Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Cultures and Preparation of Conidial Suspensions of the Pathogens
2.3. Isolation of Bacteria
2.4. Assaying the In Vitro Antagonistic Activity against Blueberry Pathogenic Fungi
2.5. In Vivo Biocontrol Efficiency
2.6. Molecular Identification of Bacterial Isolates
2.7. Sequence Data Availability
2.8. Statistical Analysis
3. Results
3.1. Isolation of Bacteria from Blueberry
3.2. Molecular Identification
3.3. In Vitro Antagonism against Blueberry Pathogenic Fungi
3.4. In Vivo Biocontrol Capacities
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kloet, S.P.V. The taxonomy of the highbush blueberry, Vaccinium corymbosum. Can. J. Bot. 1980, 58, 1187–1201. [Google Scholar] [CrossRef]
- Ma, L.; Sun, Z.; Zeng, Y.; Luo, M.; Yang, J. Molecular mechanism and health role of functional ingredients in blueberry for chronic disease in human beings. Int. J. Mol. Sci. 2018, 19, 2785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, K.T.; Zhu, Z.; Balabanov, D.; Zhao, L.; Wakefield, M.R.; Bai, Q.; Fang, Y. Beyond conventional medicine—A look at blueberry, a cancer-fighting superfruit. Pathol. Oncol. Res. 2018, 24, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, M.; di Sacco, F.; Traupe, I.; Topini, R.; Forfori, F.; Giunta, F. Antioxidant and neuroprotective properties of blueberry polyphenols: A critical review. Nutr. Neurosci. 2011, 14, 119–125. [Google Scholar] [CrossRef]
- Neto, C.C. Cranberry and Blueberry: Evidence for protective effects against cancer and vascular diseases. Mol. Nutr. Food Res. 2007, 51, 652–664. [Google Scholar] [CrossRef]
- Dell’Acqua, A.; Moyano, M.B.; Galvan, J.; Gonzalez, L.R.D.; Paz, C. Comercialización Y Competitividad Del Arándano Argentino; Inta, E., Ed.; INTA Ediciones: Buenos Aires, Argentina, 2019. [Google Scholar]
- Munitz, M.S.; Garrido, C.E.; Gonzalez, H.H.L.; Resnik, S.L.; Salas, P.M.; Montti, M.I.T. Mycoflora and potential mycotoxin production of freshly harvested blueberry in concordia, Entre Ríos province, Argentina. Int. J. Fruit Sci. 2013, 13, 312–325. [Google Scholar] [CrossRef]
- Smith, B.J.; Magee, J.B.; Gupton, C.L. Susceptibility of Rabbiteye Blueberry cultivars to postharvest diseases. Plant Dis. 1996, 80, 215–218. [Google Scholar] [CrossRef]
- Zhu, X.Q.; Xiao, C.L. Phylogenetic, morphological, and pathogenic characterization of Alternaria species associated with fruit rot of blueberry in California. Phytopathology 2015, 105, 1555–1567. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, P.; Baldomá, J.; Wright, E.; Pérez, A.; Sesar, M.D.D.; Pérez, B. First report of blueberry Botrytis blight in Buenos Aires, Entre Ríos, and Córdoba, Argentina. Plant Dis. 2007, 91, 639. [Google Scholar] [CrossRef]
- Romanazzi, G.; Feliziani, E. Botrytis cinerea (Gray Mold). In Postharvest Decay: Control Strategies; Press, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 131–146. ISBN 9780124115682. [Google Scholar]
- Williamson, B.; Tudzynski, B.; Tudzynski, P.; Van Kan, J.A.L. Botrytis cinerea: The cause of grey mould disease. Mol. Plant Pathol. 2007, 8, 561–580. [Google Scholar] [CrossRef]
- Thomma, B.P.H.J. Alternaria spp.: From general saprophyte to specific parasite. Mol. Plant Pathol. 2003, 4, 225–236. [Google Scholar] [CrossRef]
- Milholland, R.; Jones, R. Postharvest decay of highbush blueberry fruit in North- Carolina. Plant Dis. Report. 1972, 56, 118. [Google Scholar]
