High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Textile Dyes and Chemicals
2.2. Microorganisms
2.3. Screening for Decolourisation of Textile Dyes by White-Rot Fungi
2.4. Fungal Cell Immobilisation on Different Supports
2.5. Effects of Carbon, Nitrogen, pH and Agitation Speed on Textile Dye Decolourisation by Immobilisation of T. hirsuta PW17-41
2.6. Adsorption of Textile Dyes by Dead and Living Biomass on Support
2.7. Effect of the Initial Textile Dye Concentrations on Decolourisation by Immobilisation of T. hirsuta PW17-41
2.8. Time Course Study of the Relationship between Textile Dye Decolourisation and Enzyme Activities
2.9. Repeated Batch Experiments
2.10. Laccase, MnP and LiP Production by T. hirsuta PW17-41
2.11. Total Protein Determination, MnP Purification, Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Native-PAGE Analysis
2.12. UV–Visible and Fourier Transform Infrared Spectroscopy (FTIR) Analysis for Biodegradation of Textile Dyes by T. hirsuta PW17-41
2.13. Statistical Analysis
3. Results and Discussion
3.1. Screening for Decolourisation of Textile Dyes by White-Rot Fungi
3.2. Fungal Cell Immobilisation on Different Supports
3.3. Effects of Carbon, Nitrogen, pH and Agitation Speed on Textile Dye Decolourisation by Immobilisation of T. hirsuta PW17-41
3.3.1. Effect of Carbon Source
3.3.2. Effect of Nitrogen Source
3.3.3. Effect of pH
3.3.4. Effects of Agitation Speed
3.4. Effects of the Initial Textile Dye Concentrations on Decolourisation by Immobilised T. hirsuta PW17-41
3.5. Adsorption Capacity of Immobilised T. hirsuta PW17-41
3.6. Time Course Study of the Relationship between Textile Dye Decolourisation and Enzyme Activities
3.7. Manganese Peroxidase Production by Trametes hirsuta PW17-41
3.8. Repeated Batcingh of Textile Dye Decolourisation by Reusing the Immobilised T. hirsuta PW17-41
3.9. UV–Visible and Fourier Transform Infrared Spectroscopy (FTIR) Analysis for Biodegradation of Textile Dyes by T. hirsuta PW17-41
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syafiuddin, A.; Fulazzaky, M.A. Decolorization kinetics and mass transfer mechanisms of Remazol Brilliant Blue R dye mediated by different fungi. Biotechnol. Rep. 2021, 29, e00573. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Asgher, M.; Iqbal, M.; Hu, H.; Zhang, X. Chitosan beads immobilized manganese peroxidase catalytic potential for detoxification and decolorization of textile effluent. Int. J. Biol. Macromol. 2016, 89, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Banerjee, A.; Halder, U.; Biswas, R.; Bandopadhyay, R. Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conserv. Sci. Eng. 2017, 2, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, R.; Pai, S.; Murugesan, G.; Pandey, S.; Bhole, R.; Gonsalves, D.; Varadavenkatesan, D.; Vinayagam, R. Green synthesis of magnetic α–Fe2O3 nanospheres using Bridelia retusa leaf extract for Fenton-like degradation of crystal violet dye. Appl. Nanosci. 2021, 11, 2227–2234. [Google Scholar] [CrossRef]
- Supaka, N.; Juntongjin, K.; Damronglerd, S.; Delia, M.-L.; Strehaiano, P. Microbial decolourization of reactive azo dyes in a sequential anaerobic-aerobic system. Chem. Eng. J. 2004, 99, 169–176. [Google Scholar] [CrossRef]
- Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef]
- Thamvithayakorn, P.; Phosri, C.; Pisutpaisal, N.; Krajangsang, S.; Whalley, A.J.S.; Suwannasai, N. Utilization of oil palm decanter cake for valuable laccase and manganese peroxidase enzyme production from a novel white-rot fungus, Pseudolagarobasidium sp. PP17-33. 3 Biotech 2019, 9, 417. [Google Scholar] [CrossRef]
- Christopher, J.; Owen, P.W.; Ajay, S. Biodegradation of dimethylphthalate with high removal rates in a packed-bed reactor. World J. Microbiol. Biotechnol. 2002, 18, 7–10. [Google Scholar]
