Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. β-Lactams and Colistin-Resistant-E. coli Isolation and Bacterial Identification
2.3. Antimicrobial Susceptibility Testing
2.4. Phenotypic Detection of Extended Spectrum β-Lactamase and Carbapenemase Production
2.5. Molecular Detection of β-Lactamases and mcr Genes
2.6. Conjugation Experiment
2.7. Multilocus Sequence Typing
2.8. Statistical Analysis
3. Results
3.1. Bacterial Identification and Antimicrobial Susceptibility Testing
3.2. Molecular Detection of ESBL, Carbapenemase and mcr Genes
3.3. Conjugation Experiment
3.4. Multilocus Sequence Typing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Huang, Y.; Rao, D.; Zhang, Y.; Yang, K. Evidence for environmental dissemination of antibiotic resistance mediated by wild birds. Front. Microbiol. 2018, 9, 745. [Google Scholar] [CrossRef]
- Aeksiri, N.; Toanan, W.; Sawikan, S.; Suwannarit, R.; Pungpomin, P.; Khieokhajonkhet, A.; Niumsup, P.R. First detection and genomic insight into mcr-1 encoding plasmid-mediated colistin-resistance gene in Escherichia coli ST101 isolated from the migratory bird species Hirundo rustica in Thailand. Microb. Drug Resist. 2019, 25, 1437–1442. [Google Scholar] [CrossRef]
- Mills, M.C.; Lee, J. The threat of carbapenem-resistant bacteria in the environment. Evidence of widespread contamination of reservoirs at a global scale. Environ. Pollut. 2019, 255, 113143. [Google Scholar] [CrossRef]
- Handrova, L.; Kmet, V. Antibiotic resistance and virulence factors of Escherichia colifrom eagles and goshawks. J. Environ. Sci. Health B 2019, 54, 605–614. [Google Scholar] [CrossRef]
- Blanco-Pena, K.; Esperon, F.; Torres-Mejia, A.M.; De la Torre, A.; De la Cruz, E.; Jiménez-Soto, M. Antimicrobial resistance genes in pigeons from public parks in Costa Rica. Zoonoses. Public Health 2017, 64, e23–e30. [Google Scholar]
- Chidamba, L.; Korsten, L. Antibiotic resistance in Escherichia coli isolates from roof-harvested rainwater tanks and urban pigeon faeces as the likely source of contamination. Environ. Monit. Assess. 2015, 187, 405. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C. Occurrence and characteristics of mobile colistin resistance (mcr) gene-containing isolates from the environment: A review. Int. J. Environ. Res. Public Health 2020, 17, 1028. [Google Scholar] [CrossRef] [Green Version]
- Alhababi, D.A.; Eltai, N.O.; Nasrallah, G.K.; Farg, E.A.; Al Thani, A.A.; Yassine, H.M. Antimicrobial resistance of commensal Escherichia coli isolated from food animals in Qatar. Microb. Drug Resist. 2020, 26, 420–427. [Google Scholar] [CrossRef]
- Cunha, M.P.V.; Oliveira, M.C.V.; Oliveira, M.G.X.; Menao, M.C.; Knobl, T. CTX-M- producing Escherichia coli Isolated from urban pigeons (Columba livia domestica) in Brazil. J. Infect. Dev. Ctries. 2019, 13, 1052–1056. [Google Scholar] [CrossRef]
- Guenther, S.; Grobbel, M.; Beutlich, J.; Bethe, A.; Friedrich, N.D.; Goedecke, A.; Lubke-Becker, A.; Guerra, B.; Wieler, L.H.; Ewers, C. CTX-M-15-type extended-spectrum beta-lactamases-producing Escherichia coli from wild birds in Germany. Environ. Microbiol. Rep. 2010, 2, 641–645. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 0026-2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van, D.D.; Doi, Y. The global epidemiology of carbapenemase-producing Enterobacteriaceae. Virulence 2017, 8, 460–469. [Google Scholar]