- Pérez, E.; Blanco, O.; Alves, P.; Román, C.; Rial, M.; Rodríguez, A.; Heredia, A.M. Guía Para la Identificación de Patógenos de Poscosecha en Frutos de Arándanos; INIA: Salto, Uruguay, 2014; ISBN 9789974383623. [Google Scholar]
- Saito, S.; Michailides, T.J.; Xiao, C.L. Fungicide resistance profiling in Botrytis cinerea populations from blueberry in California and Washington and their impact on control of gray mold. Plant Dis. 2016, 100, 2087–2093. [Google Scholar] [CrossRef] [Green Version]
- Droby, S.; Lichter, A. Post-harvest Botrytis infection: Etiology, development and management. In Botrytis: Biology, Pathology and Control; Springer: Berlin/Heidelberg, Germany, 2007; pp. 349–367. [Google Scholar] [CrossRef]
- Leroux, P. Chemical control of Botrytis and its resistance to chemical fungicides. In Botrytis: Biology, Pathology and Control; Springer: Berlin/Heidelberg, Germany, 2007; pp. 195–222. [Google Scholar] [CrossRef]
- Pereyra, M.M.; Díaz, M.A.; Soliz-Santander, F.F.; Poehlein, A.; Meinhardt, F.; Daniel, R.; Dib, J.R. Screening methods for isolation of biocontrol epiphytic yeasts against Penicillium digitatum in lemons. J. Fungi 2021, 7, 166. [Google Scholar] [CrossRef]
- Díaz, M.A.; Pereyra, M.M.; Picón-Montenegro, E.; Meinhardt, F.; Dib, J.R. Killer yeasts for the biological control of postharvest fungal crop diseases. Microorganisms 2020, 8, 1680. [Google Scholar] [CrossRef]
- Palou, L.; Smilanick, J.L.; Droby, S. Alternatives to conventional fungicides for the control of citrus postharvest green and blue moulds. Stewart Postharvest Rev. 2008, 4, 1–16. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biol. Technol. 2018, 140, 107–112. [Google Scholar] [CrossRef]
- Wilson, C.L.; Wisniewski, M.E. Biological control of postharvest diseases of fruits and vegetables: An emerging technology. Annu. Rev. Phytopathol. 1989, 27, 425–441. [Google Scholar] [CrossRef]
- Abbey, J.A.; Percival, D.; Abbey, L.; Asiedu, S.K.; Prithiviraj, B.; Schilder, A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)—Prospects and challenges. Biocontrol Sci. Technol. 2018, 29, 241–262. [Google Scholar] [CrossRef]
- Raymaekers, K.; Ponet, L.; Holtappels, D.; Berckmans, B.; Cammue, B.P.A. Screening for novel biocontrol agents applicable in plant disease management—A review. Biol. Control 2020, 144, 104240. [Google Scholar] [CrossRef]
- De Lima, J.R.; Gonçalves, L.R.B.; Brandão, L.R.; Rosa, C.A.; Viana, F.M.P. Isolation, identification, and activity in vitro of killer yeasts against Colletotrichum gloeosporioides isolated from tropical Fruits. J. Basic Microbiol. 2012, 52, 1–10. [Google Scholar] [CrossRef]
- Olmedo, G.M. Acción antifúngica de compuestos químicos sobre hongos fitopatógenos que afectan frutos de interés regional. Ph.D. Thesis, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina, 2017. [Google Scholar]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S RRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- Fredriksson, N.J.; Hermansson, M.; Wilén, B.M. The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. PLoS ONE 2013, 8, e76431. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Di Rienzo, J.; Casanoves, F.; Balzarini, M.; Gonzalez, L.; Tablada, M.; Robledo, C. InfoStat, versión 2020. Software for Statistical Analysis for Windows. 10 January. Available online: http://www.infostat.com.ar (accessed on 10 January 2022).
