Comparative Evaluation of an Easy Laboratory Method for the Concentration of Oocysts and Commercial DNA Isolation Kits for the Molecular Detection of Cyclospora cayetanensis in Silt Loam Soil Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cyclospora cayetanensis Oocysts
2.2. Seeding of Soil Samples
2.3. Genomic DNA Isolation from Soil Samples by Concentration by Flotation in Dense Sucrose Solution and by Using Commercial DNA Isolation Kits
2.3.1. Concentration by Flotation in Dense Sucrose Solution and BAM Chapter 19b DNA Isolation Protocol
2.3.2. Method 2: Commercial Fast DNATM 50 mL SPIN Kit for Soil (MP Biomedicals)
2.3.3. Method 3: Commercial Quick-DNATM Fecal/Soil Microbe Midiprep Kit (Zymo Research)
2.3.4. Method 4: Commercial DNeasy® PowerMax® Soil Kit (Qiagen) with Two Variations (4a and 4b)
2.4. Quantitative Real-Time BAM Chapter 19b qPCR for Soil Samples
2.5. Linearity and Limit of Detection of C. cayetanensis by the Flotation Protocol in Soil Samples
2.6. Quantitative Real-Time Mitochondrial qPCR for Soil Samples
2.7. Statistically Analysis
3. Results
3.1. Comparison of Detection of C. cayetanensis in the Different Methods/Kits
3.2. Linearity of C. cayetanensis and Limit of Detection of Method 1: Flotation Protocol in Soil Samples
3.3. Quantitative Real-Time Mitochondrial qPCR for Soil Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ortega, Y.R.; Sanchez, R. Update on Cyclospora cayetanensis, a food-borne and waterborne parasite. Clin. Microbiol. Rev. 2010, 23, 218–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeria, S.; Cinar, H.N.; Dubey, J.P. Cyclospora cayetanensis and Cyclosporiasis: An Update. Microorganisms 2019, 7, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domestically Acquired Cases of Cyclosporiasis—United States, May–August 2021. Available online: https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/2021/seasonal/index.html (accessed on 18 November 2021).
- Dawson, D. Foodborne protozoan parasites. Int. J. Food Microbiol. 2005, 103, 207–227. [Google Scholar] [CrossRef]
- Chacín-Bonilla, L. Transmission of Cyclospora cayetanensis infection: A review focusing on soil-borne cyclosporiasis. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 215–216. [Google Scholar] [CrossRef] [PubMed]
- Chacín-Bonilla, L.; Barrios, F.; Sanchez, Y. Epidemiology of Cyclospora cayetanensis infection in San Carlos Island, Venezuela: Strong association between socio-economic status and infection. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Bern, C.; Arrowood, M.J.; Eberhard, M.; Maguire, J.H. Cyclospora in Guatemala: Further considerations. J. Clin. Microbiol. 2002, 40, 731–732. [Google Scholar] [CrossRef] [Green Version]
- Koumans, E.H.; Katz, D.J.; Malecki, J.M.; Kumar, S.; Wahlquist, S.P.; Arrowood, M.J.; Hightower, A.W.; Herwaldt, B.L. An outbreak of cyclosporiasis in Florida in 1995: A harbinger of multistate outbreaks in 1996 and 1997. Am. J. Trop. Med. Hyg. 1998, 59, 235–242. [Google Scholar] [CrossRef]
- Totton, S.C.; O’Connor, A.M.; Naganathan, T.; Martinez, B.A.F.; Vriezen, E.R.; Torrence, M.E.; Sargeant, J.M. A scoping review of the detection, epidemiology and control of Cyclospora cayetanensis with an emphasis on produce, water and soil. Epidemiol. Infect. 2021, 149, E49. [Google Scholar] [CrossRef]
- Giangaspero, A.; Marangi, M.; Koehler, A.V.; Papini, R.; Normanno, G.; Lacasella, V.; Lonigro, A.; Gasser, R.B. Molecular detection of Cyclospora in water, soil, vegetables and humans in southern Italy signals a need for improved monitoring by health authorities. Int. J. Food. Microbiol. 2015, 211, 95–100. [Google Scholar] [CrossRef]
- Onstad, N.H.; Beever, J.E.; Miller, M.R.; Green, M.L.; Witola, W.H.; Davidson, P.C. Cyclospora cayetanensis Presence in the Environment—A Case Study in the Chicago Metropolitan Area. Environments 2019, 6, 80. [Google Scholar] [CrossRef] [Green Version]
