The Broad Host Range Plant Pathogen Dickeya dianthicola Shows a High Genetic Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. dnaX-leuS-recA Phylogeny of Dickeya Strains from CIRM-CFBP
2.2. DNA Extraction, Genome Sequencing and Assembly
2.3. Genome Analysis
2.4. Minimum Spanning Tree Analysis
3. Results
3.1. Panel of Genomes Analysed in This Study
3.2. D. dianthicola Diversity
3.3. Relatedness of D. dianthicola Strains by SNP Analysis
3.4. Diversity in D. dianthicola Accessory Genome
3.5. Are There Genes Related to Host Specificity in D. dianthicola?
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toth, I.K.; Barny, M.; Brurberg, M.B.; Condemine, G.; Czajkowski, R.; Elphinstone, J.G.; Helias, V.; Johnson, S.B.; Moleleki, L.N.; Pirhonen, M.; et al. Pectobacterium and Dickeya: Environment to Disease Development. In Plant Diseases Caused by Pectobacterium and Dickeya Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 39–84. [Google Scholar]
- Van Gijsegem, F.; Hugouvieux-Cotte-Pattat, N.; Kraepiel, Y.; Lojkowska, E.; Moleleki, L.; Gorshkov, V.; Yedidia, I. Molecular interactions of Pectobacterium and Dickeya with plants. In Plant Diseases Caused by Pectobacterium and Dickeya Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 85–148. [Google Scholar]
- Van der Wolf, J.M.; Acuña, I.; De Boer, S.H.; Brurberg, M.H.; Cahill, G.; Charkowski, A.O.; Coutinho, T.; Davey, T.; Dees, M.W.; Degefu, Y.Y.; et al. Diseases Caused by Pectobacterium and Dickeya Species Around the World. In Plant Diseases Caused by Pectobacterium and Dickeya Species; Van Gijsegem, F., van der Wolf, J.M., Toth, I.K., Eds.; Springer Nature: Cham, Switzerland, 2021; pp. 215–262. [Google Scholar]
- Hellmers, E. Four wilt diseases of perpetual flowering carnations in Denmark. Dansk Botanisk Arkiv. 1958, 18, 95–140. [Google Scholar]
- Dickey, R.S. Erwinia chrysanthemi: A comparative study of phenotypic properties of strains from several hosts and other Erwinia species. Phytopathology 1979, 69, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Nassar, A.; Bertheau, Y.; Dervin, C.; Narcy, J.P.; Lemattre, M. Ribotyping of Erwinia chrysanthemi Strains in Relation to Their Pathogenic and Geographic Distribution. Appl. Environ. Microbiol. 1994, 60, 3781–3789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samson, R.; Legendre, J.B.; Christen, R.; Saux, M.F.; Achouak, W.; Gardan, L. Transfer of Pectobacterium chrysanthemi (Burkholder Et Al. 1953) Brenner Et Al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. And Dickeya paradisiaca comb. nov. and Delineation of Four Novel Species, Dickeya dadantii sp. nov. Dickeya dianthicola sp. nov. Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int. J. Syst. Evol. Microbiol. 2005, 55, 1415–1427. [Google Scholar] [PubMed]
- Parkinson, N.; Stead, D.; Bew, J.; Heeney, J.; Tsror, L.; Elphinstone, J. Dickeya species relatedness and clade structure determined by comparison of recA sequences. Int. J. Syst. Bacteriol. 2009, 59, 2388–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Dickeya dianthicola pest risk assessment. EFSA J. 2013, 11, 3072. [Google Scholar] [CrossRef]
- Toth, I.K.; van der Wolf, J.M.; Saddler, G.; Lojkowska, E.; Hélias, V.; Pirhonen, M.; Tsror (Lahkim), L.; Elphinstone, J.G. Dickeya species: An emerging problem for potato production in Europe. Plant Pathol. 2011, 60, 385–399. [Google Scholar] [CrossRef]
