Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Physicochemical Analysis
2.2. DNA Extraction, Sequencing, and qPCR Analysis
2.3. Experimental Set Up
2.4. Measurements of Potential Denitrification, Anammox and N2O Production Rates
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Parameters of Water and Sediment
3.2. Microbial Community of Nitrogen Removal
3.3. Effect of NO3− and NH4+ Addition
3.4. Effect of DO and Organic C Introduction
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Q.; Xu, C.-y.; Becker, S.; Jiang, T. Sediment and runoff changes in the Yangtze River basin during past 50 years. J. Hydrol. 2006, 331, 511–523. [Google Scholar] [CrossRef]
- Vaze, J.; Chiew, F.H.S. Nutrient Loads Associated with Different Sediment Sizes in Urban Stormwater and Surface Pollutants. J. Environ. Eng. 2004, 130, 391–396. [Google Scholar] [CrossRef]
- Steinman, A.D.; Isely, E.S.; Thompson, K. Stormwater runoff to an impaired lake: Impacts and solutions. Environ. Monit. Assess. 2015, 187, 549. [Google Scholar] [CrossRef] [PubMed]
- Almås, Å.R.; Lombnæs, P.; Sogn, T.A.; Mulder, J. Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere 2006, 62, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Rustenbil, J.W.; Poortvliet, T.C.W. Copper and zinc in estuarine water: Chemical speciation in relation to bioavailability to the marine planktonic diatom Ditylum brightwellii. Environ. Toxicol. Chem. 1992, 11, 1615–1625. [Google Scholar] [CrossRef]
- Wei, Q.; Zhu, G.; Wu, P.; Cui, L.; Zhang, K.; Zhou, J.; Zhang, W. Distributions of typical contaminant species in urban short-term storm runoff and their fates during rain events: A case of Xiamen City. J. Environ. Sci. 2010, 22, 533–539. [Google Scholar] [CrossRef]
- Mason, Y.; Ammann, A.A.; Ulrich, A.; Sigg, L. Behavior of Heavy Metals, Nutrients, and Major Components during Roof Runoff Infiltration. Environ. Sci. Technol. 1999, 33, 1588–1597. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Sanders, R.W.; Styles, R. Bioavailability of DON from natural and anthropogenic sources to estuarine plankton. Limnol. Oceanogr. 2002, 47, 353–366. [Google Scholar] [CrossRef]
- Galloway, J.N.; Aber, J.D.; Erisman, J.W.; Seitzinger, S.P.; Howarth, R.W.; Cowling, E.B.; Cosby, B.J. The Nitrogen Cascade. BioScience 2003, 53, 341–356. [Google Scholar] [CrossRef]
- Diaz, R.J.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Ma, W.; Huang, T.; Li, X.; Zhou, Z.; Li, Y.; Zeng, K. The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China. Int. J. Environ. Res. Public Health 2015, 12, 7839–7855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holgerson, M.A.; Zappa, C.J.; Raymond, P.A. Substantial overnight reaeration by convective cooling discovered in pond ecosystems. Geophys. Res. Lett. 2016, 43, 8044–8051. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, F.N.; Malik, M. Factors affecting water pollution: A review. J. Ecosyst. Ecography 2017, 7, 1–3. [Google Scholar]
- Cheng, F.Y.; Basu, N.B. Biogeochemical hotspots: Role of small water bodies in landscape nutrient processing. Water Resour. Res. 2017, 53, 5038–5056. [Google Scholar] [CrossRef] [Green Version]
- Stein, L.Y.; Klotz, M.G. The nitrogen cycle. Curr. Biol. 2016, 26, R94–R98. [Google Scholar] [CrossRef] [Green Version]
- Canfield, D.E.; Kristensen, E.; Thamdrup, B. The nitrogen cycle. In Advances in Marine Biology; Elsevier: San Diego, CA, USA, 2005; Volume 48, pp. 205–267. [Google Scholar]