- Son, S.J.; Huang, R.; Squire, C.J.; Leung, I.K.H. MCR-1: A promising target for structure-based design of inhibitors to tackle polymyxin resistance. Drug Discov. Today 2019, 24, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Mairi, A.; Pantel, A.; Sotto, A.; Lavigne, J.P.; Touati, A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 587–604. [Google Scholar] [CrossRef]
- Iovleva, A.; Doi, Y. Carbapenem-resistant Enterobacteriaceae. Clin. Lab. Med. 2017, 37, 303–315. [Google Scholar] [CrossRef]
- Poirel, L.; Héritier, C.; Tolun, V.; Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Carrer, A.; Poirel, L.; Eraksoy, H.; Cagatay, A.A.; Badur, S.; Nordmann, P. Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob. Agents Chemother. 2008, 52, 2950–2954. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Stefaniuk, E.M.; Tyski, S. Colistin resistance in Enterobacterales strains—A current view. Pol. J. Microbiol. 2019, 68, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Bendjama, E.; Loucif, L.; Chelaghma, W.; Attal, C.; Bellakh, F.Z.; Benaldjia, R.; Kahlat, I.; Meddour, A.; Rolain, J.M. First detection of an OXA-48-producing Enterobacter cloacae isolate from currency coins in Algeria. J. Glob. Antimicrob. Resist. 2020, 23, 162–166. [Google Scholar] [CrossRef]
- Cherak, Z.; Loucif, L.; Moussi, A.; Bendjama, E.; Benbouza, A.; Rolain, J.M. Emergence of Metallo-β-Lactamases and OXA-48 carbapenemase producing Gram-negative bacteria in hospital wastewater in Algeria: A potential dissemination pathway into the environment. Microb. Drug. Resist. 2021, 28, 23–30. [Google Scholar] [CrossRef]
- Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P.E.; Rolain, J.M.; Raoult, D. Ongoing revolution in bacteriology: Routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Infect. Dis. 2009, 49, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Bakour, S.; Garcia, V.; Loucif, L.; Brunel, J.M.; Gharout-Sait, A.; Touati, A.; Rolain, J.M. Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacterbaumannii using a modified Carba NP test. New Microbes New Infect. 2015, 7, 89–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabou, S.; Leangapichart, T.; Okdah, L.; Le Page, S.; Hadjadj, L.; Rolain, J.M. Real-time quantitative PCR assay with Taqman(Â) probe for rapid detection of MCR-1 plasmid-mediated colistin resistance. New Microbes New Infect. 2016, 13, 71–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, T.D.A.; Hadjadj, L.; Hoang, V.T.; Louni, M.; Dao, T.L.; Badiaga, S.; Tissot-Dupont, H.; Raoult, D.; Rolain, J.M.; Gautret, P. Low prevalence of resistance genes in sheltered homeless population in Marseille, France, 2014–2018. Infect. Drug Resist. 2019, 12, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Nabti, L.Z.; Sahli, F.; Ngaiganam, E.P.; Radji, N.; Mezaghcha, W.; Lupande-Mwenebitu, D.; Baron, S.A.; Rolain, J.M.; Diene, S.M. Development of real-time PCR assay allowed describing the first clinical Klebsiellapneumoniae isolate harboring plasmid-mediated colistin resistance mcr-8 gene in Algeria. J. Glob. Antimicrob. Resist. 2020, 20, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Roschanski, N.; Fischer, J.; Guerra, B.; Roesler, U. Development of a multiplex real-time PCR for the rapid detection of the predominant beta-lactamase genes CTX-M, SHV, TEM and CIT-type AmpCs in Enterobacteriaceae. PLoS ONE 2014, 9, e100956. [Google Scholar] [CrossRef]
