0.02 | 1.17 ± 0.76 | 1.17 ± 0.76 | 0.33 ± 0.14 |
Cp5 | 1.25 ± 1.06 | 0.28 ± 0.31 | 1.25 ± 1.06 | 1.25 ± 0.06 | >2 ± 0 | >2 ± 0 | 0.03 ± 0 | 1.5 ± 0.71 | 1.5 ± 0.71 | 0.38 ± 0.18 |
Cp6 | >2 ± 0 | 0.21 ± 0.07 | 1 ± 0 | 1 ± 0 | 2 ± 0 | >2 ± 0 | 0.03 ± 0 | 1 ± 0 | 1 ± 0 | 0.21 ± 0.07 |
Ec7 | 0.25 ± 0 | 0.13 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 1 ± 0 | 0.13 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.13 ± 0 |
Ec8 | 1 ± 0 | 0.13 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 1 ± 0 | 2 ± 0 | 0.06 ± 0 | 0.5 ± 0 | 0.25 ± 0 | 0.06 ± 0 |
Ec9 | 0.5 ± 0 | 0.13 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 2 ± 0 | 0.13 ± 0 | 0.5 ± 0 | 0.25 ± 0 | 0.06 ± 0 |
Ec10 | 0.5 ± 0 | 0.25 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 0.5 ± 0 | 2 ± 0 | 0.13 ± 0 | 0.5 ± 0 | 0.25 ± 0 | 0.13 ± 0 |
IC90 | 2 | 0.25 | 1 | 1.25 | 2 | >2 | 0.13 | 1.5 | >2 | 0.33 |
% v/v | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
D 1 | E. globus | O. vulgare | M. alternifolia | L. angustifolia | M. leucadendron | C. limon | C. zeylanicum | L. × hybrida | M. piperita | mGR-OLI |
ST1 | 1.67 ± 0.58 | 0.35 ± 0.25 | 1 ± 0.87 | 1 ± 0.87 | 2 ± 1.73 | >2 ± 0 | 0.42 ± 0.51 | 0.5 ± 0 | 0.67 ± 0.29 | 0.67 ± 0.29 |
ST2 | >2 ± 0 | 1.17 ± 0.76 | >2 ± 2.02 | >2 ± 0 | >2 ± 1.15 | >2 ± 0 | >0.5 ± 0.38 | >2 ± 0 | >2 ± 0 | 1.17 ± 0.76 |
ST3 | 2 ± 0 | 1 ± 0.87 | 2 ± 0 | 1.67 ± 0.58 | 2 ± 0 | >2 ± 0 | 0.25 ± 0 | 2 ± 0 | >2 ± 0 | 1 ± 0.87 |
Cp4 | >2 ± 0 | 0.17 ± 0.07 | 0.83 ± 0.29 | 1.83 ± 1.89 | >2 ± 1.15 | >2 ± 0 | 0.06 ± 0 | 1.17 ± 0.76 | 1.17 ± 0.76 | 0.33 ± 0.14 |
Cp5 | >2 ± 0 | 0.31 ± 0.27 | 2 ± 0 | 2 ± 0 | >2 ± 0 | >2 ± 0 | 0.05 ± 0.02 | 1.5 ± 0.71 | 1.5 ± 0.71 | 0.5 ± 0 |
Cp6 | >2 ± 0 | 0.17 ± 0.07 | 1 ± 0 | 1 ± 0 | >2 ± 1.15 | >2 ± 0 | 0.03 ± 0 | 1 ± 0 | 1.67 ± 0.58 | 0.17 ± 0.07 |
Ec7 | 0.5 ± 0 | 0.25 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | 2 ± 0 | 0.5 ± 0 | 1 ± 0 | 0.5 ± 0 | 0.5 ± 0 |
Ec8 | 2 ± 0 | 0.25 ± 0 | 2 ± 0 | 1 ± 0 | 2 ± 0 | >2 ± 0 | 0.25 ± 0 | 1 ± 0 | 0.5 ± 0 | 0.13 ± 0 |
Ec9 | 1 ± 0 | 0.25 ± 0 | 1 ± 0 | 1 ± 0 | 1 ± 0 | >2 ± 0 | 0.5 ± 0 | 1 ± 0 | 0.5 ± 0 | 0.13 ± 0 |
Ec10 | 2 ± 0 | 0.5 ± 0 | 1 ± 0 | 1 ± 0 | >2 ± 0 | >2 ± 0 | 0.5 ± 0 | 1 ± 0 | 1 ± 0 | 0.5 ± 0 |
CC90 | >2 | 1 | 2 | 2 | >2 | >2 | 0.5 | 2 | >2 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotti, M.; Lombardini, G.; Rizzo, S.; Scarafile, D.; Modesto, M.; Truzzi, E.; Benvenuti, S.; Elmi, A.; Bertocchi, M.; Fiorentini, L.; et al. Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms 2022, 10, 822. https://doi.org/10.3390/microorganisms10040822
Mariotti M, Lombardini G, Rizzo S, Scarafile D, Modesto M, Truzzi E, Benvenuti S, Elmi A, Bertocchi M, Fiorentini L, et al. Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms. 2022; 10(4):822. https://doi.org/10.3390/microorganisms10040822
Chicago/Turabian StyleMariotti, Melinda, Giulia Lombardini, Silvia Rizzo, Donatella Scarafile, Monica Modesto, Eleonora Truzzi, Stefania Benvenuti, Alberto Elmi, Martina Bertocchi, Laura Fiorentini, and et al. 2022. "Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections" Microorganisms 10, no. 4: 822. https://doi.org/10.3390/microorganisms10040822
APA StyleMariotti, M., Lombardini, G., Rizzo, S., Scarafile, D., Modesto, M., Truzzi, E., Benvenuti, S., Elmi, A., Bertocchi, M., Fiorentini, L., Gambi, L., Scozzoli, M., & Mattarelli, P. (2022). Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms, 10(4), 822. https://doi.org/10.3390/microorganisms10040822