- Long, A.; Heitman, J.; Tobias, C.; Philips, R.; Song, B. Co-Occurring Anammox, Denitrification, and Codenitrification in Agricultural Soils. Appl. Environ. Microbiol. 2013, 79, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Lin, J.-G. Co-existence of anammox and denitrification for simultaneous nitrogen and carbon removal—Strategies and issues. J. Hazard. Mater. 2010, 178, 1–9. [Google Scholar] [CrossRef]
- Rysgaard, S.; Glud, R.N.; Risgaard-Petersen, N.; Dalsgaard, T. Denitrification and anammox activity in Arctic marine sediments. Limnol. Oceanogr. 2004, 49, 1493–1502. [Google Scholar] [CrossRef]
- Davis, J.H.; Griffith, S.M.; Horwath, W.R.; Steiner, J.J.; Myrold, D.D. Denitrification and Nitrate Consumption in an Herbaceous Riparian Area and Perennial Ryegrass Seed Cropping System. Soil Sci. Soc. Am. J. 2008, 72, 1299–1310. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Yang, P.; Shang, X.; Rahman, M.M.; Yan, X. Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon, and substrates. Biol. Fert. Soils 2018, 54, 341–348. [Google Scholar] [CrossRef]
- Hardison, A.K.; Algar, C.K.; Giblin, A.E.; Rich, J.J. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium (DNRA) and N2 production. Geochim. Cosmochim. Acta 2015, 164, 146–160. [Google Scholar] [CrossRef] [Green Version]
- Koeve, W.; Kähler, P. Heterotrophic denitrification vs. autotrophic anammox—quantifying collateral effects on the oceanic carbon cycle. Biogeosciences 2010, 7, 2327–2337. [Google Scholar] [CrossRef] [Green Version]
- Rysgaard, S.; Risgaard-Petersen, N.; Niels Peter, S.; Kim, J.; Lars Peter, N. Oxygen regulation of nitrification and denitrification in sediments. Limnol. Oceanogr. 1994, 39, 1643–1652. [Google Scholar] [CrossRef]
- Erler, D.V.; Eyre, B.D.; Davison, L. The Contribution of Anammox and Denitrification to Sediment N2 Production in a Surface Flow Constructed Wetland. Environ. Sci. Technol. 2008, 42, 9144–9150. [Google Scholar] [CrossRef] [PubMed]
- Zekker, I.; Rikmann, E.; Tenno, T.; Seiman, A.; Loorits, L.; Kroon, K.; Tomingas, M.; Vabamäe, P.; Tenno, T. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater. Environ. Technol. 2014, 35, 1565–1576. [Google Scholar] [CrossRef]
- Zekker, I.; Mandel, A.; Rikmann, E.; Jaagura, M.; Salmar, S.; Ghangrekar, M.M.; Tenno, T. Ameliorating effect of nitrate on nitrite inhibition for denitrifying P-accumulating organisms. Sci. Total Environ. 2021, 797, 149133. [Google Scholar] [CrossRef]
- Wu, J.; Hong, Y.; Guan, F.; Wang, Y.; Tan, Y.; Yue, W.; Wu, M.; Bin, L.; Wang, J.; Wen, J. A rapid and high-throughput microplate spectrophotometric method for field measurement of nitrate in seawater and freshwater. Sci. Rep. 2016, 6, 20165. [Google Scholar] [CrossRef]
- Aph Association; Water Environmental Federation. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Yergeau, E.; Kang, S.; He, Z.; Zhou, J.; Kowalchuk, G.A. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J. 2007, 1, 163–179. [Google Scholar] [CrossRef] [Green Version]
- Han, P.; Gu, J.-D. More refined diversity of anammox bacteria recovered and distribution in different ecosystems. Appl. Microbiol. Biotechnol. 2013, 97, 3653–3663. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risgaard-Petersen, N.; Meyer, R.L.; Schmid, M.; Jetten, M.S.; Enrich-Prast, A.; Rysgaard, S.; Revsbech, N.P. Anaerobic ammonium oxidation in an estuarine sediment. Aquat. Microb. Ecol. 2004, 36, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Li, S.; Ye, F.; Hong, Y.; Lü, M.; Op den Camp, H.J.M.; Wang, Y. Artificial ponds as hotspots of nitrogen removal in agricultural watershed. Biogeochemistry 2022, 159, 283–301. [Google Scholar] [CrossRef]
