Deep Subsurface Hypersaline Environment as a Source of Novel Species of Halophilic Sulfur-Oxidizing Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site Characterization and Primary Isolation of Bacteria
2.2. Cultivation Analyses
2.3. DNA Isolation and Restriction Analysis
2.4. 16S rRNA Gene Sequencing and Bioinformatic Analyses
3. Results and Discussion
3.1. Spring Chemistry
3.2. Isolation of Halophilic Bacterial Strains
3.3. Cultivation Analyses
3.4. Molecular Identification of Halophilic Sulfur-Oxidizing Bacterial Strains
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez-Villegas, P.; Vigara, J.; León, R. Characterization of the microbial population inhabiting a solar saltern pond of the Odiel Marshlands (SW Spain). Mar. Drugs. 2018, 16, 332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorokin, D.Y.; Tourova, T.P.; Lysenko, A.M.; Muyzer, G. Diversity of culturable halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 2006, 152, 3013–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Jiang, H.; Dong, H.; Wu, G.; Hou, W.; Zhao, W.; Sun, Y.; Lai, Z. Abundance and diversity of sulfur-oxidizing bacteria along a salinity gradient in four Qinghai-Tibetan lakes, China. Geomicrobiol. J. 2013, 30, 851–860. [Google Scholar] [CrossRef]
- Oren, A. Bioenergetic aspects of halophilism. Microbiol. Mol. Biol. Rev. 1999, 63, 334–348. [Google Scholar] [CrossRef] [Green Version]
- Tourova, T.P.; Kovaleva, O.L.; Yu, D.; Sorokin, G.M. Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 2010, 156, 2016–2025. [Google Scholar] [CrossRef] [Green Version]
- Yakimov, M.M.; La Cono, V.; Denaro, R.; D’Auria, G.; Decembrini, F.; Timmis, K.N.; Golyshin, P.N.; Giuliano, L. Primary producing prokaryotic communities of brine, interface and seawater above the halocline of deep anoxic lake L’Atalante, Eastern Mediterranean Sea. ISME J. 2007, 1, 743–755. [Google Scholar] [CrossRef] [Green Version]
- Pospiech, A.; Neumann, B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends. Genet. 1995, 11, 217–218. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. Ser. 1999, 6, 95–98. [Google Scholar] [CrossRef]
- Yoon, S.H.; Ha, S.M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Wright, E.S.; Yilmaz, L.S.; Noguera, D.R. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 2012, 78, 717–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Gotelli, N.J.; Colwell, R.K. Estimating Species Richness. Biological Diversity: Frontiers in Measurement and Assessment; Oxford University Press: Oxford, UK, 2011; pp. 39–54. [Google Scholar]
- Conline, M.V.; Jolliffe, L. Mining Heritage and Tourism: A Global Synthesis, 1st ed.; Routledge: Oxfordshire, UK, 2010. [Google Scholar] [CrossRef]
- Kováč, M.; Hudáčková, N.; Halásová, E.; Kováčová, M.; Holcová, K.; Oszczypko-Clowes, M.; Báldi, K.; Less, D.; Nagymarosy, A.; Ruman, A.; et al. The Central Paratethys palaeoceanography: A water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geol. Slovaca 2017, 9, 75–114. [Google Scholar]
- Kováč, M.; Márton, E.; Oszczypko, N.; Vojtko, R.; Hók, J.; Králiková, S.; Plašienka, D.; Kľučiar, T.; Hudáčková, N.; Oszczypko-Clowes, M. Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob. Planet Change 2017, 155, 133–154. [Google Scholar] [CrossRef]