- DeWerra, P.; Debonneville, C.; Kellenberger, I.; Dupuis, B. Pathogenicity and Relative Abundance of Dickeya and Pectobacterium Species in Switzerland: An Epidemiological Dichotomy. Microorganisms 2021, 9, 2270. [Google Scholar] [CrossRef]
- Pédron, J.; Schaerer, S.; Kellenberger, I.; Van Gijsegem, F. Early Emergence of Dickeya solani Revealed by Analysis of Dickeya Diversity of Potato Blackleg and Soft Rot Causing Pathogens in Switzerland. Microorganisms 2021, 9, 1187. [Google Scholar] [CrossRef]
- Sarfraz, S.; Riaz, K.; Oulghazi, S.; Cigna, J.; Alam, M.W.; Dessaux, Y.; Faure, D. First report of Dickeya dianthicola causing blackleg disease on potato plants in Pakistan. Plant Dis. 2018, 102, 2027–2028. [Google Scholar] [CrossRef]
- Oulghazi, S.; Khayi, S.; Lafkih, N.; Massaoudi, Y.; El Karkouri, A.; El Hassouni, M.; Faure, D.; Moumni, M. First report of Dickeya dianthicola causing blackleg on potato in Morocco. Plant Dis. 2017, 101, 1671–1672. [Google Scholar] [CrossRef]
- Charkowski, A.O. The changing face of bacterial soft-rot diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef] [PubMed]
- Curland, R.D.; Mainello, A.; Perry, K.L.; Hao, J.; Charkowski, A.O.; Bull, C.T.; McNally, R.R.; Johnson, S.B.; Rosenzweig, N.; Secor, G.A.; et al. Species of Dickeya and Pectobacterium Isolated during an Outbreak of Blackleg and Soft Rot of Potato in Northeastern and North Central United States. Microorganisms 2021, 9, 1733. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Bwye, A.; Banovic, M.; Baulch, J.; Wang, C.; Hair, S.; Hammond, N.; Coutts, B.; Kehoe, M. First Report of Dickeya dianthicola in Potatoes in Australia. Plant Dis. 2018, 102, 2029. [Google Scholar] [CrossRef]
- Sławiak, M.; van Beckhoven, J.R.C.M.; Speksnijder, A.G.C.L.; Czajkowski, R.; Grabe, G.; van der Wolf, J.M. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 2009, 125, 245–261. [Google Scholar] [CrossRef]
- Oulghazi, S.; Moumni, M.; Khayi, S.; Robic, K.; Sarfraz, S.; Lopez-Roques, C.; Vandecasteele, C.; Faure, D. Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco. Microorganisms 2020, 8, 895. [Google Scholar] [CrossRef]
- Pédron, J.; Van Gijsegem, F. Diversity in the Bacterial Genus Dickeya Grouping Plant Pathogens and Waterways Isolates. OBM Genet. 2019, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- Ge, T.; Jiang, H.; Tan, E.H.; Johnson, S.B.; Larkin, R.P.; Charkowski, A.O.; Secor, G.; Hao, J. Pangenomic analysis of Dickeya dianthicola strains related to the outbreak of blackleg and soft rot of potato in USA. Plant Dis. 2021, 105, 3946–3955. [Google Scholar] [CrossRef]
- Liu, Y.; Tyler, C.; Helmann, T.C.; Stodghill, P.; Filiatrault, M.J. Complete genome sequence resource for the necrotrophic plant-pathogenic bacterium Dickeya dianthicola 67-19 isolated from New Guinea Impatiens. Plant Dis. 2021, 105, 1174–1176. [Google Scholar] [CrossRef]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as Pectobacterium odoriferum sp. nov. proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov. emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov. isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delcher, A.L.; Harmon, D.; Kasif, S.; White, O.; Salzberg, S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999, 27, 4636–4641. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, L.; Glover, R.H.; Humphris, S.; Elphinstone, J.G.; Toth, I.K. Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Anal. Methods 2016, 8, 12–24. [Google Scholar] [CrossRef]