- Rodríguez-Couto, S. Dye removal by immobilised fungi. Biotechnol. Adv. 2009, 27, 227–235. [Google Scholar] [CrossRef]
- Diorio, L.A.; Salvatierra Fréchou, D.M.; Levin, L.N. Removal of dyes by immobilization of Trametes versicolor in a solid-state micro-fermentation system. Rev. Argent. Microbiol. 2021, 53, 3–10. [Google Scholar] [CrossRef]
- Domínguez, A.; Couto, S.R.; Sanromán, M.A. Dye decolorization by Trametes hirsuta immobilized into alginate beads. World J. Microbiol. Biotechnol. 2005, 21, 405–409. [Google Scholar] [CrossRef]
- Husain, S. Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review. Rev. Environ. Sci. Biotechnol. 2010, 9, 117–140. [Google Scholar] [CrossRef]
- Amaral, P.F.F.; Fernandes, D.L.A.; Tavares, A.P.M.; Xavier, A.B.M.R.; Cammarota, M.C.; Coutinho, J.A.P.; Coelho, M.A.Z. Decolorization of dyes from textile wastewater by Trametes versicolor. Environ. Technol. 2004, 25, 1313–1320. [Google Scholar] [CrossRef]
- Suwanboriboon, J.; Meesiri, W.; Wongkokua, W. An application of spectrophotometer for ADMI color measurement. IOP Conf. Ser. J. Phys. 2018, 1144, 012064. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Chang, J.S.; Govindwar, S.P. Decolorization and biodegradation of reactive dyes and dye wastewater by a developed bacterial consortium. Biodegradation 2010, 21, 999–1015. [Google Scholar] [CrossRef] [PubMed]
- Maniyam, M.N.; Ibrahim, A.L.; Cass, I.A. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC0016. Environ. Technol. 2018, 41, 71–85. [Google Scholar] [CrossRef]
- Linko, S. Production of lignin peroxidase by immobilized Phanerochaete chrysosporium. Master’s Thesis, Helsinki University of Technology, Espoo, Finland, 1991. [Google Scholar]
- Erkurt, H.A.; Ozyurt, M.; Ozer, A. Adsorption by active and inactive Aspergillus oryzae: Batch studies. Adsorpt. Sci. Technol. 2012, 30, 317–330. [Google Scholar] [CrossRef] [Green Version]
- Machado, K.M.G.; Matheus, D.R. Biodegradation of remazol brilliant blue R by ligninolytic enzymatic complex produced by Pleurotus ostreatus. Braz. J. Microbiol. 2006, 37, 468–473. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, F.; Pizzul, L.; Castillo, M.P.; Rubilar, O.; Lienqueo, M.E.; Tortella, G.; Diez, M.C. A practical culture technique for enhanced production of manganese peroxidase by Anthracophyllum discolor Sp4. Braz. Arch. Biol. Technol. 2011, 54, 1175–1186. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.L.C.; Souza, V.B.; Santos, V.S.; Kamida, H.M.; Vasconcellos-Neto, J.R.T.; Goes-Neto, A.; Koblitz, M.G.B. Production of manganese peroxidase by Trametes villosa on inexpensive substrate and its application in the removal of lignin from agricultural wastes. Adv. Biosci. Biotechnol. 2014, 5, 1067–1077. [Google Scholar] [CrossRef] [Green Version]
- Tien, M.; Kirk, T.K. Lignin peroxidase of Phanerochaete chrysosporium. Biomass Part B Lignin Pectin Chitin 1988, 161, 238–249. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Ayed, L.; Mahdhi, A.; Cheref, A.; Bakhrouf, A. Decolorization and degradation of azo dye Methyl Red by an isolated Sphingomonas paucimobilis: Biotoxicity and metabolites characterization. Desalination 2011, 274, 272–277. [Google Scholar] [CrossRef]
- Gupta, V.K.; Khamparia, S.; Tyagi, I.; Jaspal, D.; Malviya, A. Decolorization of mixture of dyes: A critical review. Glob. J. Environ. Sci. Manag. 2015, 1, 71–94. [Google Scholar]
