Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses
Abstract
:1. Introduction
1.1. Acanthamoeba Cultivation
1.2. Nanoparticles
1.3. Contact Lens Solutions
1.4. Cytotoxicity
- EV—Experimental value
- ECSC—Effector cells spontaneous control
- TCSC—Target cells spontaneous control
- TCMC—Target cell maximum control
1.5. Adhesion to Contact Lenses
1.6. Amoebae Adhesion—Control
1.7. Amoebae Adhesion—Contact Lens Solutions Only
1.8. Amoebae Adhesion—Contact Lens Solutions + AgTANPs
2. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Somani, S.N.; Ronquillo, Y.; Moshirfar, M. Acanthamoeba keratitis. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2020. [Google Scholar]
- Szentmary, N.; Daas, L.; Shi, L.; Laurik, K.L.; Lepper, S.; Milioti, G.; Seitz, B. Acanthamoeba keratitis—Clinical signs, differential diagnosis and treatment. J. Curr. Ophthalmol. 2018, 31, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Martin-Navarro, C.M.; Lopez-Arencibia, A.; Arnalich-Montiel, F.; Pinero, J.E.; Valladares, B. Acanthamoeba keratitis: An emerging disease gathering importance worldwide? Trends Parasitol. 2013, 29, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.T.-Y.; Willcox, M.; Zhu, H.; Stapleton, F. Contact lens hygiene compliance and lens case contamination: A review. Cont. Lens Anterior Eye 2015, 38, 307–316. [Google Scholar] [CrossRef]
- Radford, C.F.; Minassian, D.C.; Dart, J.K. Acanthamoeba keratitis in England and Wales: Incidence, outcome, and risk factors. Br. J. Ophthalmol. 2002, 86, 536–542. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, Z.; Qu, J.; Zhang, Y.; Sun, X. Acanthamoeba keratitis related to contact lens use in a tertiary hospital in China. BMC Ophthalmol. 2019, 19, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.M.; Lee, J.E.; Lee, D.I.; Yu, H.S. Adhesion of Acanthamoeba on Cosmetic Contact Lenses. J. Korean Med. Sci. 2018, 33, e26. [Google Scholar] [CrossRef]
- Bunsuwansakul, C.; Mahboob, T.; Hounkong, K.; Laohaprapanon, S.; Chitapornpan, S.; Jawjit, S.; Yasiri, A.; Barusrux, S.; Bunluepuech, K.; Sawangjaroen, N.; et al. Acanthamoeba in Southeast Asia—Overview and Challenges. Korean J. Parasitol. 2019, 57, 341–357. [Google Scholar] [CrossRef] [Green Version]
- Niederkorn, J.Y. The biology of Acanthamoeba keratitis. Exp. Eye Res. 2021, 202, 108365. [Google Scholar] [CrossRef]
- Maycock, N.J.; Jayaswal, R. Update on Acanthamoeba keratitis: Diagnosis, Treatment, and Outcomes. Cornea 2016, 35, 713–720. [Google Scholar] [CrossRef]
- Panjwani, N. Pathogenesis of Acanthamoeba keratitis. Ocul. Surf. 2010, 8, 70–79. [Google Scholar] [CrossRef] [Green Version]
- Kot, K.; Lanocha-Arendarczyk, N.A.; Kosik-Bogacka, D.I. Amoebas from the genus Acanthamoeba and their pathogenic properties. Ann. Parasitol. 2018, 64, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.; Di Zazzo, A.; Varacalli, G.; Coassin, M. Acanthamoeba keratitis: Perspectives for Patients. Curr. Eye Res. 2021, 46, 771–776. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Lloyd, D. Recent advances in the treatment of Acanthamoeba keratitis. Clin. Infect. Dis. 2002, 35, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Clarke, B.; Sinha, A.; Parmar, D.N.; Sykakis, E. Advances in the diagnosis and treatment of Acanthamoeba keratitis. J. Ophthalmol. 2012, 2012, 484892. [Google Scholar] [CrossRef] [Green Version]
- Kokot, J.; Dobrowolski, D.; Lyssek-Boron, A.; Milka, M.; Smedowski, A.; Wojcik, L.; Wowra, B.; Wyligala, E. New approach to diagnosis and treatment of Acanthamoeba keratitis-systematic review of literature. Klin. Oczna. 2012, 114, 311–316. [Google Scholar]
- Padzik, M.; Hendiger, E.; Szaflik, J.; Chomicz, L. Amoebae of the genus Acanthamoeba—Pathological agents in humans. Postep. Mikrobiol. 2017, 56, 429–439. [Google Scholar] [CrossRef]