- Yousfi, H.; Hadjadj, L.; Dandachi, I.; Lalaoui, R.; Merah, A.; Amoura, K.; Dahi, A.; Dekhil, M.; Messalhi, N.; Diene, S.M. Colistin-and carbapenem-resistant Klebsiella pneumoniae clinical_isolates: Algeria. Microb. Drug. Resist. 2019, 25, 258–263. [Google Scholar] [CrossRef]
- Diene, S.M.; Bruder, N.; Raoult, D.; Rolain, J.M. Real-time PCR assay allows detection of the New Delhi metallo-β-lactamase (NDM-1)-encoding gene in France. Int. J. Antimicrob. Agents. 2011, 37, 544–546. [Google Scholar] [CrossRef] [Green Version]
- Mathlouthi, N.; Al-Bayssari, C.; El Salabi, A.; Bakour, S.; Gwierif, S.B.; Zorgani, A.A.; Jridi, Y.; Slama, K.B.; Rolain, J.M.; Chouchani, C. Carbapenemases and extended-spectrum B-lactamases producing Enterobacteriaceae isolated from Tunisian and Libyan hospitals. J. Infect. Dev. Ctries. 2016, 10, 718–727. [Google Scholar] [CrossRef] [Green Version]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghanbarpour, R.; Daneshdoost, S. Identification of shiga toxin and intimin coding genes in Escherichia coli isolates from pigeons (Columba livia) in relation to phylotypes and antibiotic resistance patterns. Trop. Anim. Health Prod. 2012, 44, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Morakchi, H.; Loucif, L.; Gacemi-Kirane, D.; Rolain, J.M. Molecular characterisation of carbapenemases in urban pigeon droppings in France and Algeria. J. Glob. Antimicrob. Resist. 2017, 9, 103–110. [Google Scholar] [CrossRef]
- Ngaiganam, E.P.; Pagnier, I.; Chaalal, W.; Leangapichart, T.; Chabou, S.; Rolain, J.M.; Diene, S.M. Investigation of urban birds as source of β-lactamase-producing Gram-negative bacteria in Marseille city, France. Acta Vet. Scand. 2019, 61, 51. [Google Scholar] [CrossRef] [Green Version]
- Hasan, B.; Laurell, K.; Rakib, M.M.; Ahlstedt, E.; Hernandez, J.; Caceres, M.; Jarhult, J.D. Fecal carriage of Extended-Spectrum β-Lactamases in healthy humans, poultry, and wild birds in Leon, Nicaragua-a shared pool of bla(CTX-M) genes and possible interspecies clonal spread of Extended-Spectrum β-Lactamases-producing Escherichia coliMicrob. Drug Resist. 2016, 22, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Abdeen, E.; Elmonir, W.; Suelam, I.I.A.; Mousa, W.S. Antibiogram and genetic diversity of Salmonella enterica with zoonotic potential isolated from morbid native chickens and pigeons in Egypt. J. Appl. Microbiol. 2018, 124, 1265–1273. [Google Scholar] [CrossRef]
- Borges, C.A.; Cardozo, M.V.; Beraldo, L.G.; Oliveira, E.S.; Maluta, R.P.; Barboza, K.B.; Werther, K.; Ãvila, F.A. Wild birds and urban pigeons as reservoirs for diarrheagenic Escherichia coli with zoonotic potential. J. Microbiol. 2017, 55, 344–348. [Google Scholar] [CrossRef]
