Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. General
2.2. Chemistry
2.2.1. Synthesis of N-(2,5-Dibromo-4-nitrophenyl)acetamide (7)
2.2.2. Synthesis of 2,5-Dibromobenzene-1,4-diamine (8)
2.2.3. General Procedure for Schiff Bases Synthesis (9–10)
- (1E,1′E)-N,N′-(2,5-dibromo-1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) (9a): Yellow solid (50% of yield). Mp: 272–274 °C, FT-IR(KBr): υ 3025, 2901, 1629, 1598 cm−1. 1H-NMR (300 MHz, CDCl3, δ, ppm): 8.82 (4H, dd, J = 4.47, 1.31 Hz, H7), 8.44 (2H, s, H4), 7.83 (4H, dd, J = 4.47 Hz, J = 1.59 Hz, H6), 7.41 (2H, s, H2). 13C-NMR (75 MHz, CDCl3, δ, ppm): 159.9 (C4), 150.8 (C7), 148.3 (C3), 141.9 (C5), 123.4 (C2), 122.5 (C6), 118.4 (C1). EI-MS m/z: 446 [M + 2]+, 444 [M]+, 442 [M − 2]+.
- (1E,1′E)-N,N′-(2,5-dibromo-1,4-phenylene)bis(1-phenylmethanimine) (9b): Pale yellow solid (82% of yield). Mp: 209–211 °C, FT-IR(KBr): υ 3072, 3053, 3019, 1625, 1575 cm−1. 1H-NMR (300 MHz, CDCl3, δ, ppm): 8.41 (2H, s, H4), 7.95 (4H, dd, J = 7.98, 2.33 Hz, H6), 7.52 (6H, m, H7 + H8), 7.35 (2H, s, H2). 13C-NMR (75 MHz, CDCl3, δ, ppm): 161.9 (C4),148.7 (C3), 135.7 (C5), 132.2 (C8), 129.4 (C6), 129.0 (C7), 123.5 (C2), 118.2(C1). EI-MS m/z: 444 [M + 2]+, 442 [M]+, 440 [M − 2]+.
- (1E,1′E)-N,N′-(2,5-dibromo-1,4-phenylene)bis(1-(4-methoxyphenyl)methanimine) (9c): Pale yellow solid (71% of yield). Mp: 220–223 °C, FT-IR(KBr): υ 3071, 2927, 2834, 1622, 1571 cm−1. 1H-NMR (300 MHz, CDCl3, δ, ppm): 8.33 (2H, s, H4), 7.92 (4H, d, J = 8.8 Hz, H6), 7.35 (2H, s, H2), 7.02 (4H, d, J = 8.8 Hz, H7), 3.88 (6H, s, H9). 13C-NMR (75 MHz, CDCl3, δ, ppm): 162.7 (C8), 160.8 (C4), 148.4 (C3), 130.9 (C6), 128.6 (C5), 123.2 (C2),118.1 (C1), 114.3 (C7), 55.5 (C9). EI-MS m/z: 504 [M + 2]+, 502 [M]+, 500 [M − 2]+.
- (1E,1′E)-N,N′-(2,5-dibromo-1,4-phenylene)bis(1-(4(trifluoromethyl)phenyl)methanimine) (9d): Pale yellow solid (80% of yield). Mp: 185–187 °C, FT-IR (KBr): υ 2923, 1627, 1578 cm−1. 1H-NMR (300 MHz, CDCl3, δ, ppm): 8.48 (2H, s, H4), 8.12 (4H, d, J = 8.20 Hz, H6), 7.77 (4H, d, J = 8.20 Hz, H7), 7.40 (2H, s, H2). 13C-NMR (75 MHz, CDCl3, δ, ppm): 160.2 (C4), 148.4 (C3), 138.5 (C5), 133.7 (2J13C-19F = 32.8 Hz, C8), 129.4 (C6), 125.9 (3J13C-19F = 3.73 Hz, C7), 125.6 (C9), 123.3 (C2), 118.3 (C1). EI-MS m/z: 580 [M + 2]+, 578 [M]+, 576 [M − 2]+.
- 2,2′-((1E,1′E)-((2,5-dibromo-1,4-phenylene)bis(azaneylylidene))bis(methaneylylidene))diphenol (9e): Orange solid (73% of yield). Mp: 280–282°C, FT-IR(KBr): υ 3447, 1624, 1609, 1570 cm−1. 1H-NMR (300 MHz, CDCl3, δ, ppm): 12.86 (2H, s, H11), 8.66 (2H, s, H4), 7.61 (2H, s, H2), 7.46 (4H, m, H8 + H10), 7.00 (4H, m, H7 + H9). 13C-NMR (75 MHz, CDCl3, δ, ppm): 165.6 (C6), 160.9 (C4), 145.5 (C3), 134.7 (C5), 133.6 (C10), 123.9 (C8), 120.2 (C2), 119.9 (C9), 119.5 (C7), 117.2 (C1). EI-MS m/z: 476 [M + 2]+, 474 [M]+, 472 [M − 2]+.