- Resendiz-Nava, C.N.; Orozco-Mosqueda, G.E.; Mercado-Silva, E.M.; Flores-Robles, S.; Silva-Rojas, H.V.; Nava, G.M. A Molecular Tool for Rapid Detection and Traceability of Cyclospora cayetanensis in Fresh Berries and Berry Farm Soils. Foods. 2020, 9, 261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakaym, F.M.; Botha, A.; Prior, B.A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J. Appl. Microbiol. 2007, 102, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Sagar, K.; Singh, S.P.; Goutam, K.K.; Konwar, B.K. Assessment of five soil DNA extraction methods and a rapid laboratory-developed method for quality soil DNA extraction for 16S rDNA-based amplification and library construction. J. Microbiol. Methods 2014, 97, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Sidstedt, M.; Jansson, L.; Nilsson, E.; Noppa, L.; Forsman, M.; Rådström, P.; Hedman, J. Humic substances cause fluorescence inhibition in real-time polymerase chain reaction. J. Anal. Biochem. 2015, 487, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Collender, P.A.; Kirby, A.E.; Addiss, D.G.; Freeman, M.C.; Remais, J.V. Methods for quantification of soil-transmitted helminths in environmental media: Current techniques and recent advances. Trends Parasitol. 2015, 31, 623–639. [Google Scholar] [CrossRef] [Green Version]
- Amoah, I.D.; Singh, G.; Stenström, T.A.; Reddy, P. Detection and quantification of soil-transmitted helminths in environmental samples: A review of current state-of-the-art and future perspectives. Acta Trop. 2017, 169, 187–201. [Google Scholar] [CrossRef]
- Murphy, H.R.; Lee, S.; da Silva, A.J. Evaluation of an improved U.S. Food and Drug Administration method for the detection of Cyclospora cayetanensis in produce using real-time PCR. J. Food Prot. 2017, 80, 1133–1144. [Google Scholar] [CrossRef]
- Temesgen, T.T.; Barlaam, A.; Tysnes, K.R.; Robertson, L.J. Comparative evaluation of UNEX-based DNA extraction for molecular detection of Cyclospora cayetanensis, Toxoplasma gondii, and Cryptosporidium parvum as contaminants of berries. Food Microbiol. 2020, 89, 103447. [Google Scholar] [CrossRef]
- Amoah, I.D.; Singh, G.; Troell, K.; Reddy, P.; Stenström, T.A.; Bux, F. Comparative assessment of DNA isolation procedures for Ascaris spp. eggs. J. Helminthol. 2019, 94, e78. [Google Scholar] [CrossRef]
- Shields, J.M.; Joo, J.; Kim, R.; Murphy, H.R. Assessment of three commercial DNA extraction kits and a laboratory-developed method for detecting Cryptosporidium and Cyclospora in raspberry wash, basil wash and pesto. J. Microbiol. Methods 2013, 92, 51–58. [Google Scholar] [CrossRef]
- Qvarnstrom, Y.; Benedict, T.; Marcet, P.L.; Wiegand, R.E.; Herwaldt, B.L.; da Silva, A.J. Molecular detection of Cyclospora cayetanensis in human stool specimens using UNEX-based DNA extraction and real-time PCR. Parasitology 2018, 145, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Lélu, M.; Gilot-Fromont, E.; Aubert, D.; Richaume, A.; Afonso, E.; Dupuis, E.; Gotteland, C.; Marnef, F.; Poulle, M.L.; Dumètre, A.; et al. Development of a sensitive method for Toxoplasma gondii oocyst isolation in soil. Vet. Parasitol. 2011, 183, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Escotte-Binet, S.; Da Silva, A.M.; Cancès, B.; Aubert, D.; Dubey, J.; La Carbona, S.; Villena, I.; Poulle, M.L. A rapid and sensitive method to detect Toxoplasma gondii oocysts in soil samples. Vet. Parasitol. 2019, 274, 108904. [Google Scholar] [CrossRef] [PubMed]
- BAM Chapter 19b: Molecular Detection of Cyclospora cayetanensis in Fresh Produce Using Real-Time PCR. Available online: https://www.fda.gov/food/laboratory-methods-food/bam-chapter-19b-molecular-detection-cyclospora-cayetanensis-fresh-produce-using-real-time-pcr (accessed on 18 November 2021).