- Radimersky, T.; Frolkova, P.; Janoszowska, D.; Dolejska, M.; Svec, P.; Roubalova, E.; Cikova, P.; Cizek, A.; Literak, I. Antibiotic resistance in faecal bacteria (Escherichia coli, Enterococcus spp.) in feral pigeons. J. Appl. Microbiol. 2010, 109, 1687–1695. [Google Scholar] [CrossRef]
- Da Silva, V.L.; Caçador, N.C.; Da Silva, C.S.; Fontes, C.O.; Garcia, G.D.; Nicoli, J.R.; Diniz, C.G. Occurrence of multidrug-resistant and toxic-metal tolerant enterococci in fresh feces from urban pigeons in Brazil. Microbes Environ. 2012, 27, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Hasan, B.; Islam, K.; Ahsan, M.; Hossain, Z.; Rashid, M.; Talukder, B.; Ahmed, K.U.; Olsen, B.; Abul, K.M. Fecal carriage of multi-drug resistant and extended spectrum β-lactamases producing E. coli in household pigeons, Bangladesh. Vet. Microbiol. 2014, 168, 221–224. [Google Scholar] [CrossRef]
- Yang, L.; Yang, L.; Lu, D.H.; Zhang, W.H.; Ren, S.Q.; Liu, Y.H.; Zeng, Z.L.; Jiang, H.X. Co-prevalance of PMQR and 16S rRNA methylase genes in clinical Escherichia coli isolates with high diversity of CTX-M from diseased farmed pigeons. Vet. Microbiol. 2015, 178, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Loucif, L.; Kassah-Laouar, A.; Saidi, M.; Messala, A.; Chelaghma, W.; Rolain, J.M. Outbreak of OXA-48-producing Klebsiella pneumoniae involving a sequence type 101 clone in Batna university hospital, Algeria. Antimicrob. Agents Chemother. 2016, 60, 7494–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loucif, L.; Chelaghma, W.; Helis, Y.; Sebaa, F.; Baoune, R.D.; Zaatout, W.; Rolain, J.M. First detection of OXA-48-producing Klebsiella pneumoniae in community-acquired urinary tract infection in Algeria. J. Glob. Antimicrob. Resist. 2018, 12, 115–116. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, A.; Loucif, L.; Ayachi, A.; Guehaz, K.; Bendjama, E.; Rolain, J.M. Migratory white stork (Ciconiaciconia): A potential vector of the OXA-48-producing Escherichia coli ST38 clone in Algeria. Microb. Drug Resist. 2018, 24, 461–468. [Google Scholar] [CrossRef]
- Al-Bayssari, C.; Gupta, S.K.; Dabboussi, F.; Hamze, M.; Rolain, J.M. MUS-2, a novel variant of the chromosome-encoded β-lactamase MUS-1, from Myroidesodoratimimus. New Microbes New Infect. 2015, 7, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Chen, L.; Wang, J.; Yassin, A.K.; Butaye, P.; Kelly, P.; Gong, J.; Guo, W.; Li, J.; Li, M.; et al. Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci. Rep. 2018, 8, 3705. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Zhang, J.; Wang, J.; Butaye, P.; Kelly, P.; Li, M.; Yang, F.; Gong, J.; Yassin, A.K.; Guo, W.; et al. Newly identified colistin resistance genes, mcr-4 and mcr-5, from upper and lower alimentary tract of pigs and poultry in China. PLoS ONE 2018, 13, e0193957. [Google Scholar] [CrossRef] [Green Version]
- Dahmen, S.; Haenni, M.; Chatre, P.; Madec, J.Y. Characterization of blaCTX-MIncFII plasmids and clones of Escherichia coli from pets in France. J. Antimicrob. Chemother. 2013, 68, 2797–2801. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.M.; Sellera, F.P.; Fernandes, M.R.; Moura, Q.; Garino, F.; Azevedo, S.S.; Lincopan, N. Genomic features of a highly virulent, ceftiofur-resistant, CTX-M-8-producing Escherichia coli ST224 causing fatal infection in a domestic cat. J. Glob. Antimicrob. Resist. 2018, 15, 252–253. [Google Scholar] [CrossRef]