- Miele, V.; Penel, S.; Duret, L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinform. 2011, 12, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. In Molecular Biology and Evolution; Oxford University Press: Oxford, UK, 2010; Volume 27, pp. 221–224. [Google Scholar]
- Méric, G.; Yahara, K.; Mageiros, L.; Pascoe, B.; Maiden, M.C.; Jolley, K.A.; Sheppard, S.K. A reference pan-genome approach to comparative bacterial genomics: Identification of novel epidemiological markers in pathogenic Campylobacter. PLoS ONE 2014, 9, e92798. [Google Scholar] [CrossRef]
- Ribeiro-Gonçalves, B.; Francisco, A.P.; Vaz, C.; Ramirez, M.; Carriço, J.A. PHYLOViZ Online: Web-based tool for visualization, phylogenetic inference, analysis and sharing of minimum spanning trees. Nucleic Acids Res. 2016, 44, W246–W251. [Google Scholar] [CrossRef]
- Cigna, J.; Dewaegeneire, P.; Beury, A.; Gobert, V.; Faure, D. A gapA PCR-sequencing Assay for Identifying the Dickeya and Pectobacterium Potato Pathogens. Plant Dis. 2017, 101, 1278–1282. [Google Scholar] [CrossRef] [Green Version]
- Ge, T.; Jiang, H.; Johnson, S.B.; Larkin, R.; Charkowski, A.O.; Secor, G.; Hao, J. Genotyping Dickeya dianthicola causing potato blackleg and soft rot outbreak associated with inoculum geography in the United States. Plant Dis. 2020, 101, 1278–1282. [Google Scholar] [CrossRef] [PubMed]
- Jonkheer, E.M.; Brankovics, B.; Houwers, I.M.; van der Wolf, J.M.; Bonants, P.; Vreeburg, R.; Bollema, R.; de Haan, J.R.; Berke, L.; Smit, S.; et al. The Pectobacterium pangenome, with a focus on Pectobacterium brasiliense, shows a robust core and extensive exchange of genes from a shared gene pool. BMC Genom. 2021, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Aono, Y.; Nakayama, T.; Ogawa, S.; Fujimoto, T.; Ohki, T.; Oka, N.; Tetsuo Maoka, T. Asteraceae weeds may be an alternative host of Dickeya dianthicola, a causal agent of potato blackleg in Japan. Eur. J. Plant Pathol. 2022. [Google Scholar] [CrossRef]
- Janse, J.D.; Ruissen, M.A. Characterization and classification of Erwinia chrysanthemi strains from several hosts in The Netherlands. Phytopathology 1988, 78, 800–808. [Google Scholar] [CrossRef]
Genomes | Host | Country of Isolation | Year of Isolation | Source | # Contigs | # CDS | # Specific Genes * | ANI Values ** (%) |
---|---|---|---|---|---|---|---|---|
WV516 | Solanum tuberosum | US | 2016 | NCBI | 103 | 4795 | 42 | 99.4 |
SS70 | Solanum tuberosum | Pakistan | 2017 | NCBI | 62 | 4665 | 24 | 99.5 |
NCPPB3534 | Solanum tuberosum | The Netherlands | 1987 | NCBI | 41 | 4663 | 38 | 99.4 |
ME23 | Solanum tuberosum | US | - | NCBI | complete | 4790 | 3 | 99.4 |
IPO_980 | Solanum tuberosum | The Netherlands | 1991 | NCBI | 52 | 4493 | 57 | 99.5 |
GBBC2039 | Solanum tuberosum | Belgium | - | NCBI | 1 | 4607 | 200 | 99.4 |
DE440 | Solanum tuberosum | US | 2016 | NCBI | 55 | 4792 | 28 | 99.4 |
RNS1147 | Solanum tuberosum | France | 2011 | NCBI | 78 | 4904 | 85 | 99.5 |
RNS04.9 | Solanum tuberosum | France | 2004 | NCBI | complete | 4567 | 12 | 1.00 |
CFBP2015 | Solanum tuberosum | France | 1975 | NCBI | 55 | 4666 | 2 | 99.4 |
MIE34 | Solanum tuberosum | Switzerland | 2013 | NCBI | 94 | 4568 | 23 | 98.8 |
S4.16.03.P2.4 | Solanum tuberosum | Morocco | 2016 | NCBI | 101 | 4768 | 8 | 99.4 |
S4.16.03.lid | Solanum tuberosum | Morocco | 2016 | NCBI | 108 | 4775 | 8 | 99.4 |
CFBP1888 | Solanum tuberosum | France | 1978 | NCBI | 67 | 4752 | 47 | 99.5 |