- Siddiqui, R.; Khan, N.A. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 2012, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- de Lacerda, A.G.; Lira, M. Acanthamoeba keratitis: A review of biology, pathophysiology and epidemiology. Ophthalmic Physiol. Opt. 2021, 41, 116–135. [Google Scholar] [CrossRef]
- Hussain, R.H.; Afiqah, W.N.; Ghani, M.K.; Khan, N.A.; Siddiqui, R.; Anuar, T.S. In vitro effects of multi-purpose contact lens disinfecting solutions towards survivability of Acanthamoeba genotype T4 in Malaysia. Saudi J. Biol. Sci. 2021, 28, 2352–2359. [Google Scholar] [CrossRef]
- Moon, E.K.; Park, H.R.; Quan, F.S.; Kong, H.H. Efficacy of Korean Multipurpose Contact Lens Disinfecting Solutions against Acanthamoeba castellanii. Korean J. Parasitol. 2016, 54, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Lakhundi, S.; Khan, N.A.; Siddiqui, R. Inefficacy of marketed contact lens disinfection solutions against keratitis-causing Acanthamoeba castellanii belonging to the T4 genotype. Exp. Parasitol. 2014, 141, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Fears, A.C.; Metzinger, R.C.; Killeen, S.Z.; Reimers, R.S.; Roy, C.J. Comparative in vitro effectiveness of a novel contact lens multipurpose solution on Acanthamoeba castellanii. J. Ophthalmic Inflamm. Infect. 2018, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Morales, J.; Khan, N.A.; Walochnik, J. An update on Acanthamoeba keratitis: Diagnosis, pathogenesis and treatment. Parasite 2015, 22, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padzik, M.; Chomicz, L.; Szaflik, J.P.; Chruscikowska, A.; Perkowski, K.; Szaflik, J.P. In vitro effects of selected contact lens care solutions on Acanthamoeba castellanii strains in Poland. Exp. Parasitol. 2014, 145, S98–S101. [Google Scholar] [CrossRef]
- Hendiger, E.B.; Padzik, M.; Zochowska, A.; Baltaza, W.; Oledzka, G.; Zyskowska, D.; Bluszcz, J.; Jarzynka, S.; Chomicz, L.; Grodzik, M.; et al. Tannic acid-modified silver nanoparticles enhance the anti-Acanthamoeba activity of three multipurpose contact lens solutions without increasing their cytotoxicity. Parasit. Vectors 2020, 13, 624. [Google Scholar] [CrossRef]
- Hendiger, E.B.; Padzik, M.; Sifaoui, I.; Reyes-Batlle, M.; López-Arencibia, A.; Zyskowska, D.; Grodzik, M.; Pietruczuk-Padzik, A.; Hendiger, J.; Olędzka, G.; et al. Silver Nanoparticles Conjugated with Contact Lens Solutions May Reduce the Risk of Acanthamoeba Keratitis. Pathogens 2021, 10, 583. [Google Scholar] [CrossRef]
- Anwar, A.; Soomaroo, A.; Anwar, A.; Siddiqui, R.; Khan, N.A. Metformin-coated silver nanoparticles exhibit anti-acanthamoebic activities against both trophozoite and cyst stages. Exp. Parasitol. 2020, 215, 107915. [Google Scholar] [CrossRef]
- Anwar, A.; Siddiqui, R.; Shah, M.R.; Khan, N.A. Gold Nanoparticle-Conjugated Cinnamic Acid Exhibits Antiacanthamoebic and Antibacterial Properties. Antimicrob. Agents Chemother. 2018, 62, 10. [Google Scholar] [CrossRef] [Green Version]
- Anwar, A.; Siddiqui, R.; Raza Shah, M.; Ahmed Khan, N. Gold Nanoparticles Conjugation Enhances Antiacanthamoebic Properties of Nystatin, Fluconazole and Amphotericin B. J. Microbiol. Biotechnol. 2019, 29, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Sharma, G.; Kalra, S.K.; Tejan, N.; Ghoshal, U. Nanoparticles based therapeutic efficacy against Acanthamoeba: Updates and future prospect. Exp. Parasitol. 2020, 218, 108008. [Google Scholar] [CrossRef]
- Machado, L.F.; Sanfelice, R.A.; Bosqui, L.R.; Assolini, J.P.; Scandorieiro, S.; Navarro, I.T.; Depieri Cataneo, A.H.; Wowk, P.F.; Nakazato, G.; Bordignon, J.; et al. Biogenic silver nanoparticles reduce adherence, infection, and proliferation of Toxoplasma gondii RH strain in HeLa cells without inflammatory mediators induction. Exp. Parasitol. 2020, 211, 107853. [Google Scholar] [CrossRef] [PubMed]