- Hou, L.; Yin, G.; Liu, M.; Zhou, J.; Zheng, Y.; Gao, J.; Zong, H.; Yang, Y.; Gao, L.; Tong, C. Effects of Sulfamethazine on Denitrification and the Associated N2O Release in Estuarine and Coastal Sediments. Environ. Sci. Technol. 2015, 49, 326–333. [Google Scholar] [CrossRef]
- Aguilar, C.A.; Montalvo, C.; Rodríguez, L.; Cerón, J.G.; Cerón, R.M. American oyster (Crassostrea virginica) and sediments as a coastal zone pollution monitor by heavy metals. Int. J. Environ. Sci. Technol. 2012, 9, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Holgerson, M.A.; Raymond, P.A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 2016, 9, 222–226. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Likens, G.E. Dissolved organic carbon enrichment alters nitrogen dynamics in a forest stream. Ecology 2002, 83, 1689–1700. [Google Scholar] [CrossRef]
- McCarty, G.W.; Bremner, J.M. Availability of organic carbon for denitrification of nitrate in subsoils. Biol. Fertil. Soils 1992, 14, 219–222. [Google Scholar] [CrossRef]
- Tiedje, J.M. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. Biol. Anaerob. Microorg. 1988, p, 179–244. [Google Scholar]
- Teixeira, C.; Magalhães, C.; Joye, S.B.; Bordalo, A.A. Response of anaerobic ammonium oxidation to inorganic nitrogen fluctuations in temperate estuarine sediments. J. Geophys. Res. Biogeosciences 2016, 121, 1829–1839. [Google Scholar] [CrossRef]
- Zhong, J.; Fan, C.; Zhang, L.; Hall, E.; Ding, S.; Li, B.; Liu, G. Significance of dredging on sediment denitrification in Meiliang Bay, China: A year long simulation study. J. Environ. Sci. 2010, 22, 68–75. [Google Scholar] [CrossRef]
- Lee, J.A.; Francis, C.A. Spatiotemporal Characterization of San Francisco Bay Denitrifying Communities: A Comparison of nirK and nirS Diversity and Abundance. Microb. Ecol. 2017, 73, 271–284. [Google Scholar] [CrossRef]
- Lindemann, S.; Zarnoch, C.B.; Castignetti, D.; Hoellein, T.J. Effect of Eastern Oysters (Crassostrea virginica) and Seasonality on Nitrite Reductase Gene Abundance (nirS, nirK, nrfA) in an Urban Estuary. Estuar. Coast. 2016, 39, 218–232. [Google Scholar] [CrossRef]
- Zheng, Y.; Hou, L.; Zhang, Z.; Ge, J.; Li, M.; Yin, G.; Han, P.; Dong, H.; Liang, X.; Gao, J.; et al. Overlooked contribution of water column to nitrogen removal in estuarine turbidity maximum zone (TMZ). Sci. Total Environ. 2021, 788, 147736. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Wang, S.; Li, Y.; Zhuang, L.; Zhao, S.; Wang, C.; Kuypers, M.M.M.; Jetten, M.S.M.; Zhu, Y. Microbial pathways for nitrogen loss in an upland soil. Environ. Microb. 2018, 20, 1723–1738. [Google Scholar] [CrossRef] [PubMed]
- Pascazio, S.; Crecchio, C.; Scagliola, M.; Mininni, A.N.; Dichio, B.; Xiloyannis, C.; Sofo, A. Microbial-based soil quality indicators in irrigated and rainfed soil portions of Mediterranean olive and peach orchards under sustainable management. Agr. Water Manag. 2018, 195, 172–179. [Google Scholar] [CrossRef]
- Tsiknia, M.; Paranychianakis, N.V.; Varouchakis, E.A.; Nikolaidis, N.P. Environmental drivers of the distribution of nitrogen functional genes at a watershed scale. FEMS Microbiol. Ecol. 2015, 91, fiv052. [Google Scholar] [CrossRef] [Green Version]
- Saleh-Lakha, S.; Shannon, K.E.; Henderson, S.L.; Zebarth, B.J.; Burton, D.L.; Goyer, C.; Trevors, J.T. Effect of Nitrate and Acetylene on nirS, cnorB, and nosZ Expression and Denitrification Activity in Pseudomonas mandelii. Appl. Environ. Microb. 2009, 75, 5082–5087. [Google Scholar] [CrossRef] [Green Version]