- Abadulla, E.; Tzanov, T.; Costa, S.; Robra, K.H.; Cavaco-Paulo, A.; Gübitz, G.M. Decolorization and detoxification of textile dyes with a laccase from Trametes hirsuta. Appl. Environ. Microbiol. 2000, 66, 3357–3362. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Couto, S.; Sanromán, M.A.; Hofer, D.; Gübitz, G.M. Stainless steel sponge: A novel carrier for the immobilisation of the white-rot fungus Trametes hirsuta for decolorization of textile dyes. Bioresour. Technol. 2004, 95, 67–72. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S.; Rosales, E.; Sanromán, M.A. Decolourization of synthetic dyes by Trametes hirsuta in expanded-bed reactors. Chemosphere 2006, 62, 1558–1563. [Google Scholar] [CrossRef]
- Ting-ting, Y.E.; Jian-fen, Z.; Hong, C. Isolation and identification of a Trametes sanguinea and its laccase production conditions and decolorization research. Sci. Technol. Food Ind. 2020, 41, 104–108. [Google Scholar]
- Lu, L.; Zhao, M.; Zhang, B.B.; Yu, S.Y.; Bian, X.J.; Wang, W.; Yan, W. Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl. Microbiol. Biotechnol. 2007, 74, 1232–1239. [Google Scholar] [CrossRef]
- Wang, Z.X.; Cai, Y.J.; Liao, X.R.; Tao, G.J.; Li, Y.Y.; Zhang, D.B. Purification and characterization of two thermostable laccases with high cold adapted characteristics from Pycnoporus sp. SYBC-L1. Process Biochem. 2010, 45, 1720–1729. [Google Scholar] [CrossRef]
- Ramirez-Cavazos, L.I.; Junghanns, C.; Ornelas-Soto, N.; Cardenas-Chavez, D.L.; Hernandez-Luna, C.; Demarche, P.; Enaud, E.; Garcia-Morales, R.; Agathos, N.; Parra, R. Purification and characterization of two thermostable laccases from Pycnoporus sanguineus and potential; role in degradation of endocrine disrupting chemicals. J. Mol. Catal. B Enzym. 2014, 108, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Thakur, S.; Gupte, A. Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes. Ann. Microbiol. 2015, 65, 185–196. [Google Scholar] [CrossRef]
- Przystás, W.; Zablocka-Godlewska, E.; Grabinska-Sota, E. Efficiency of decolorization of different dyes using fungal biomass immobilization on different solid supports. Braz. J. Microbiol. 2018, 49, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Maryani, Y.; Rochmat, A.; Khastini, R.O.; Kurniawan, T.; Saraswati, I. Identification of macro elements (sucrose, glucose and fructose) and micro elements (metal minerals) in the products of palm sugar, coconut sugar and sugar cane. Adv. Biol. Sci. Res. 2019, 9, 271–274. [Google Scholar]
- Nilsson, I.; Möller, A.; Mattiasson, B.; Rubindamayugi, M.S.T.; Welander, U. Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzym. Microb. Technol. 2006, 38, 94–100. [Google Scholar] [CrossRef]
- Asgher, M.; Azim, N.; Bhatti, H.N. Decolorization of practical textile industry effluents by white rot fungus Coriolus versicolor IBL-04. Biochem. Eng. J. 2009, 47, 61–65. [Google Scholar] [CrossRef]
- Mikiashvili, N.; Elisashvili, V.; Wasser, S.; Nevo, E. Carbon and nitrogen sources influence the ligninolytic enzyme activity of Trametes versicolor. Biotechnol. Lett. 2005, 27, 955–959. [Google Scholar] [CrossRef]
- Asgher, M.; Iqbal, H.M.N.; Asad, M.J. Kinetic characterization of purified laccase produced from Trametes versicolor IBL-04 in solid state bio-processing of corn cobs. BioResources 2012, 7, 1171–1188. [Google Scholar]
- Hatvani, N.; Mecs, I. Effect of the nutrient composition on dye decolorisation and extracellular enzyme production by Lentinus edodes on solid medium. Enzym. Microb. Technol. 2002, 30, 381–386. [Google Scholar] [CrossRef]
- Moldes, D.; Lorenzo, M.; Sanromán, M.A. Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes. Biotechnol. Lett. 2004, 26, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wu, J.; Liou, D.; Hwang, S. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 2003, 101, 57–68. [Google Scholar] [CrossRef]
- Young, L.; Yu, J. Ligninase-catalysed decolorization of synthetic dyes. Water Resour. 1997, 31, 1187–1193. [Google Scholar] [CrossRef]