- Aizawa, J.; Neuwirt, N.; Barbato, L.; Neves, P.R.; Leigue, L.; Padilha, J.; Pestana de Castro, A.F.; Gregory, L.; Lincopan, N. Identification of fluoroquinolone-resistant extended-spectrum β-lactamase (CTX-M-8)-producing Escherichia coli ST224, ST2179 and ST2308 in buffalo (Bubalus bubalis). J. Antimicrob. Chemother. 2014, 69, 2866–2869. [Google Scholar] [CrossRef] [Green Version]
- Alonso, C.A.; Gonzalez-Barrio, D.; Tenorio, C.; Ruiz-Fons, F.; Torres, C. Antimicrobial resistance in faecal Escherichia coli isolates from farmed red deer and wild small mammals. Detection of a multiresistantE. coli producing extended-spectrum beta-lactamase. Comp. Immunol. Microbiol. Infect. Dis. 2016, 45, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Chaalal, N.; Touati, A.; Yahiaoui-Martinez, A.; Aissa, M.A.; Sotto, A.; Lavigne, J.P.; Pantel, A. Colistin-resistant Enterobacterales isolated from chicken meat in western Algeria. Microb. Drug. Resist. 2021, 27, 991–1002. [Google Scholar] [CrossRef]
- Abreu-Salinas, F.; Diaz-Jiménez, D.; Garcia-Menino, I.; Lumbreras, P.; Lopez-Beceiro, A.M.; Fidalgo, L.E.; Rodicio, M.R.; Mora, A.; Fernandez, J. High prevalence and diversity of cephalosporin-resistant Enterobacteriaceae including extraintestinal pathogenic E. coli CC648 lineage in rural and urban dogs in northwest Spain. Antibiotics 2020, 9, 468. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Castillo, D.; Esposito, F.; Cardoso, B.; Dalazen, G.; Moura, Q.; Fuga, B.; Fontana, H.; Cerdeira, L.; Dropa, M.; Rottmann, J.; et al. Genomic data reveal international lineages of critical priority Escherichia coli harbouring wide resistome in Andean condors (Vulturgryphus Linnaeus, 1758). Mol. Ecol. 2020, 29, 1919–1935. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, Y.; Shi, X.; Wang, S.; Ren, H.; Shen, Z.; Wang, Y.; Lin, J.; Wang, S. Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008–2014. Emerg. Microbes Infect. 2018, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Liu, Z.; Zhang, Y.; Zhang, Z.; Lei, L.; Xia, Z. Increasing prevalence of ESBL-producing multidrug resistance Escherichia coli from diseased pets in Beijing, China from 2012 to 2017. Front. Microbiol. 2019, 10, 2852. [Google Scholar] [CrossRef]
- Chah, K.F.; Ugwu, I.C.; Okpala, A.; Adamu, K.Y.; Alonso, C.A.; Ceballos, S.; Nwanta, J.N.; Torres, C. Detection and molecular characterisation of extended-spectrum β-lactamase-producing enteric bacteria from pigs and chickens in Nsukka, Nigeria. J. Glob. Antimicrob. Resist. 2018, 15, 36–40. [Google Scholar] [CrossRef]
Type of PCR | Primers | Primer Sequence (5′->3′) | References |
---|---|---|---|
Real-time PCR | TEM-F. | GCATCTTACGGATGGCATGA | [27] |
TEM-R | GTCCTCCGATCGTTGTCAGAA | ||
TEM-probe | 6-Fam CAGTG CTGCCATAACCA TGAGTGA-BHQ-1 | ||
Real-time PCR | SHV-F | TCCCATGATGAGCACCTTTAAA | |
SHV-R | TCCTGCTGGCGATAGTGGAT | ||
SHV-probe | Cy5-TGCCGGTGACGAACAGCTGGAG-BBQ-650 | ||
Real-time PCR group A | CTX-A-F | CGGGCRATGGCGCARAC | |
CTX-A-R | TGCRCCGGTSGTATTGCC | ||
CTX-A-probe | Yakima Yellow-CCARCGGGCGCAGYTGGTGAC-BHQ1 | ||
