Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Heat Flow Curves from L. lactis at Different Temperatures
2.2. Thermogram Simulations
2.3. Relationship between Experimental Observables and Thermogram Parameters for Simulations
2.4. Determination of “Canonical Thermogram” Parameters from IMC Traces
2.5. Constructing a “Rate Plot” from “Canonical Thermogram” Parameters
2.6. Normalization of Metabolic Load
2.7. Normalization of the Initial Growth Rate
2.8. The Closed Form of Heat Evolution in dAR-TS
3. Results
3.1. Transformation of Metabolic Thermal Power from Time- to Enthalpy-Domain
3.2. Simulation of “Canonical Thermograms”
3.3. Modeling Thermograms from Cultured Cells of Different Origin
3.3.1. Bacterial Growth Curves
3.3.2. Protozoan Growth Curves
3.3.3. Metabolism in Cultured Plant Cells
3.4. Deriving Toxicity Measures from Bacterial Heat Flow Curves
4. Discussion
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monod, J. The Growth of Bacterial Cultures. Annu. Rev. Microbiol. 1949, 3, 371–394. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, S.; McDonough, R.T.; Dent, P.; Goodisman, J.; Chaiken, J. Coupled Turbidity and Spectroscopy Problems: A Simple Algorithm for Volumetric Analysis of Optically Thin or Dilute, In Vitro Bacterial Cultures in Various Media. Appl. Spectrosc. 2020, 74, 261–274. [Google Scholar] [CrossRef]
- Loutfi, H.; Pellen, F.; Le Jeune, B.; Lteif, R.; Kallassy, M.; Le Brun, G.; Abboud, M. Real-time monitoring of bacterial growth kinetics in suspensions using laser speckle imaging. Sci. Rep. 2020, 10, 408. [Google Scholar] [CrossRef] [Green Version]
- Clais, S.; Boulet, G.; Van Kerckhoven, M.; Lanckacker, E.; Delputte, P.; Maes, L.; Cos, P. Comparison of viable plate count, turbidity measurement and real-time PCR for quantification of Porphyromonas gingivalis. Lett. Appl. Microbiol. 2015, 60, 79–84. [Google Scholar] [CrossRef]
- Huang, L.H. Optimization of a new mathematical model for bacterial growth. Food Control 2013, 32, 283–288. [Google Scholar] [CrossRef]
- Lopez, S.; Prieto, M.; Dijkstra, J.; Dhanoa, M.S.; France, J. Statistical evaluation of mathematical models for microbial growth. Int. J. Food Microbiol. 2004, 96, 289–300. [Google Scholar] [CrossRef]
- Zeng, H.; Yang, A.D. Bridging substrate intake kinetics and bacterial growth phenotypes with flux balance analysis incorporating proteome allocation. Sci. Rep. 2020, 10, 4283. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Bai, Y.; Jiang, M.; Tokuyasu, T.A.; Huang, X.; Zhong, F.; Wu, Y.; Fu, X.; Kleckner, N.; Hwa, T.; et al. General quantitative relations linking cell growth and the cell cycle in Escherichia coli. Nat. Microbiol. 2020, 5, 995–1001. [Google Scholar] [CrossRef]
- Zeng, H.; Rohani, R.; Huang, W.E.; Yang, A.D. Understanding and mathematical modelling of cellular resource allocation in microorganisms: A comparative synthesis. BMC Bioinform. 2021, 22, 467. [Google Scholar] [CrossRef]
- Goelzer, A.; Fromion, V. Bacterial growth rate reflects a bottleneck in resource allocation. Biochim. Biophys. Acta BBA Gen. Subj. 2011, 1810, 978–988. [Google Scholar] [CrossRef]
- Neidhardt, F.C. Bacterial growth: Constant obsession with dN/dt. J. Bacteriol. 1999, 181, 7405–7408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Ramirez, J.; Meraz, M.; Vernon-Carter, E.J. A theoretical derivation of the monod equation with a kinetics sense. Biochem. Eng. J. 2019, 150, 107305. [Google Scholar] [CrossRef]
- Liu, Y. A simple thermodynamic approach for derivation of a general Monod equation for microbial growth. Biochem. Eng. J. 2006, 31, 102–105. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, L.J.; Xu, J.; Guo, Q.L.; Jiang, F.L.; Liu, Y. Advances in Biothermochemistry and Thermokinetics. Acta Phys.-Chim. Sin. 2020, 36, 1905051. [Google Scholar] [CrossRef]
- Braissant, O.; Bachmann, A.; Bonkat, G. Microcalorimetric assays for measuring cell growth and metabolic activity: Methodology and applications. Methods 2015, 76, 27–34. [Google Scholar] [CrossRef]
- Maskow, T.; Paufler, S. What does calorimetry and thermodynamics of living cells tell us? Methods 2015, 76, 3–10. [Google Scholar] [CrossRef]