- Pearce, C.I.; Lloyd, J.R.; Guthrie, J.T. The removal of colour from textile wastewater using whole bacterial cells: A review. Dye. Pigment. 2003, 58, 179–196. [Google Scholar] [CrossRef]
- Khan, R.; Bhawana, P.; Fulekar, M.H. Microbial decolorization and degradation of synthetic dyes: A review. Rev. Environ. Sci. Bio/Technol. 2012, 12, 75–97. [Google Scholar] [CrossRef]
- Aksu, Z.; Dönmez, G. A comparative study on the biosorption characteristics of some yeasts for Remazol Blue reactive dye. Chemosphere 2003, 50, 1075–1083. [Google Scholar] [CrossRef]
- Chen, S.H.; Ting, A.S.Y. Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J. Environ. Manag. 2015, 150, 274–280. [Google Scholar] [CrossRef]
- Khan, R.; Fulekar, M.H. Mineralization of a sulfonated textile dye reactive red 31 from simulated wastewater using pellets of Aspergillus bombycis. Bioresour. Bioprocess. 2017, 4, 23. [Google Scholar] [CrossRef] [Green Version]
- Crini, G. Non-conventional low-cost adsorbents for dye removal: A review. Bioresour. Technol. 2006, 97, 1061–1085. [Google Scholar] [CrossRef]
- Przystás, W.; Zablocka-Godlewska, E.; Grabinska-Sota, E. Efficiency of fungal decolorization of a mixture of dyes belonging to different classes. Braz. J. Microbiol. 2015, 46, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Vasina, D.V.; Pavlov, A.R.; Koroleva, O.V. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate. BMC Microbiol. 2016, 16, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.; Yang, D.; Li, R.; Wang, T.; Zhu, Y. Textile dye biodecolourisation by manganese peroxidase: A review. Molecules 2021, 26, 4403. [Google Scholar] [CrossRef] [PubMed]
- Rekik, H.; Jaouadi, N.Z.; Bouacem, K.; Zenati, B.; Kourdali, S.; Badis, A.; Annane, R.; Bouanane-Darenfed, A.; Bejar, S.; Jaouadi, B. Physical and enzymatic properties of a new manganese peroxidase from the white-rot fungus Trametes pubescens strain i8 for lignin biodegradation and textile-dyes biodecolorization. Int. J. Biol. Macromol. 2019, 125, 514–525. [Google Scholar] [CrossRef]
- Sen, S.-K.; Raut, S.; Bandyopadhyaya, P.; Raut, S. Fungal decolourization and degradation of azo dyes: A review. Fungal Biol. Rev. 2016, 30, 112–133. [Google Scholar] [CrossRef]
- Senthivelan, T.; Kanagaraj, J.; Panda, R.C. Recent trends in fungal laccase for various industrial applications: An eco-friendly approach—A review. Biotechnol. Bioprocess Eng. 2016, 21, 19–38. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S.; Sanromán, M.A. Coconut flesh: A novel raw material for laccase production by Trametes hirsuta under solid-state conditions: Application to Lissamine Green B decolourization. J. Food Eng. 2005, 71, 208–213. [Google Scholar] [CrossRef]
- Karimi, A.; Vahabzadeh, F.; Bonakdarpour, B. Use of Phanerochaete chrysosporium immobilized on Kissiris for synthetic dye decolourization: Involvement of manganese peroxidase. World J. Microbiol. Biotechnol. 2006, 22, 1251–1257. [Google Scholar] [CrossRef]
- Nuryana, I.; Ilmiah, Z.; Andriani, A.; Yopi. Laccase and manganese peroxidase (MnP) activities in the white-rot fungus Trametes hirsuta in response to aromatic compounds. Ann. Bogor. 2019, 23, 66–71. [Google Scholar] [CrossRef]