Real-time PCR group B | CTX-B-F | ACCGAGCCSACGCTCAA | |
CTX-B-R | CCGCTGCCGGTTTTATC | ||
CTX-B-probe | Yakima Yellow- CCCGCGYGATACCACCACGC-BHQ1 | ||
Real-time PCR | KPC-F | GATACCACGTTCCGTCTGGA | [28] |
KPC-R | GGTCGTGTTTCCCTTTAGCC | ||
KPC-Probe | 6-FAM-CGCGCGCCGTGACGGA AAGC-TAMRA | ||
Real-time PCR | VIM-F | CACAGYGGCMCTTCTCGCGGAGA | |
VIM-R | GCGTACGTYGCCACYCCAGCC | ||
VIM-Probe | 6-FAM-AGTCTCCACGCACTTTCATGA CGACCGCGTCGGCG-TAMR | ||
Real-time PCR | NDM-F | GCGCAACACAGCCTGACTTT | [29] |
NDM-R | CAGCCACCAAAAGCGATGTC | ||
NDM-Probe | 6-FAM-CAACCGCGCCCAACTTTGGC-TAMRA | ||
Real-time PCR | OXA48-RT-F | TCTTAAACGGGCGAACCAAG | [28] |
OXA48-RT-R | GCGTCTGTCCATCCCACTTA | ||
OXA48-RT-Probe | 6-FAM-AGCTTGATCGCCCTCG ATTTGG-TAMRA | ||
Standard PCR | OXA-48-F | TTGGTGGCATCGATTATCGG | [30] |
OXA-48-R | GAGCACTTCTTTTGTGATGGC | ||
Real-time PCR | mcr-1–2-F | CTGTGCCGTGTATGTTCAGC | [25] |
mcr-1–2-R | TTATCCATCACGCCTTTTGAG | ||
Probe (mcr-1–2) | FAM-TATGATGTCGATACCGCCAAATACC-TAMRA | ||
Probe (mcr-2) | VIC-TGACCGCTTGGGTGTGGGTA-TAMRA | ||
Standard PCR | mcr-1-F | GCAGCATACTTCTGTGTGGTAC | [24] |
mcr-1-R | TATGCACGCGAAAGAAACTGGC | ||
Real-time PCR | mcr-3-F | TGAATCACTGGGAGCATTAGGGC | [25] |
mcr-3-R | TGCTGCAAACACGCCATATCAAC | ||
mcr-3-probe | FAM-TGCACCGGATGATCAGACCCGT-TAMRA | ||
Real-time PCR | mcr-4-F | GCCAACCAATGCTCATACCCAAAA | |
mcr-4-R | CCGCCCCATTCGTGAAAACATAC | ||
mcr-4-probe | FAM-GCCACGGCGGTGTCTCTACCC-TAMRA | ||
Real-time PCR | mcr-5-F | TATCCCGCAAGCTACCGACGC | |
mcr-5-R | ACGGGCAAGCACATGATCGGT | ||
mcr-5-probe | FAM-TGCGACACCACCGATCTGGCCA-TAMRA | ||
Real-time PCR | mcr-8-F | TCCGGGATGCGTGACGTTGC | [26] |
mcr-8-R | TGCTGCGCGAATGAAGACGA | ||
mcr-8-probe | FAMTCATGGAGAATCGCTGGGGGAAAGC-TAMRA |
Strains | Medium | Site | Antibiotic Resistance Genes | Phenotypic Detection of β-Lactamases | Antibiotic Resistance Genes | ST | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FOX | CTX | CAZ | FEP | ATM | AMC | ETP | IMP | TOB | GN | AK | CIP | DDST MCNP Test | ||||||
P1 | CTX | PP | S | R | R | R | R | S | S | S | S | S | S | R | P | N | blaCTX-M-A, blaTEM | ND |
P2 | ETP | PP | I | S | S | S | S | R | R | I | S | S | S | R | N | P | blaOXA-48 | ND |
P3 | ETP | PP | S | S | S | S | S | R | R | I | S | S | S | R | N | P | blaOXA-48 | ND |
P4 | ETP | PP | I | S | S | S | S | R | R | I | S | S | S | R | N | P | blaOXA-48 | ND |
P5 | CTX | PP | S | R | R | R | R | R | R | S | S | S | S | S | P | N | blaCTX-M-A, blaTEM | ND |
P6 | CTX | PP | S | R | S | I | I | R | S | S | R | R | S | R | P | N | blaCTX-M-A | ND |
P7 | CTX | 800D | S | R | S | R | R | S | S | S | S | S | S | R | P | N | blaCTX-M-A | ND |
P8 | CTX | 800D | S | R | R | R | R | R | S | S | R | S | S | R | P | N | blaCTX-M-A, blaTEM | ND |
P9 | CTX | 800D | S | R | R | R | R | S | S | S | S | S | S | R | P | N | blaCTX-M-A | ND |
P10 | CTX | UNIV | R | R | R | S | I | R | R | S | I | R | S | S | P | P | blaOXA-48, blaCTX-M-A, blaTEM | ND |
P11 | CTX | UNIV | S | R | R | R | R | S | S | S | S | S | S | S | P | N | blaCTX-M-A, blaTEM | ND |
P12 | IMP | 1020D | S | R | R | R | R | S | S | S | S | S | S | S | P | N | blaCTX-M-A, blaTEM | ND |