- Evrard, V.; Glud, R.N.; Cook, P.L.M. The kinetics of denitrification in permeable sediments. Biogeochemistry 2013, 113, 563–572. [Google Scholar] [CrossRef]
- Tomasek, A.; Staley, C.; Wang, P.; Kaiser, T.; Lurndahl, N.; Kozarek, J.L.; Hondzo, M.; Sadowsky, M.J. Increased Denitrification Rates Associated with Shifts in Prokaryotic Community Composition Caused by Varying Hydrologic Connectivity. Front. Microbiol. 2017, 8, 2304. [Google Scholar] [CrossRef] [Green Version]
- Reddy, K.R.; Patrick, W.H.; Broadbent, F.E. Nitrogen transformations and loss in flooded soils and sediments. CRC Crit. Rev. Environ. Control. 1984, 13, 273–309. [Google Scholar] [CrossRef]
- Miller, M.N.; Dandie, C.E.; Zebarth, B.J.; Burton, D.L.; Goyer, C.; Trevors, J.T. Influence of carbon amendments on soil denitrifier abundance in soil microcosms. Geoderma 2012, 170, 48–55. [Google Scholar] [CrossRef]
- Jenkins, M.C.; Kemp, W.M. The coupling of nitrification and denitrification in two estuarine sediments1,2. Limnol. Oceanogr. 1984, 29, 609–619. [Google Scholar] [CrossRef]
- Li, X.; Qian, W.; Hou, L.; Liu, M.; Chen, Z.; Tong, C. Human activity intensity controls the relative importance of denitrification and anaerobic ammonium oxidation across subtropical estuaries. CATENA 2021, 202, 105260. [Google Scholar] [CrossRef]
- Liu, W.; Yao, L.; Wang, Z.; Xiong, Z.; Liu, G. Human land uses enhance sediment denitrification and N2O production in Yangtze lakes primarily by influencing lake water quality. Biogeosciences 2015, 12, 6059–6070. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Li, A.; Zhang, X.; Ma, F. Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13. Appl. Microbiol. Biotechnol. 2015, 99, 3243–3248. [Google Scholar] [CrossRef]
- Ka, J.-O.; Urbance, J.; Ye, R.W.; Ahn, T.-Y.; Tiedje, J.M. Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria. FEMS Microbiol. Lett. 1997, 156, 55–60. [Google Scholar] [CrossRef]
- Körner, H.; Zumft, W.G. Expression of denitrification enzymes in response to the dissolved oxygen level and respiratory substrate in continuous culture of Pseudomonas stutzeri. Appl. Environ. Microbiol. 1989, 55, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Wang, Q.; Zhou, J.; Yuan, D.; Zhu, G. Linking abundance and community of microbial N2O-producers and N2O-reducers with enzymatic N2O production potential in a riparian zone. Sci. Total Environ. 2018, 642, 1090–1099. [Google Scholar] [CrossRef]
- Domeignoz-Horta1, L.; Spor, A.; Bru, D.; Breuil, m.-c.; Bizouard, F.; Leonard, J.; PHILIPPOT, L. The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system. Front. Microbiol. 2015, 6, 971. [Google Scholar] [CrossRef]
- Saarenheimo, J.; Rissanen, A.J.; Arvola, L.; Nykänen, H.; Lehmann, M.F.; Tiirola, M. Genetic and Environmental Controls on Nitrous Oxide Accumulation in Lakes. PLoS ONE 2015, 10, e0121201. [Google Scholar] [CrossRef] [PubMed]
- Mafa-Attoye, T.G.; Baskerville, M.A.; Ofosu, E.; Oelbermann, M.; Thevathasan, N.V.; Dunfield, K.E. Riparian land-use systems impact soil microbial communities and nitrous oxide emissions in an agro-ecosystem. Sci. Total Environ. 2020, 724, 138148. [Google Scholar] [CrossRef]
- Linton, N.F.; Ferrari Machado, P.V.; Deen, B.; Wagner-Riddle, C.; Dunfield, K.E. Long-term diverse rotation alters nitrogen cycling bacterial groups and nitrous oxide emissions after nitrogen fertilization. Soil Biol. Biochem. 2020, 149, 107917. [Google Scholar] [CrossRef]