NCPPB_453 | Dianthus | UK | 1956 | NCBI | 1 | 4477 | 46 | - |
CFBP2982 | Kalanchoe | France | 1978 | NCBI | 90 | 17 | 98.7 | |
67.19 | New Guinea Impatiens | US | 2019 | NCBI | 1 | 4637 | 502 | 97.3 |
IPO0256 | Solanum tuberosum | The Netherlands | 1975 | This work | 212 | 4696 | 240 | 98.5 |
IPO0502 | Solanum tuberosum | The Netherlands | 1979 | This work | 161 | 4726 | 4 | 99.4 |
IPO0775 | Solanum tuberosum | The Netherlands | 1984 | This work | 188 | 4702 | 12 | 99.4 |
IPO0846 | Solanum tuberosum | The Netherlands | 1987 | This work | 224 | 4718 | 35 | 99.4 |
IPO0976 | Solanum tuberosum | The Netherlands | 1991 | This work | 194 | 4711 | 15 | 99.4 |
IPO1003 | Cichorium intybus | The Netherlands | 1988 | This work | 214 | 4806 | 10 | 99.4 |
IPO1348 | Solanum tuberosum | The Netherlands | 1993 | This work | 209 | 4784 | 12 | 99.4 |
IPO1350 | Solanum tuberosum | The Netherlands | 1994 | This work | 555 | 4876 | 216 | 99.4 |
IPO1741 | Solanum tuberosum | The Netherlands | 1992 | This work | 148 | 4508 | 11 | 1.00 |
IPO3646 | Solanum tuberosum | The Netherlands | 2013 | This work | 176 | 4814 | 7 | 99.4 |
IPO3699 | Solanum tuberosum | The Netherlands | 2013 | This work | 181 | 4817 | 3 | 99.4 |
IPO3700 | Solanum tuberosum | The Netherlands | 2013 | This work | 184 | 4826 | 10 | 99.4 |
IPO3797 | Sedum | The Netherlands | 2010 | This work | 120 | 4645 | 26 | 99.5 |
IPO3845 | Solanum tuberosum | The Netherlands | 2013 | This work | 101 | 4632 | 25 | 99.4 |
IPO3846 | Solanum tuberosum | The Netherlands | 2009 | This work | 109 | 4777 | 4 | 99.4 |
CH88.23 | Solanum tuberosum | Switzerland | 1988 | This work | 87 | 4898 | 25 | 99.5 |
CH8885 | Solanum tuberosum | Switzerland | 1988 | This work | 113 | 4746 | 68 | 99.5 |
CH90110-7-1 | Solanum tuberosum | Switzerland | 1990 | This work | 119 | 4798 | 11 | 99.4 |
CH9187-1 | Solanum tuberosum | Switzerland | 1991 | This work | 126 | 4896 | 37 | 99.5 |
CFBP1805 | Kalanchoe | Denmark | 1977 | This work | 200 | 4706 | 48 | 98.6 |
CFBP1984 | Dianthus | France | 1972 | This work | 126 | 4611 | 66 | 99.5 |
CFBP2598 | Kalanchoe | Switzerland | 1982 | This work | 168 | 4723 | 33 | 98.6 |
CFBP3706 | Cichorium intybus | Switzerland | 1986 | This work | 148 | 4713 | 46 | 99.6 |
CFBP6548 | Cichorium intybus | France | 1994 | This work | 158 | 4857 | 91 | 99.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pédron, J.; van der Wolf, J.M.; Portier, P.; Caullireau, E.; Van Gijsegem, F. The Broad Host Range Plant Pathogen Dickeya dianthicola Shows a High Genetic Diversity. Microorganisms 2022, 10, 1024. https://doi.org/10.3390/microorganisms10051024
Pédron J, van der Wolf JM, Portier P, Caullireau E, Van Gijsegem F. The Broad Host Range Plant Pathogen Dickeya dianthicola Shows a High Genetic Diversity. Microorganisms. 2022; 10(5):1024. https://doi.org/10.3390/microorganisms10051024
Chicago/Turabian StylePédron, Jacques, Jan M. van der Wolf, Perrine Portier, Emma Caullireau, and Frédérique Van Gijsegem. 2022. "The Broad Host Range Plant Pathogen Dickeya dianthicola Shows a High Genetic Diversity" Microorganisms 10, no. 5: 1024. https://doi.org/10.3390/microorganisms10051024
APA StylePédron, J., van der Wolf, J. M., Portier, P., Caullireau, E., & Van Gijsegem, F. (2022). The Broad Host Range Plant Pathogen Dickeya dianthicola Shows a High Genetic Diversity. Microorganisms, 10(5), 1024. https://doi.org/10.3390/microorganisms10051024