- Sharma, R.R.; Singh, D.; Singh, R. Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biol. Control 2009, 50, 205–221. [Google Scholar] [CrossRef]
- Calvo, J.; Calvente, V.; de Orellano, M.E.; Benuzzi, D.; de Tosetti, M.I.S. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Int. J. Food Microbiol. 2007, 113, 251–257. [Google Scholar] [CrossRef]
- Wang, S.; Hu, T.; Jiao, Y.; Wei, J.; Cao, K. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front. Agric. China 2009, 3, 247–252. [Google Scholar] [CrossRef]
- Kurniawan, O.; Wilson, K.; Mohamed, R.; Avis, T.J. Bacillus and Pseudomonas spp. provide antifungal activity against Gray Mold and Alternaria Rot on blueberry Fruit. Biol. Control 2018, 126, 136–141. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Qi, D.; Zhou, D.; Qi, C.; Li, C.; Liu, S.; Xiang, D.; Zhang, L.; Xie, J.; et al. Biocontrol ability and mechanism of a broad-spectrum antifungal strain Bacillus safensis sp. QN1NO-4 against strawberry anthracnose caused by Colletotrichum fragariae. Front. Microbiol. 2021, 12, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Parafati, L.; Vitale, A.; Restuccia, C.; Cirvilleri, G. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing Post-Harvest bunch rot of table grape. Food Microbiol. 2015, 47, 85–92. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Gao, Y.; Gao, T.; Zhang, D. Inhibitory abilities of Bacillus isolates and their culture filtrates against the gray mold caused by Botrytis cinerea on postharvest fruit. Plant Pathol. J. 2019, 35, 425–436. [Google Scholar] [CrossRef]
- Li, W.; Long, Y.; Mo, F.; Shu, R.; Yin, X.; Wu, X.; Zhang, R.; Zhang, Z.; He, L.; Chen, T.; et al. Antifungal activity and biocontrol mechanism of Fusicolla violacea J-1 against soft rot in kiwifruit caused by Alternaria alternata. J. Fungi 2021, 7, 937. [Google Scholar] [CrossRef]
- Saravanakumar, D.; Ciavorella, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biol. Technol. 2008, 49, 121–128. [Google Scholar] [CrossRef]
- Caulier, S.; Nannan, C.; Gillis, A.; Licciardi, F.; Bragard, C.; Mahillon, J. Overview of the antimicrobial compounds produced by members of the Bacillus subtilis Group. Front. Microbiol. 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Harwood, C.R.; Mouillon, J.M.; Pohl, S.; Arnau, J. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol. Rev. 2018, 42, 721–738. [Google Scholar] [CrossRef]
- Jeong, M.H.; Lee, Y.S.; Cho, J.Y.; Ahn, Y.S.; Moon, J.H.; Hyun, H.N.; Cha, G.S.; Kim, K.Y. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens. Microb. Pathog. 2017, 110, 645–653. [Google Scholar] [CrossRef]
- Lastochkina, O.; Seifikalhor, M.; Aliniaeifard, S.; Baymiev, A. Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 2019, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Li, T.; Jiang, X.; Tang, X.; Zhang, J.; Yuan, L.; Wei, Y. Suppression of grape white rot caused by Coniella vitis using the potential biocontrol agent Bacillus Velezensis GSBZ09. Pathogens 2022, 11, 248. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, Y.; Cheon, W.; Park, J.; Kwon, H.T.; Balaraju, K.; Kim, J.; Yoon, Y.J.; Jeon, Y. Characterization of Bacillus velezensis AK-0 as a biocontrol agent against apple bitter rot caused by Colletotrichum gloeosporioides. Sci. Rep. 2021, 11, 626. [Google Scholar] [CrossRef]
- Palazzini, J.M.; Dunlap, C.A.; Bowman, M.J.; Chulze, S.N. Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiol. Res. 2016, 192, 30–36. [Google Scholar] [CrossRef]
- Myo, E.M.; Liu, B.; Ma, J.; Shi, L.; Jiang, M.; Zhang, K.; Ge, B. Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biol. Control 2019, 134, 23–31. [Google Scholar] [CrossRef]
- Tanasupawat, S.; Kommanee, J.; Malimas, T.; Yukphan, P.; Nakagawa, Y.; Yamada, Y. Identification of Acetobacter, Gluconobacter, and Asaia strains isolated in Thailand based on 16S-23S rRNA gene internal transcribed spacer restriction and 16S rRNA gene sequence analyses. Microbes Environ. 2009, 24, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Lenaerts, M.; Álvarez-Pérez, S.; de Vega, C.; Van Assche, A.; Johnson, S.D.; Willems, K.A.; Herrera, C.M.; Jacquemyn, H.; Lievens, B. Rosenbergiella australoborealis sp. nov., Rosenbergiella collisarenosi sp. nov. and Rosenbergiella epipactidis sp. nov., three novel bacterial species isolated from floral nectar. Syst. Appl. Microbiol. 2014, 37, 402–411. [Google Scholar] [CrossRef]