- Said, D.E.; Elsamad, L.M.; Gohar, Y.M. Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents. Parasitol. Res. 2012, 111, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Hendiger, E.B.; Padzik, M.; Sifaoui, I.; Reyes-Batlle, M.; Lopez-Arencibia, A.; Rizo-Liendo, A.; Bethencourt-Estrella, C.J.; Nicolas-Hernandez, D.S.; Chiboub, O.; Rodriguez-Exposito, R.L.; et al. Silver Nanoparticles as a Novel Potential Preventive Agent against Acanthamoeba keratitis. Pathogens 2020, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Anwar, A.; Numan, A.; Siddiqui, R.; Khalid, M.; Khan, N.A. Cobalt nanoparticles as novel nanotherapeutics against Acanthamoeba castellanii. Parasit. Vectors 2019, 12, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Borase, H.P.; Patil, C.D.; Sauter, I.P.; Rott, M.B.; Patil, S.V. Amoebicidal activity of phytosynthesized silver nanoparticles and their in vitro cytotoxicity to human cells. FEMS Microbiol. Lett. 2013, 345, 127–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieniawska, E. Activities of Tannins--From In Vitro Studies to Clinical Trials. Nat. Prod. Commun. 2015, 10, 1877–1884. [Google Scholar] [CrossRef] [Green Version]
- Athar, M.; Khan, W.A.; Mukhtar, H. Effect of dietary tannic acid on epidermal, lung, and forestomach polycyclic aromatic hydrocarbon metabolism and tumorigenicity in Sencar mice. Cancer Res. 1989, 49, 5784–5788. [Google Scholar]
- Scalbert, A.; Monties, B.; Janin, G. Tannins in wood: Comparison of different estimation methods. J. Agric. Food Chem. 1989, 37, 1324–1329. [Google Scholar] [CrossRef]
- Haslam, E. Vegetable tannins—Lessons of a phytochemical lifetime. Phytochemistry 2007, 68, 2713–2721. [Google Scholar] [CrossRef]
- Khan, N.S.; Ahmad, A.; Hadi, S.M. Anti-oxidant, pro-oxidant properties of tannic acid and its binding to DNA. Chem. Biol. Interact. 2000, 125, 177–189. [Google Scholar] [CrossRef]
- Padzik, M.; Hendiger, E.B.; Chomicz, L.; Grodzik, M.; Szmidt, M.; Grobelny, J.; Lorenzo-Morales, J. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol. Res. 2018, 117, 3519–3525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakay, B.B.; Polat, Z.A. In vitro evaluation of adhesion of two acanthamoeba strains to cosmetic contact lenses. Eye Contact Lens 2018, 44, S241–S246. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Gibbon, L.; Mito, T.; Shiraishi, A.; Uno, T.; Ohashi, Y. Efficacy of commercial soft contact lens disinfectant solutions against Acanthamoeba. Jpn. J. Ophthalmol. 2011, 55, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Niyyati, M.; Sasani, R.; Mohebali, M.; Ghazikhansari, M.; Kargar, F.; Hajialilo, E.; Rezaeian, M. Anti-Acanthamoeba effects of silver and gold nanoparticles and contact lenses disinfection solutions. Iran. J. Parasitol. 2018, 13, 180. [Google Scholar]
- Hamouda, R.A.; Hussein, M.H.; Abo-Elmagd, R.A.; Bawazir, S.S. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci. Rep. 2019, 1, 13071. [Google Scholar] [CrossRef]
- Alomari, A.A.; Kloub Fares, K.E.; Moustafa, N.E. Green synthesis of assembled silver nanoparticles in nano capsules of Peganum harmala L. leaf extract. Antibacterial activity and conjugate investigation. Cogent Chem. 2018, 4, 1532374. [Google Scholar] [CrossRef]
- Orlowski, P.; Tomaszewska, E.; Gniadek, M.; Baska, P.; Nowakowska, J.; Sokolowska, J.; Nowak, Z.; Donten, M.; Celichowski, G.; Grobelny, J.; et al. Tannic acid modified silver nanoparticles show antiviral activity in herpes simplex virus type 2 infection. PLoS ONE 2014, 9, e104113. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.fortunebusinessinsights.com/industry-reports/contact-lenses-market-101775 (accessed on 18 May 2022).