- Maskow, T. Calorimetry and biothermodynamics for biotechnology, medicine and environmental sciences: Current status and advances. Eng. Life Sci. 2013, 13, 508–509. [Google Scholar] [CrossRef]
- Braissant, O.; Bonkat, G.; Wirz, D.; Bachmann, A. Microbial growth and isothermal microcalorimetry: Growth models and their application to microcalorimetric data. Thermochim. Acta 2013, 555, 64–71. [Google Scholar] [CrossRef]
- Braissant, O.; Wirz, D.; Gopfert, B.; Daniels, A.U. Use of isothermal microcalorimetry to monitor microbial activities. FEMS Microbiol. Lett. 2010, 303, 1–8. [Google Scholar] [CrossRef]
- Mariana, F.; Buchholz, F.; Harms, H.; Yong, Z.; Yao, J.; Maskow, T. Isothermal titration calorimetry—A new method for the quantification of microbial degradation of trace pollutants. J. Microbiol. Methods 2010, 82, 42–48. [Google Scholar] [CrossRef]
- Ning, X.Q.; Qiao, W.W.; Zhang, L.; Gao, X. Applications of Microcalorimetry in Environmental Sciences. Asian J. Chem. 2013, 25, 8838–8842. [Google Scholar] [CrossRef]
- Wang, F.; Yao, J.; Yu, C.; Chen, H.L.; Yi, Z.J. Investigating Pseudomonas putida-Candida humicola Interactions as Affected by Chelate Fe(III) in Soil. Bull. Environ. Contam. Toxicol. 2014, 92, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Barros, N.; Feijoo, S.; Simoni, A.; Critter, S.A.M.; Airoldi, C. Interpretation of the metabolic enthalpy change, Delta H-met, calculated for microbial growth reactions in soils. J. Therm. Anal. Calorim. 2000, 63, 577–588. [Google Scholar] [CrossRef]
- Astasov-Frauenhoffer, M.; Braissant, O.; Hauser-Gerspach, I.; Daniels, A.U.; Weiger, R.; Waltimo, T. Isothermal microcalorimetry provides new insights into biofilm variability and dynamics. FEMS Microbiol. Lett. 2012, 337, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astasov-Frauenhoffer, M.; Braissant, O.; Hauser-Gerspach, I.; Weiger, R.; Walter, C.; Zitzmann, N.U.; Waltimo, T. Microcalorimetric Determination of the Effects of Amoxicillin, Metronidazole, and Their Combination on In Vitro Biofilm. J. Periodontol. 2014, 85, 349–357. [Google Scholar] [CrossRef]
- Corvec, S.; Seiler, E.; Wang, L.; Moreno, M.G.; Trampuz, A. Characterization of medical relevant anaerobic microorganisms by isothermal microcalorimetry. Anaerobe 2020, 66, 102282. [Google Scholar] [CrossRef]
- Braissant, O.; Chavanne, P.; de Wild, M.; Pieles, U.; Stevanovic, S.; Schumacher, R.; Straumann, L.; Wirz, D.; Gruner, P.; Bachmann, A.; et al. Novel microcalorimetric assay for antibacterial activity of implant coatings: The cases of silver-doped hydroxyapatite and calcium hydroxide. J. Biomed. Mater. Res. B 2015, 103, 1161–1167. [Google Scholar] [CrossRef]
- Bonkat, G.; Bachmann, A.; Solokhina, A.; Widmer, A.F.; Frei, R.; Gasser, T.C.; Braissant, O. Growth of Mycobacteria in Urine Determined by Isothermal Microcalorimetry: Implications for Urogenital Tuberculosis and Other Mycobacterial Infections. Urology 2012, 80, 1163.e9–1163.e12. [Google Scholar] [CrossRef]
- Rio, L.; Kusiak-Nejman, E.; Kiwi, J.; Betrisey, B.; Pulgarin, C.; Trampuz, A.; Bizzini, A. Comparison of Methods for Evaluation of the Bactericidal Activity of Copper-Sputtered Surfaces against Methicillin-Resistant Staphylococcus aureus. Appl. Environ. Microbiol. 2012, 78, 8176–8182. [Google Scholar] [CrossRef] [Green Version]
- Thommen, A.; Werner, S.; Frank, O.; Philipp, J.; Knittelfelder, O.; Quek, Y.; Fahmy, K.; Shevchenko, A.; Friedrich, B.M.; Julicher, F.; et al. Body size-dependent energy storage causes Kleiber’s law scaling of the metabolic rate in planarians. elife 2019, 8, e38187. [Google Scholar] [CrossRef]
- Penkov, S.; Raghuraman, B.K.; Erkut, C.; Oertel, J.; Galli, R.; Ackerman, E.J.M.; Vorkel, D.; Verbavatz, J.M.; Koch, E.; Fahmy, K.; et al. A metabolic switch regulates the transition between growth and diapause in C. elegans. BMC Biol. 2020, 18, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neidhardt, F.C.; Ingraham, J.L.; Schaechter, M. Physiology of the Bacterial Cell: A Molecular Approach; Sinauer Associates, Inc.: Sunderland, MA, USA, 1990. [Google Scholar]