- Jovic, J.; Buntić, A.; Radovanović, N.; Petrović, B.; Mojović, L. Lignin-degrading abilities of novel autochthonous fungal isolates Trametes hirsuta F13 and Stereum gausapatum F28. Food Technol. Biotechnol. 2018, 56, 354–365. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Zhang, X.; Geng, A. Purification and characterization of a novel manganese peroxidase from white-rot fungus Cerrena unicolor BBP6 and its application in dye decolorization and denim bleaching. Process Biochem. 2018, 66, 222–229. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Z.; Luo, Y.; Yang, E.; Xu, H.; Chagan, I.; Yan, J. The manganese peroxidase gene family of Trametes trogii: Gene identification and expression patterns using various metal ions under different culture conditions. Microorganisms 2021, 9, 2595. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, S.; He, F.; Qin, X.; Zhang, X.; Yang, Y. Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2016, 320, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, M.; Glenn, J.K.; Morgan, M.A.; Gold, M.H. Separation and characterization of two extracellular HZOZ-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett. 1984, 169, 247–250. [Google Scholar] [CrossRef] [Green Version]
- Yesilada, O.; Asma, D.; Cing, S. Decolorization of textile dyes by fungal pellets. Process Biochem. 2003, 38, 933–938. [Google Scholar] [CrossRef]
- Krastanov, A.; Koleva, R.; Alexieva, Z.; Stoilova, I. Decolorization of industrial dyes by immobilized mycelia of Trametes versicolor. Biotechnol. Biotechnol. Equip. 2013, 27, 4263–4268. [Google Scholar] [CrossRef]
- Hossen, M.Z.; Hussain, M.E.; Hakim, A.; Islam, K.; Uddin, M.N.; Azad, A.K. Biodegradation of reactive textile dye Novacron Super Black G by free cells of newly isolated Alcaligenes faecalis AZ26 and Bacillus spp. obtained from textile effluents. Heliyon 2019, 5, e02068. [Google Scholar] [CrossRef] [Green Version]
- Sen, S.K.; Patra, P.; Das, C.R.; Raut, S.; Raut, S. Pilot-scale evaluation of biodecolorization and biodegradation of reactive textile wastewater: An impact on its use in irrigation of wheat crop. Water Resour. Ind. 2019, 21, 100106. [Google Scholar] [CrossRef]
Characters | Wastewater of Textile Dyes | Industrial Effluent Standard | Characters | Wastewater of Textile Dyes | Industrial Effluent Standard |
---|---|---|---|---|---|
ADMI | 60,100 | <300 | Nickel (mg L−1) | 0.005 | <1.00 |
pH | 10 | 5.5–9 | Barium (mg L−1) | 0.048 | <1.00 |
Novacron Ruby S3B (%) | 0.52 | - | Chromium (mg L−1) | <0.005 | <0.25 |
Novacron Navy EC-R (%) | 1.20 | - | Cadmium (mg L−1) | <0.005 | <0.03 |
Novacron Super Black G (%) | 0.96 | - | Lead (mg L−1) | <0.005 | <0.20 |
NaCl (mg L−1) | 70,000 | - | Arsenic (mg L−1) | <0.005 | <0.25 |
Na2CO3 (g L−1) | 5 | - | Mercury (mg L−1) | <0.001 | <0.005 |
50% NaOH (mL L−1) | 0.85 | - | Selenium (mg L−1) | <0.005 | <0.02 |
Zinc (mg L−1) | 0.052 | <5.00 | BOD | 29 | <20 |
Copper (mg L−1) | 0.091 | <2.00 | COD | 199 | <120 |
Manganese (mg L−1) | 0.017 | <500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thampraphaphon, B.; Phosri, C.; Pisutpaisal, N.; Thamvithayakorn, P.; Chotelersak, K.; Sarp, S.; Suwannasai, N. High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis. Microorganisms 2022, 10, 992. https://doi.org/10.3390/microorganisms10050992
Thampraphaphon B, Phosri C, Pisutpaisal N, Thamvithayakorn P, Chotelersak K, Sarp S, Suwannasai N. High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis. Microorganisms. 2022; 10(5):992. https://doi.org/10.3390/microorganisms10050992
Chicago/Turabian StyleThampraphaphon, Bancha, Cherdchai Phosri, Nipon Pisutpaisal, Pisit Thamvithayakorn, Kruawan Chotelersak, Sarper Sarp, and Nuttika Suwannasai. 2022. "High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis" Microorganisms 10, no. 5: 992. https://doi.org/10.3390/microorganisms10050992
APA StyleThampraphaphon, B., Phosri, C., Pisutpaisal, N., Thamvithayakorn, P., Chotelersak, K., Sarp, S., & Suwannasai, N. (2022). High Potential Decolourisation of Textile Dyes from Wastewater by Manganese Peroxidase Production of Newly Immobilised Trametes hirsuta PW17-41 and FTIR Analysis. Microorganisms, 10(5), 992. https://doi.org/10.3390/microorganisms10050992