- Kováč, M. Geodynamický, Paleogeografický a Štruktúrny Vývoj Karpatsko-Panónskeho Regiónu v Miocéne: Nový Pohľad na Neogénne Panvy Slovenska; VEDA: Bratislava, Slovenia, 2000. [Google Scholar]
- Karoli, S.; Janočko, S.; Kotuľák, P.; Verdon, P. Sedimentology of Karpatian evaporites in the East-Slovakian Neogene basin (Slovakia). Slovak Geol. Mag. 1997, 3, 201–211. [Google Scholar]
- Pikna, J.; Marcin, M.; Škvareková, E.; Sidorová, M. Možnosti uskladňovania toxických a rádioaktívnych odpadov v soľných ložiskách na Slovensku pomocou kombinácie vrtov a soľných kavern. Acta Montan. Slovaca. 2004, 9, 236–239. [Google Scholar]
- Maturrano, L.; Santos, F.; Rosselló-Mora, R.; Antón, J. Microbial diversity in Maras Salterns, a hypersaline environment in the Peruvian Andes. Appl. Environ. Microbiol. 2006, 72, 3887–3895. [Google Scholar] [CrossRef] [Green Version]
- Antony, C.P.; Kumaresan, D.; Hunger, S.; Drake, H.L.; Murrell, J.C.; Shouche, J.S. Microbiology of Lonar Lake and other soda lakes. ISME J. 2013, 7, 468–476. [Google Scholar] [CrossRef]
- Ventosa, A.; Nieto, J.J.; Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 1998, 62, 504–544. [Google Scholar] [CrossRef] [Green Version]
- Boden, R. Reclassification of Halothiobacillus hydrothermalis and Halothiobacillus halophilus to Guyparkeria gen. nov. in the Thioalkalibacteraceae fam. nov., with emended descriptions of the genus Halothiobacillus and family Halothiobacillaceae. Int. J. Syst. Evol. Microbiol. 2017, 67, 3919–3928. [Google Scholar] [CrossRef]
- Boden, R.; Scott, K.M.; Williams, J.; Russel, S.; Antonen, K.; Rae, A.W.; Hutt, L.P. An evaluation of Thiomicrospira, Hydrogenovibrio and Thioalkalimicrobium: Reclassification of four species of Thiomicrospira to each Thiomicrorhabdus gen. nov. and Hydrogenovibrio, and reclassification of all four species of Thioalkalimicrobium to Thiomicrospira. Int. J. Syst. Evol. Microbiol. 2017, 67, 1140–1151. [Google Scholar] [PubMed]
- Chen, Y.; Li, H.; Li, Q.; Chen, W.; Cui, W. Phylogenetic diversity of culturable bacteria in the ancient salt deposits of the Yipinglang Salt Mine, P. R. China. Wei Sheng Wu Xue Bao 2007, 47, 571–577. [Google Scholar] [PubMed]
- Cycil, L.M.; DasSarma, S.; Pecher, W.; McDonald, R.; AbdulSalam, M.; Hasan, F. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. 2020, 11, 1567. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Plugge, C.M.; Klok, J.B.M.; Muyzer, G. Comparative analysis of microbial communities from different full-scale haloalkaline biodesulfurization systems. Appl Microbiol. Biotechnol. 2022, 106, 1759–1776. [Google Scholar] [CrossRef]
- Choi, B.R.; Pham, V.H.; Park, S.J.; Kim, S.J.; Roh, D.H.; Rhee, S.K. Characterization of facultative sulfur-oxidizing Marinobacter sp. BR13 isolated from marine sediment of Yellow Sea, Korea. J. Korean Soc. Appl. Biol. Chem 2009, 52, 309–314. [Google Scholar] [CrossRef]
- Zhuang, D.C.; Chen, Y.G.; Zhang, Y.Q.; Tang, S.K.; Wu, X.L.; Tan, Z.C.; Li, W.J.; Cui, X.L. Marinobacter zhanjiangensis sp. nov., a marine bacterium isolated from sea water of a tidal flat of the South China Sea. Antonie van Leeuwenhoek 2009, 96, 295–301. [Google Scholar] [CrossRef]