- Samad, M.S.; Biswas, A.; Bakken, L.R.; Clough, T.J.; de Klein, C.A.M.; Richards, K.G.; Lanigan, G.J.; Morales, S.E. Phylogenetic and functional potential links pH and N2O emissions in pasture soils. Sci. Rep. 2016, 6, 35990. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.N.; Zebarth, B.J.; Dandie, C.E.; Burton, D.L.; Goyer, C.; Trevors, J.T. Crop residue influence on denitrification, N2O emissions and denitrifier community abundance in soil. Soil Biol. Biochem. 2008, 40, 2553–2562. [Google Scholar] [CrossRef]
- Henderson, S.L.; Dandie, C.E.; Patten, C.L.; Zebarth, B.J.; Burton, D.L.; Trevors, J.T.; Goyer, C. Changes in Denitrifier Abundance, Denitrification Gene mRNA Levels, Nitrous Oxide Emissions, and Denitrification in Anoxic Soil Microcosms Amended with Glucose and Plant Residues. Appl. Environ. Microb. 2010, 76, 2155–2164. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.-Y.; Toor, G.S. δ15N and δ18O Reveal the Sources of Nitrate-Nitrogen in Urban Residential Stormwater Runoff. Environ. Sci. Technol. 2016, 50, 2881–2889. [Google Scholar] [CrossRef]
- Aulakh, M.S.; Khera, T.S.; Doran, J.W. Mineralization and denitrification in upland, nearly saturated and flooded subtropical soilI. Effect of nitrate and ammoniacal nitrogen. Biol. Fertil. Soils 2000, 31, 162–167. [Google Scholar] [CrossRef]
- Hallin, S.; Lindgren, P.E. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 1999, 65, 1652–1657. [Google Scholar] [CrossRef] [Green Version]
- Henry, S.; Bru, D.; Stres, B.; Hallet, S.; Philippot, L. Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl. Environ. Microbiol. 2006, 72, 5181–5189. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.M.; Graf, D.R.H.; Bru, D.; Philippot, L.; Hallin, S. The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. ISME J. 2013, 7, 417–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site | Pond 1# | Pond 2# | Pond 3# | |
---|---|---|---|---|
Overlying water | pH | 7.4 ± 1.2 | 7.6 ± 0.9 | 7.5 ± 0.1 |
NH4+ (μmol L−1) | 7.8 ± 0.7 | 24.4 ± 3.5 | 7.6 ± 1.8 | |
NO3− (μmol L−1) | 58.3 ± 5.8 | 103.8 ± 7.3 | 10.5 ± 1.7 | |
NO2− (μmol L−1) | 3.5 ± 1.2 | 7.3 ± 1.1 | 12.6 ± 4.1 | |
Sediment | Moisture (%) | 73.8 ± 6.3 | 45.0 ± 5.0 | 59.4 ± 6.1 |
pH | 6.9 ± 1.0 | 7.5 ± 0.8 | 7.6 ± 0.5 | |
NH4+ (mg kg−1) | 13.0 ± 2.4 | 21.2 ± 1.9 | 8.6 ± 1.5 | |
NO3− (mg kg−1) | 0.6 ± 0.0 | 0.5 ± 0.1 | 0.4 ± 0.1 | |
NO2− (mg kg−1) | 0.3 ± 0.1 | 0.3 ± 0.0 | 0.2 ± 0.0 | |
DIN (mg kg−1) | 13.9 ± 2.5 | 21.9 ± 1.9 | 9.1 ± 1.8 | |
TN (g kg−1) | 2.2 ± 1.1 | 3.0 ± 0.8 | 6.7 ± 1.2 | |
TP (g kg−1) | 0.2 ± 0.0 | 1.1 ± 0.3 | 1.5 ± 0.2 | |
OM (g kg−1) | 113.0 ± 15.7 | 65.2 ± 11.2 | 105.0 ± 12.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, M.; Hong, Y.; Wu, J.; Moore, S.S.; Vamerali, T.; Ye, F.; Wang, Y. Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment. Microorganisms 2022, 10, 1429. https://doi.org/10.3390/microorganisms10071429
Cai M, Hong Y, Wu J, Moore SS, Vamerali T, Ye F, Wang Y. Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment. Microorganisms. 2022; 10(7):1429. https://doi.org/10.3390/microorganisms10071429
Chicago/Turabian StyleCai, Min, Yiguo Hong, Jiapeng Wu, Selina Sterup Moore, Teofilo Vamerali, Fei Ye, and Yu Wang. 2022. "Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment" Microorganisms 10, no. 7: 1429. https://doi.org/10.3390/microorganisms10071429
APA StyleCai, M., Hong, Y., Wu, J., Moore, S. S., Vamerali, T., Ye, F., & Wang, Y. (2022). Nitrate Addition Increases the Activity of Microbial Nitrogen Removal in Freshwater Sediment. Microorganisms, 10(7), 1429. https://doi.org/10.3390/microorganisms10071429