- Assurian, A.; Murphy, H.; Ewing, L.; Cinar, H.N.; da Silva, A.; Almeria, S. Evaluation of the U.S. Food and Drug Administration validated molecular method for detection of Cyclospora cayetanensis oocysts on fresh and frozen berries. Food Microbiol. 2020, 87, 103397. [Google Scholar] [CrossRef] [PubMed]
- Almeria, S.; Shipley, A. Detection of Cyclospora cayetanensis on bagged pre-cut salad mixes within their shelf-life and after sell by date by the U.S. food and drug administration validated method. Food Microbiol. 2021, 98, 103802. [Google Scholar] [CrossRef]
- Almeria, S.; Assurian, A.; Shipley, A.; Modifications of the, U.S. food and drug administration validated method for detection of Cyclospora cayetanensis oocysts in prepared dishes: Mexican-style salsas and guacamole. Food Microbiol. 2021, 96, 103719. [Google Scholar] [CrossRef]
- Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds, Edition 3.0. U.S. Food and Drug Administration Foods Program October 2019. Available online: https://www.fda.gov/media/83812/download (accessed on 18 November 2021).
- Kuczynska, E.; Shelton, D.R. Method for detection and enumeration of Cryptosporidium parvum oocysts in feces, manures, and soils. Appl. Environ. Microbiol. 1999, 65, 2820–2826. [Google Scholar] [CrossRef] [Green Version]
- Valeix, N.; Costa, D.; Basmaciyan, L.; Valot, S.; Vincent, A.; Razakandrainibe, R.; Robert-Gangneux, F.; Nourrisson, C.; Pereira, B.; Fréalle, E.; et al. Multicenter Comparative Study of Six Cryptosporidium parvum DNA Extraction Protocols Including Mechanical Pretreatment from Stool Samples. Microorganisms 2020, 8, 1450. [Google Scholar] [CrossRef]
- Dumètre, A.; Dubey, J.P.; Ferguson, D.J.P.; Bongrand, P.; Azas, N.; Puech, P.H. Mechanics of the Toxoplasma gondii oocyst wall. Proc. Natl. Acad. Sci. USA 2013, 110, 11535–11540. [Google Scholar] [CrossRef] [Green Version]
- Lalonde, L.F.; Gajadhar, A.A. Highly sensitive and specific PCR assay for reliable detection of Cyclospora cayetanensis oocysts. Appl. Environ. Microbiol. 2008, 74, 4354–4358. [Google Scholar] [CrossRef] [Green Version]
- Almeria, S.; da Silva, A.J.; Blessington, T.; Cloyd, T.C.; Cinar, H.N.; Durigan, M.; Murphy, H.R. Evaluation of the U.S. Food and Drug Administration validated method for detection of Cyclospora cayetanensis in high-risk fresh produce matrices and a method modification for a prepared dish. Food Microbiol. 2018, 76, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Murphy, H.R.; Cinar, H.N.; Gopinath, G.; Noe, K.E.; Chatman, L.D.; Miranda, N.E.; Wetherington, J.H.; Neal-McKinney, J.; Pires, G.S.; Sachs, E.; et al. Interlaboratory validation of an improved method for detection of Cyclospora cayetanensis in produce using a real-time PCR assay. Food Microbiol. 2018, 69, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Assurian, A.; Murphy, H.; Shipley, A.; Cinar, H.N.; DA Silva, A.; Almeria, S. Assessment of Commercial DNA Cleanup Kits for Elimination of Real-Time PCR Inhibitors in the Detection of Cyclospora cayetanensis in Cilantro. J. Food Prot. 2020, 83, 1863–1870. [Google Scholar] [CrossRef] [PubMed]
- BAM Chapter 19c: Dead-end Ultrafiltration for the Detection of Cyclospora cayetanensis from Agricultural Water. Available online: https://www.fda.gov/media/140309/download (accessed on 17 November 2021).