- Liebensteiner, M.G.; Tsesmetzis, N.; Stams, A.J.M.; Lomans, B.P. Microbial redox processes in deep subsurface environments and the potential application of (per)chlorate in oil reservoirs. Front. Microbiol. 2014, 5, 428. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Su, X.; Wu, D.; Zhang, R.; Wang, R.; Zhao, Z.; Xamxidin, M.; Sun, C.; Wu, M. Marinobacter caseinilyticus sp. nov., isolated from saline soil. Curr. Microbiol. 2021, 78, 1045–1052. [Google Scholar] [CrossRef]
- Lian, F.B.; Chen, X.Y.; Jiang, S.; Li, G.Y.; Du, Z.J. Marinobacter orientalis sp. nov., a thiosulfate-oxidizing bacterium isolated from a marine solar saltern. Antonie van Leeuwenhoek 2021, 114, 765–775. [Google Scholar] [CrossRef]
- Takai, K. Limits of life and the biosphere: Lessons from the detection of microorganisms in the deep sea and deep subsurface of the Earth. In Origins and Evolution of Life: An Astrobiological Perspective Cambridge Astrobiology; Cambridge University Press: Cambridge, UK, 2016; pp. 469–486. [Google Scholar] [CrossRef]
- Lin, G.; Lu, J.; Luo, K.; Fang, Y.; Liu, J.; Ji, X.; Ge, S.; Liu, J.; Su, M. Characterization of bacterial and archaeal community structure in deep subsurface sediments in the Shenhu area, northern South China Sea. Mar. Pet. Geol. 2022, 136, 105468. [Google Scholar] [CrossRef]
- Badalamenti, J.P.; Summers, Z.M.; Chan, C.H.; Gralnick, J.A.; Bond, D.R. Isolation and genomic characterization of ‘Desulfuromonas soudanensis WTL’, a metal- and electrode-respiring bacterium from anoxic deep subsurface brine. Front. Microbiol. 2016, 7, 913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macey, M.C.; Fox-Powell, M.; Ramkissoon, N.K.; Stephens, B.P.; Barton, T.; Schwenzer, S.P.; Pearson, V.K.; Cousins, C.R.; Olsson-Francis, K. The identification of sulfide oxidation as a potential metabolism driving primary production on late Noachian Mars. Sci. Rep. 2020, 10, 10941. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.H.; Wang, C.S.; Xu, X.W.; Oren, A.; Zhu, X.F.; Wu, M. Halomonas salifodinae sp. nov., a halophilic bacterium isolated from a salt mine in China. Int. J. Syst. Evol. Microbiol. 2008, 58, 2855–2858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, W.; Wang, Z.G.; Wang, Y.X.; Schneegurt, M.A.; Li, Z.Y.; Lai, Y.H.; Zhang, S.Y.; Wen, M.L.; Cui, X.L. Comparative molecular analysis of the prokaryotic diversity of two salt mine soils in southwest China. J. Basic Microbiol. 2013, 53, 942–952. [Google Scholar] [CrossRef]
- Wang, Y.X.; Xiao, W.; Dong, M.H.; Zhao, Q.; Li, Z.Y.; Lai, Y.H.; Cu, X.L. Halomonas qiaohouensis sp. nov., isolated from salt mine soil in southwest China. Antonie van Leeuwenhoek 2014, 160, 253–260. [Google Scholar] [CrossRef]
- Fu, C.Q.; Zhao, Q.; Li, Z.Y.; Wang, Y.X.; Zhang, S.Y.; Lai, Y.H.; Xiao, W.; Ciu, X.L. A novel Halomonas ventosae-specific virulent halovirus isolated from the Qiaohou salt mine in Yunnan, Southwest China. Extremophiles 2016, 20, 101–110. [Google Scholar] [CrossRef]
- Dong, Y.; Kumar, C.G.; Chia, N.; Kim, P.J.; Miller, P.A.; Price, N.D.; Cann, I.K.O.; Flynn, T.M.; Sanford, R.A.; Krapac, I.G.; et al. Halomonas sulfidaeris-dominated microbial community inhabits a 1.8 km-deep subsurface Cambrian Sandstone reservoir. Environ. Microbiol. 2013, 16, 1695–1708. [Google Scholar] [CrossRef]