Isolate | Source | Closest Related Species with Acc No. in Brackets and % Similarity | GenBank Accession No. | Sequence Length (bp) |
---|---|---|---|---|
BA2 | Blueberry fruit | Pseudomonas stutzeri CCUG 11256T (NR_118798.1) 99.86% | OL672313 | 1401 |
BA3 | Blueberry fruit | Bacillus velezensis strain FZB42 (NR_075005.2) 99.86% | OL672314 | 1407 |
BA4 | Blueberry fruit | Bacillus velezensis strain FZB42 (NR_075005.2) 99.93% | OL672315 | 1397 |
BA6 | Blueberry fruit | Sphingomonas zeae JM-791 (NR_136793.1) 98.89% | OL672316 | 1349 |
BA8 | Blueberry fruit | Fictibacillus nanhaiensis strain JSM 082006 (NR_117524.1) 99.93% | OL672317 | 1424 |
BA9 | Blueberry fruit | Acinetobacter lwoffii strain DSM 2403 (NR_026209.1) 99.85% | OL672318 | 1370 |
BA10 | Blueberry fruit | Fictibacillus phosphorivorans strain Ca7 (NR_118455.1) 99.93% | OL672319 | 1385 |
BF1 | Blueberry flower | Rosenbergiella epipactidis strain 2.1A (NR_126303.1) 99.86% | OL672320 | 1380 |
BF2 | Blueberry flower | Rosenbergiella epipactidis strain 2.1A (NR_126303.1) 99.78% | OL672321 | 1376 |
BF3 | Blueberry flower | Rosenbergiella epipactidis strain 2.1A (NR_126303.1) 99.85% | OL672322 | 1372 |
BF5 | Blueberry flower | Pseudomonas tremae strain TO1 (NR_025549.1) 99.78% | OL672323 | 1355 |
BF6 | Blueberry flower | Rosenbergiella epipactidis strain 2.1A (NR_126303.1) 99.78% | OL672324 | 1373 |
BF7 | Blueberry flower | Microbacterium testaceum strain DSM 20166 (NR_026163.1) 99.85% | OL672325 | 1320 |
BF8 | Blueberry flower | Xylophilus ampelinus strain ATCC 33914 (NR_114461.1) 98.16% | OL672326 | 1358 |
BF9 | Blueberry flower | Curtobacterium pusillum strain DSM 20527 (NR_042315.1) 99.48% | OL672327 | 1341 |
BF13 | Blueberry flower | Fictibacillus phosphorivorans strain Ca7 (NR_118455.1) 99.93% | OL672328 | 1370 |
BF14 | Blueberry flower | Serratia marcescens strain NBRC 102204 (NR_114043.1) 100% | OL672329 | 1310 |
BF15 | Blueberry flower | Microbacterium testaceum strain DSM 20166 (NR_026163.1) 99.02% | OL672330 | 1328 |
BMEF1 | Blueberry flower | Asaia spathodeae NBRC 105894 (NR_114292.1) 99.92% | OL672331 | 1300 |
Bacterial Strain | Phytopathogen | |
---|---|---|
Botrytis cinerea | Alternaria alternata | |
Pseudomonas stutzeri BA2 | − | − |
Bacillus velezensis BA3 | + | + |
Bacillus velezensis BA4 | + | + |
Sphingomonas zeae BA6 | + | − |
Fictibacillus nanhaiensis BA8 | − | − |
Acinetobacter lwoffii BA9 | − | − |
Fictibacillus phosphorivorans BA10 | − | − |
Rosenbergiella epipactidis BF1 | − | − |
Rosenbergiella epipactidis BF2 | − | + |
Rosenbergiella epipactidis BF3 | − | + |
Pseudomonas tremae BF5 | + | − |
Rosenbergiella epipactidis BF6 | − | + |
Microbacterium testaceum BF7 | + | − |
Xylophilus ampelinus BF8 | − | − |
Curtobacterium pusillum BF9 | + | − |
Fictibacillus phosphorivorans BF13 | − | − |
Serratia marcescens BF14 | + | − |
Microbacterium testaceum BF15 | − | − |
Asaia spathodeae BMEF1 | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chacón, F.I.; Sineli, P.E.; Mansilla, F.I.; Pereyra, M.M.; Diaz, M.A.; Volentini, S.I.; Poehlein, A.; Meinhardt, F.; Daniel, R.; Dib, J.R. Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents. Microorganisms 2022, 10, 969. https://doi.org/10.3390/microorganisms10050969
Chacón FI, Sineli PE, Mansilla FI, Pereyra MM, Diaz MA, Volentini SI, Poehlein A, Meinhardt F, Daniel R, Dib JR. Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents. Microorganisms. 2022; 10(5):969. https://doi.org/10.3390/microorganisms10050969
Chicago/Turabian StyleChacón, Florencia Isabel, Pedro Eugenio Sineli, Flavia Ivana Mansilla, Martina Maria Pereyra, Mariana Andrea Diaz, Sabrina Inés Volentini, Anja Poehlein, Friedhelm Meinhardt, Rolf Daniel, and Julián Rafael Dib. 2022. "Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents" Microorganisms 10, no. 5: 969. https://doi.org/10.3390/microorganisms10050969
APA StyleChacón, F. I., Sineli, P. E., Mansilla, F. I., Pereyra, M. M., Diaz, M. A., Volentini, S. I., Poehlein, A., Meinhardt, F., Daniel, R., & Dib, J. R. (2022). Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents. Microorganisms, 10(5), 969. https://doi.org/10.3390/microorganisms10050969