Manufacturer | Solution | Ingredients | Minimum Disinfection Time (h) |
---|---|---|---|
Menicon | Solo Care Aqua (SCA) | Polyhexanide (0.0001%), Hydrolock (dexpanthenol, sorbitol), sodium phosphate, tromethamine, poloxamer 407, disodium edetate | 4 |
Alcon | Opti-Free (O-F) | TearGlyde (Tetronic 1304, nonanoyl ethylenediaminetriacetic acid), Polyquad (polyquaternium-1; 0.001%), Aldox (myristamidopropyl dimethylamine; 0.0005%) | 6 |
Bausch + Lomb | ReNu MultiPlus (ReNu) | Hydranate (hydroxyalkylphosphonate; 0.03%), boric acid, edetate disodium, poloxamine (1%), sodium borate, sodium chloride, preserved with Dymed (polyaminopropyl biguanide; 0.0001%) | 4 |
FDA Group | Manufacturer | Polymer | Water Content | Ionic |
---|---|---|---|---|
1 | Acuvue Oasys 1-Day with Hydraluxe | Senofilcon A | 38% | No |
2 | Focus Dailes All Day Comfort | Nelfilcon A | 69% | No |
3 | Bausch + Lomb PureVision | Balafilcon A | 36% | Yes |
4 | Daily FitViev | Methafilcon A | 56% | Yes |
FDA 1 | FDA 2 | FDA 3 | FDA 4 | |
---|---|---|---|---|
SCA | 17.61 ± 3.69 | no activity | 21.47 ± 16.83 | 23.47 ± 41.59 |
SCA + 1.25 ppm AgTANPs | 46.31 ± 1.55 | 26.58 ± 41.44 | 26.79 ± 26.79 | 17.33 ± 1.47 |
SCA + 2.5 ppm AgTANPs | 76.61 ± 11.99 | 69.64 ± 20.95 | 26.12 ± 53.77 | 39.52 ± 12.25 |
SCA + 5 ppm AgTANPs | 93.25 ± 5.51 | 70.22 ± 23.66 | 30.21 ± 30.65 | 91.88 ± 4.68 |
SCA + 10 ppm AgTANPs | 96.86 ± 0.47 | 70.51 ± 8.57 | 89.24 ± 6.75 | 86.60 ± 14.37 |
O-F | no activity | 4.28 ± 20.95 | no activity | 36.52 ± 27 |
O-F + 1.25 ppm AgTANPs | no activity | 60.86 ± 31.18 | no activity | 33.56 ± 35.88 |
O-F + 2.5 ppm AgTANPs | 88.46 ± 10.27 | 88.28 ± 9.49 | no activity | 88.66 ± 3.55 |
O-F + 5 ppm AgTANPs | 83.16 ± 4.94 | 99.79 ± 0.19 | 49.16 ± 16.42 | 97.15 ± 0.39 |
O-F + 10 ppm AgTANPs | 89.24 ± 7.57 | 100 | 80.93 ± 4.96 | 98.83 ± 0.49 |
ReNu | no activity | 14.99 ± 10.53 | 22.46 ± 4.27 | no activity |
RenNu + 1.25 ppm AgTANPs | 27.82 ± 46.06 | 34.03 ± 15.06 | 42.64 ± 15.32 | no activity |
ReNu + 2.5 ppm AgTANPs | 48.99 ± 34.85 | 38.09 ± 9.06 | 42.64 ± 5.74 | no activity |
ReNu + 5 ppm AgTANPs | 89.85 ± 0.86 | 65.58 ± 19.18 | 48.08 ± 26.44 | 50.21 ± 7.87 |
ReNu + 10 ppm AgTANPs | 92.99 ± 3.43 | 82.16 ± 3.06 | 78.96 ± 7.51 | 69.77 ± 17.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padzik, M.; Chomicz, L.; Bluszcz, J.; Maleszewska, K.; Grobelny, J.; Conn, D.B.; Hendiger, E.B. Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses. Microorganisms 2022, 10, 1076. https://doi.org/10.3390/microorganisms10061076
Padzik M, Chomicz L, Bluszcz J, Maleszewska K, Grobelny J, Conn DB, Hendiger EB. Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses. Microorganisms. 2022; 10(6):1076. https://doi.org/10.3390/microorganisms10061076
Chicago/Turabian StylePadzik, Marcin, Lidia Chomicz, Julita Bluszcz, Karolina Maleszewska, Jaroslaw Grobelny, David Bruce Conn, and Edyta B. Hendiger. 2022. "Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses" Microorganisms 10, no. 6: 1076. https://doi.org/10.3390/microorganisms10061076
APA StylePadzik, M., Chomicz, L., Bluszcz, J., Maleszewska, K., Grobelny, J., Conn, D. B., & Hendiger, E. B. (2022). Tannic Acid-Modified Silver Nanoparticles in Conjunction with Contact Lens Solutions Are Useful for Progress against the Adhesion of Acanthamoeba spp. to Contact Lenses. Microorganisms, 10(6), 1076. https://doi.org/10.3390/microorganisms10061076