- Petri, R.; Podgorsek, L.; Imhoff, J.F. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiol. Lett. 2001, 197, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Lyu, J.; Shao, Z. Sulfur metabolism of Hydrogenovibrio thermophilus Strain S5 and its adaptations to deep-sea hydrothermal vent environment. Front. Microbiol. 2017, 8, 2513. [Google Scholar] [CrossRef]
- Gonnella, G.; Adam, N.; Perner, M. Horizontal acquisition of hydrogen conversion ability and other habitat adaptations in the Hydrogenovibrio strains SP-41 and XCL-2. BMC Genom. 2019, 20, 339. [Google Scholar] [CrossRef] [Green Version]
- Saas, K.; Perner, M. Characterization of two hydrogen-oxidizing Hydrogenovibrio strains from Kermadec volcanic island arc hydrothermal vents. Front. Mar. Sci. 2020, 7, 295. [Google Scholar] [CrossRef]
- Dobrinski, K.P.; Longo, D.L.; Scott, K.M. The carbon-concentrating mechanism of the hydrothermal vent chemolithoautotrophy Thiomicrospira crunogena. J. Bacteriol. 2005, 187, 5761–5766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ARDRA Group | Number of Strains | Sequenced Strain | GenBank Accession Number | BlastN Best Hit | Similarity (%) | EzTaxon | Similarity (%) | Autotrophic Growth on Thiosulfate Medium with NaCl (%) | Heterotrophic Growth on R2A Medium with NaCl (%) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 20 | 5 | 10 | 20 | ||||||||
I | 7 | 1SP6A2 | ON028648 | Guyparkeria hydrothermalis | 97.63 | Guyparkeria hydrothermalis | 97.71 | + | - | - | - | - |
II | 11 | 1SP7A1 | ON028649 | Guyparkeria halophila | 99.04 | Guyparkeria halophila | 99.12 | + | - | - | - | - |
III | 3 | 3SP14A1 | ON028651 | Marinobacter aquaticus | 99.49 | Marinobacter aquaticus | 99.49 | + | + | + | + | - |
IV | 11 | 3SP14B1 | ON028652 | Halomonas ventosae | 98.47 | Halomonas sediminicola | 98.69 | + | + | + | + | - |
V | 3 | 3SP14C1 | ON028653 | Hydrogenovibrio crunogenus | 97.55 | Hydrogenovibrio crunogenus | 99.27 | + | - | - | - | - |
VI | 6 | 3SP17A1 | ON028654 | Hydrogenovibrio crunogenus | 98.19 | Hydrogenovibrio crunogenus | 99.93 | + | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosalova, L.; Piknova, M.; Bonova, K.; Pristas, P. Deep Subsurface Hypersaline Environment as a Source of Novel Species of Halophilic Sulfur-Oxidizing Bacteria. Microorganisms 2022, 10, 995. https://doi.org/10.3390/microorganisms10050995
Nosalova L, Piknova M, Bonova K, Pristas P. Deep Subsurface Hypersaline Environment as a Source of Novel Species of Halophilic Sulfur-Oxidizing Bacteria. Microorganisms. 2022; 10(5):995. https://doi.org/10.3390/microorganisms10050995
Chicago/Turabian StyleNosalova, Lea, Maria Piknova, Katarina Bonova, and Peter Pristas. 2022. "Deep Subsurface Hypersaline Environment as a Source of Novel Species of Halophilic Sulfur-Oxidizing Bacteria" Microorganisms 10, no. 5: 995. https://doi.org/10.3390/microorganisms10050995
APA StyleNosalova, L., Piknova, M., Bonova, K., & Pristas, P. (2022). Deep Subsurface Hypersaline Environment as a Source of Novel Species of Halophilic Sulfur-Oxidizing Bacteria. Microorganisms, 10(5), 995. https://doi.org/10.3390/microorganisms10050995