- Schaechter, M.; Ingraham, J.L.; Neidhardt, F.C. Microbe; ASM Press: Washington, DC, USA, 2005. [Google Scholar]
- Peregrin-Alvarez, J.M.; Sanford, C.; Parkinson, J. The conservation and evolutionary modularity of metabolism. Genome Biol. 2009, 10, R63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruggeman, F.J.; Planque, R.; Molenaar, D.; Teusink, B. Searching for principles of microbial physiology. FEMS Microbiol. Rev. 2020, 44, 821–844. [Google Scholar] [CrossRef] [PubMed]
- Obeid, M.H.; Oertel, J.; Solioz, M.; Fahmy, K. Mechanism of Attenuation of Uranyl Toxicity by Glutathione in Lactococcus lactis. Appl. Environ. Microbiol. 2016, 82, 3563–3571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachs, S.; Geipel, G.; Bok, F.; Oertel, J.; Fahmy, K. Calorimetrically Determined U(VI) Toxicity in Brassica napus Correlates with Oxidoreductase Activity and U(VI) Speciation. Environ. Sci. Technol. 2017, 51, 10843–10849. [Google Scholar] [CrossRef]
- Gysin, M.; Braissant, O.; Gillingwater, K.; Brun, R.; Maser, P.; Wenzler, T. Isothermal microcalorimetry—A quantitative method to monitor Trypanosoma congolense growth and growth inhibition by trypanocidal drugs in real time. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Golicnik, M. The integrated Michaelis-Menten rate equation: Deja vu or vu jade. J. Enzym. Inhib. Med. Chem. 2013, 28, 879–883. [Google Scholar] [CrossRef]
- Bren, A.; Hart, Y.; Dekel, E.; Koster, D.; Alon, U. The last generation of bacterial growth in limiting nutrient. BMC Syst. Biol. 2013, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Koya, P.R.; Goshu, A.T. Solutions of Rate-state Equation Describing Biological Growths. Am. J. Math. Stat. 2013, 3, 305–311. [Google Scholar]
- Baranyi, J.; Roberts, T.A.; Mcclure, P. A Nonautonomous Differential Equation to Model Bacterial Growth. Food Microbiol. 1993, 10, 43–59. [Google Scholar] [CrossRef]
- Baranyi, J.; Roberts, T.A. A Dynamic Approach to Predicting Bacterial Growth in Food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Goshu, A.T.; Koya, P.R. Derivation of Inflection Points of Nonlinear Regression Curves—Implications to Statistics. Am. J. Theor. Appl. Stat. 2013, 2, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Maskow, T.; Babel, W. Thermokinetic description of anaerobic growth of Halomonas halodenitrificans using a static microcalorimetric ampoule technique. J. Biotechnol. 2003, 101, 267–274. [Google Scholar] [CrossRef]
- Li, L.Y.; Wang, G.X. Enzymatic origin and various curvatures of metabolic scaling in microbes. Sci. Rep. 2019, 9, 4082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kargi, F. Re-interpretation of the logistic equation for batch microbial growth in relation to Monod kinetics. Lett. Appl. Microbiol. 2009, 48, 398–401. [Google Scholar] [CrossRef]
- Scott, M.; Klumpp, S.; Mateescu, E.M.; Hwa, T. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Mol. Syst. Biol. 2014, 10, 747. [Google Scholar] [CrossRef]
- Michelsen, O.; de Mattos, M.J.T.; Jensen, P.R.; Hansen, F.G. Precise determinations of C and D periods by flow cytometry in Escherichia coli K-12 and B/r. Microbiology 2003, 149, 1001–1010. [Google Scholar] [CrossRef] [Green Version]
- Tonn, M.K.; Thomas, P.; Barahona, M.; Oyarzun, D.A. Computation of Single-Cell Metabolite Distributions Using Mixture Models. Front. Cell Dev. Biol. 2020, 8, 614832. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, K. Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms. Microorganisms 2022, 10, 1397. https://doi.org/10.3390/microorganisms10071397
Fahmy K. Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms. Microorganisms. 2022; 10(7):1397. https://doi.org/10.3390/microorganisms10071397
Chicago/Turabian StyleFahmy, Karim. 2022. "Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms" Microorganisms 10, no. 7: 1397. https://doi.org/10.3390/microorganisms10071397
APA StyleFahmy, K. (2022). Simple Growth–Metabolism Relations Are Revealed by Conserved Patterns of Heat Flow from Cultured Microorganisms. Microorganisms, 10(7), 1397. https://doi.org/10.3390/microorganisms10071397