- Lalonde, L.F.; Gajadhar, A.A. Optimization and validation of methods for isolation and real-time PCR identification of protozoan oocysts on leafy green vegetables and berry fruits. Food Waterborne Parasitol. 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
Flotation in Sucrose (1.12 s.d) and Fast DNATM SPIN Kit for Soil (MP Biomedicals) (Method 1) | Fast DNATM 50 mL SPIN Kit for Soil (MP Biomedicals) (Method 2) | Quick-DNATM Fecal/Soil Microbe Midiprep Kit (Zymo Research) (Method 3) | DNeasy® PowerMax® Soil Kit (Qiagen) (Method 4a—Vortexing) | DNeasy® PowerMax® Soil Kit (Qiagen) (Method 4b—Bead-Beating) | |
---|---|---|---|---|---|
Size preps in kit | 100 | 10 | 25 | 10 | 10 |
Bead beater: yes/no; Instrument recommended | Yes FastPrep®-24 instrument with provided adapter for Fastprep (24 × 2 mL tubes) | Yes FastPrep®-24 instrument and FastPrep® BigPrepr Adapter (2 × 50 mL tubes) | Yes Bead beater (can be FastPrep®-24 instrument and FastPrep® BigPrepr Adapter (2 × 50 mL tubes) | No Vortexing 10 min (vortex adaptor for 50 mL tubes (max 6 tubes). Alternatively, water bath set at 65 °C, shaking at maximum speed for 30 min | Yes FastPrep®-24 instrument and FastPrep® BigPrepr Adapter (2 × 50 mL tubes) |
User supplied reagents | 100% ethanol | 100% ethanol | Beta mercaptoethanol; 100% ethanol | None | None |
Maximum soil sample | Performed after flotation (less than 0.4 g washed material) | Up to 10 g | 5 g max (2.5 g recommended) | Up to 10 g | Up to 10 g |
Column-based? | Yes | Yes | Yes | Yes | Yes |
Steps in protocol | 17 | 18 | 10 | 19 | 19 (substitution of vortexing in step 4 by bead-beating) |
Incubation times | Increase DNA yield recommended by incubation at 55 °C for 5 min | No | No | Yes, 2–8 °C for 10 min (twice) | Yes, 2–8 °C for 10 min (twice) |
Final elution volume | 50–100 µL ** | 5 mL * | 150 µL | 5 mL * | 5 mL * |
Cost/reaction | (625/100) $6.25 | (227/10) $22.7 | (475/25) $19.0 | (290/10) $29.0 | (290/10) $29.0 |
100 Oocysts | Flotation-Sucrose | Direct DNA Isolation-MPBio (Fastprep) | Direct DNA Isolation-Zymo Fast (Zymo) | Direct DNA Isolation-Power Max (Bead Beater) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Number | Number of Positive Reactions (Out of Three) | 18 S CT Value (Mean ± Standard Deviation | IAC CT Value * (Mean ± Standard Deviation) | Number of Positive Reactions (Out of Three) | 18 S CT Value (Mean ± Standard Deviation | IAC CT Value * (Mean ± Standard Deviation) | Number of Positive Reactions (Out of Three) | 18 S CT Value (Mean ± Standard Deviation | IAC CT Value * (Mean ± Standard Deviation) | Number of Positive Reactions (Out of Three) | 18 S CT Value (Mean ± Standard Deviation | IAC CT Value * (Mean ± Standard Deviation) ** |
1 | 3 | 34.6 ± 0.8 | 26.5 ± 0.4 | 0 | Und | 25.4 ± 0.1 | 3 | 36.6 ± 0.8 | 27.7 ± 0.6 | 3 | 35.6 ± 0.9 | 24.1 ± 0.2 |
2 | 3 | 33.9 ± 1.0 | 27.1 ± 0.1 | 3 | 36.3 ± 1.6 | 27.1 ± 0.2 | 3 | 35.8 ± 0.8 | 26.6 ± 0.2 | 2 | 36.7 ± 0.5 | 24.2 ± 0.0 |
3 | 3 | 35.2 ± 1.1 | 26.7 ± 0.4 | 2 | 36.4 ± 1.45 | 28.8 ± 0.4 | 3 | 36.1 ± 0.8 | 26.6 ± 0.5 | 1 | 38.0 | 26.4 ± 0.2 |
4 | 3 | 35.8 ± 0.1 | 26.4 ± 0.4 | 2 | 37.0 ± 1.3 | 26.4 ± 0.3 | 1 | 37.0 | 38.4 ± 2.3 | 1 | 36.7 | 25.2 ± 0.2 |