P13 | IMP | 1020D | S | R | S | R | S | S | S | I | S | S | S | R | P | N | blaCTX-M-A | ND |
P14 | CTX | NSTP | S | R | R | R | R | R | S | S | R | S | S | R | P | N | blaCTX-M-A, blaTEM | ND |
P15 | CTX | NSTP | S | R | R | R | R | S | S | S | I | S | S | S | P | N | blaCTX-M-A, blaTEM | ND |
P16 | ETP | NSTP | S | S | I | S | S | R | R | I | S | S | S | S | N | P | blaOXA-48 | ND |
P17 | ETP | NSTP | S | R | R | S | S | R | R | I | S | S | S | S | N | P | blaOXA-48 | ND |
P18 | ETP | NSTP | S | R | R | S | S | R | R | I | R | R | S | S | N | P | blaOXA-48 | ND |
P19 | ETP | NSTP | S | S | S | S | S | R | R | S | R | R | S | I | N | P | N | ND |
P20 | CTX | NSTP | S | R | S | S | S | R | S | S | R | S | S | S | P | N | blaCTX-M-A | ND |
P21 | ETP | NSTP | S | R | R | S | I | R | R | I | R | R | S | S | P | P | blaOXA-48, blaCTX-M-A, blaTEM | ND |
P22 | CTX | NSTP | R | R | R | S | S | R | S | S | S | S | S | S | P | N | blaCTX-M-A, blaTEM | ND |
P23 | CTX | NSTP | S | R | I | I | R | R | S | S | R | S | S | R | P | N | blaCTX-M-A | ND |
P24 | CTX | NSTP | S | R | R | R | I | R | S | S | S | S | S | R | P | N | blaCTX-M-A, blaTEM | ND |
P25 | ETP | NSTP | S | I | R | I | S | R | R | I | I | R | S | R | N | P | blaOXA-48, blaTEM | ND |
P26 | ETP | NSTP | S | S | S | S | S | R | R | I | S | S | S | R | N | P | N | ND |
P27 | CTX | NSTP | S | R | R | R | S | R | S | S | R | S | S | R | P | N | blaCTX-M-A | ND |
P28 | CTX | NSTP | S | R | R | R | I | S | S | S | S | S | S | R | P | N | blaCTX-M-A | ND |
P29 | CTX | NSTP | S | R | I | R | S | R | S | S | S | S | S | S | P | N | blaCTX-M-A, blaTEM | ND |
P30 | CTX | NSTP | S | R | R | R | I | R | R | S | S | S | S | R | P | P | blaOXA-48, blaCTX-M-A | ND |
P31 | ETP | NSTP | S | I | I | S | S | R | R | I | S | S | S | R | N | P | blaOXA-48 | ND |
P32 | COL | NSTP | S | S | S | S | S | S | S | S | S | S | S | R | N | N | mcr-1 | 1485 |
P33 | COL | NSTP | S | S | S | S | S | R | S | S | R | R | S | R | N | N | mcr-1 | 224 |
P34 | COL | NSTP | S | S | S | S | S | R | S | S | S | S | S | R | N | N | mcr-1 | 46 |
P35 | COL | NSTP | S | S | S | S | S | S | S | S | S | S | S | R | N | N | mcr-1 | New ST |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loucif, L.; Chelaghma, W.; Bendjama, E.; Cherak, Z.; Khellaf, M.; Khemri, A.; Rolain, J.-M. Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria. Microorganisms 2022, 10, 975. https://doi.org/10.3390/microorganisms10050975
Loucif L, Chelaghma W, Bendjama E, Cherak Z, Khellaf M, Khemri A, Rolain J-M. Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria. Microorganisms. 2022; 10(5):975. https://doi.org/10.3390/microorganisms10050975
Chicago/Turabian StyleLoucif, Lotfi, Widad Chelaghma, Esma Bendjama, Zineb Cherak, Meriem Khellaf, Asma Khemri, and Jean-Marc Rolain. 2022. "Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria" Microorganisms 10, no. 5: 975. https://doi.org/10.3390/microorganisms10050975
APA StyleLoucif, L., Chelaghma, W., Bendjama, E., Cherak, Z., Khellaf, M., Khemri, A., & Rolain, J. -M. (2022). Detection of blaOXA-48 and mcr-1 Genes in Escherichia coli Isolates from Pigeon (Columba livia) in Algeria. Microorganisms, 10(5), 975. https://doi.org/10.3390/microorganisms10050975