5 | 3 | 35.8 ± 1.2 | 26.1 ± 0.1 | 3 | 37.2 ± 1.0 | 33.8 ± 2.5 | 2 | 37.3 ± 1.0 | 30.5 ± 1.7 | 0 | Und | 26.8 ± 1.1 |
Average | 35.1 ± 0.8 | 26.6 ± 0.4 | 36.7 ± 0.4 | 28.3 ± 3.3 | 36.6 ± 0.7 | 30.6 ± 1.3 | 36.9 ± 1.5 | 25.4 ± 0.4 | ||||
Unseeded | 0 | Und | 26.7 ± 0.2 | 0 | Und | 27.1 ± 0.5 | 0 | Und | 25.0 ± 0.1 | 0 | Und | 23.9 ± 0.1 |
Seeding Level | Flotation Method in Soil Samples (10 g) | ||
---|---|---|---|
Sample Number | Number of Positive Reactions (Out of Three) | 18 S CT Value (Mean ± Standard Deviation) | |
20 oocysts | 1 | 2 | 37.9 ± 0.1 |
2 | 3 | 36.9 ± 0.6 | |
3 | 3 | 37.7 ± 0.1 | |
4 | 2 | 37.9 ± 0.7 | |
5 | 1 | 36.5 | |
6 | 2 | 37.3 ± 1.9 | |
7 | 2 | 36.7 ± 1.3 | |
8 | 0 | Und | |
9 | 0 | Und | |
10 | 2 | 36.6 ± 0.0 | |
10 oocysts | 1 | 0 | Und |
2 | 0 | Und | |
3 | 0 | Und | |
4 | 0 | Und | |
5 | 2 | 36.9 ± 0.1 | |
6 | 1 | 37.8 | |
7 | 2 | 37.6 ± 0.1 | |
8 | 0 | Und | |
9 | 0 | Und | |
10 | 0 | Und |
100 Oocysts | Flotation-Sucrose | Direct DNA Isolation-Power Max (Bead Beater) | ||||
---|---|---|---|---|---|---|
Sample Number | Number of Positive Reactions (Out of Three) | Mit1C CT Value (Mean ± Standard Deviation) | IAC CT Value * (Mean ± Standard Deviation) | Number of Positive Reactions (Out of Three) | Mit1C CT Value (Mean ± Standard Deviation) | IAC CT Value * (Mean ± Standard Deviation) ** |
1 | 3 | 32.0 ± 0.2 | 29.5 ± 0.6 | 3 | 34.2 ± 0.6 | 27.3 ± 0.1 |
2 | 3 | 31.5 ± 0.1 | 29.2 ± 0.2 | 3 | 34.7 ± 0.4 | 26.8 ± 0.1 |
3 | 3 | 31.5 ± 0.3 | 30.0 ± 0.8 | 3 | 33.3 ± 0.6 | 29.7 ± 0.0 |
4 | 3 | 32.4 ± 0.3 | 28.7 ± 0.1 | 3 | 36.1 ± 0.2 | 29.3 ± 0.1 |
5 | 3 | 33.1 ± 1.0 | 29.6 ± 0.3 | 3 | 34.0 ± 0.8 | 29.9 ± 0.2 |
Average | 32.1 ± 0.7 | 29.4 ± 0.5 | 34.5 ± 1.0 | 29.6 ± 0.3 | ||
Unseeded | 0 | Und | 29.9 ± 0.1 | 0 | Und | 28.6 ± 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shipley, A.; Arida, J.; Almeria, S. Comparative Evaluation of an Easy Laboratory Method for the Concentration of Oocysts and Commercial DNA Isolation Kits for the Molecular Detection of Cyclospora cayetanensis in Silt Loam Soil Samples. Microorganisms 2022, 10, 1431. https://doi.org/10.3390/microorganisms10071431
Shipley A, Arida J, Almeria S. Comparative Evaluation of an Easy Laboratory Method for the Concentration of Oocysts and Commercial DNA Isolation Kits for the Molecular Detection of Cyclospora cayetanensis in Silt Loam Soil Samples. Microorganisms. 2022; 10(7):1431. https://doi.org/10.3390/microorganisms10071431
Chicago/Turabian StyleShipley, Alicia, Joseph Arida, and Sonia Almeria. 2022. "Comparative Evaluation of an Easy Laboratory Method for the Concentration of Oocysts and Commercial DNA Isolation Kits for the Molecular Detection of Cyclospora cayetanensis in Silt Loam Soil Samples" Microorganisms 10, no. 7: 1431. https://doi.org/10.3390/microorganisms10071431
APA StyleShipley, A., Arida, J., & Almeria, S. (2022). Comparative Evaluation of an Easy Laboratory Method for the Concentration of Oocysts and Commercial DNA Isolation Kits for the Molecular Detection of Cyclospora cayetanensis in Silt Loam Soil Samples. Microorganisms, 10(7), 1431. https://doi.org/10.3390/microorganisms10071431