- (E)-2,5-dibromo-4-((pyridin-4-ylmethylene)amino)aniline (10a): Yellow solid (9% of yield). Mp: 146–147 °C, FT-IR(KBr): υ 3466, 3306, 1630, 1570 cm−1. 1H-NMR (300 MHz, (Acetone-d6, δ, ppm): 8.75 (2H, dd, J = 6.1, 1.58 Hz, H7), 8.66 (1H, s, H4), 7.88 (2H, dd, J = 6.1 Hz, 1.58 Hz, H6), 7.57 (1H, s, H2), 7.27 (1H, s, H9), 5.34 (2H, s, H11). 13C-NMR (75 MHz, CDCl3, δ, ppm): 156.2 (C4), 150.6 (C7), 144.1 (C10), 142.6 (C5), 140.0 (C3), 122.3 (C6), 122.2 (C2), 120.7 (C8), 119.0 (C9), 108.2 (C1). EI-MS m/z: 357 [M + 2]+, 355 [M]+, 353 [M − 2]+.
2.3. Bacterial Strains
2.4. In Vitro Antibacterial Activity Assays
2.5. Statistical Analysis
2.6. Molecular Docking Analysis
3. Results and Discussion
3.1. Chemistry
3.2. In Vitro Antibacterial Activity
3.3. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti-Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Russell, C.C.; Stevens, A.; Pi, H.; Khazandi, M.; Ogunniyi, A.D.; Young, K.A.; Baker, J.R.; McCluskey, S.N.; Page, S.W.; Trott, D.J.; et al. Gram-positive and Gram-negative antibiotic activity of asymmetric and monomeric robenidine analogues. ChemMedChem 2018, 13, 2573–2580. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, T.; Sieber, S.A. Beta-lactones decrease the intracellular virulence of Listeria monocytogenes in macrophages. ChemMedChem 2009, 4, 1260–1263. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. Tackling Drug-resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance: London, UK, 2016. [Google Scholar]
- von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Häbich, D. Antibacterial natural products in medicinal chemistry—exodus or revival? Angew. Chem. Int. Ed. 2006, 45, 5072–5129. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, F.; Baldelli, V.; Halliday, N.; Pantalone, P.; Polticelli, F.; Fiscarelli, E.; Williams, P.; Visca, P.; Leoni, L.; Rampioni, G. Identification of FDA-approved drugs as antivirulence agents targeting the quorum-sensing system of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2018, 62, e01296-18. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Tharmalingam, N.; Liu, Q.; Jayamani, E.; Kim, W.; Fuchs, B.B.; Zhang, R.; Vilcinskas, A.; Mylonakis, E. Synergistic efficacy of Aedes aegypti antimicrobial peptide cecropin A2 and tetracycline against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e00686-17. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Wang, D.; Xiang, H.; Feng, H.; Jiang, Y.; Xia, L.; Dong, J.; Lu, J.; Yu, L.; Deng, X. Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates. PLoS ONE 2010, 5, e9736. [Google Scholar] [CrossRef] [Green Version]
- Manukumar, H.M.; Umesha, S. MALDI-TOF-MS based identification and molecular characterization of food associated methicillin-resistant Staphylococcus aureus. Sci. Rep. 2017, 7, 11414. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.-M.; Davies, C. Penicillin-binding protein 3 is essential for growth of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2017, 61, e01651-16. [Google Scholar] [CrossRef] [Green Version]
- Alanber, M.N.; Alharbi, N.S.; Khaled, J.M. Evaluation of multidrug-resistant Bacillus strains causing public health risks in powdered infant milk formulas. J. Infect. Public Health 2020, 13, 1462–1468. [Google Scholar] [CrossRef]
- Watson, R. Listeriosis remains a cause for concern in Europe. Br. Med. J. 2009, 338, b319. [Google Scholar] [CrossRef] [PubMed]
- Jeandet, P.; Sobarzo-Sánchez, E.; Silva, A.S.; Clément, C.; Nabavi, S.F.; Battino, M.; Rasekhian, M.; Belwal, T.; Habtemariam, S.; Koffas, M.; et al. Whole-cell biocatalytic, enzymatic and green chemistry methods for the production of resveratrol and its derivatives. Biotechnol. Adv. 2020, 39, 107461. [Google Scholar] [CrossRef] [PubMed]
- Kececiler-Emir, C.; Ilhan-Ayisigi, E.; Celen-Erden, C.; Nalbantsoy, A.; Yesil-Celiktas, O. Synthesis of resveratrol loaded hybrid silica-PAMAM dendrimer nanoparticles with emphases on inducible nitric oxide synthase and cytotoxicity. Plant Foods Hum. Nutr. 2021, 76, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kerem, Z.; Chetrit, D.; Shoseyov, O.; Regev-Shoshani, G. Protection of lipids from oxidation by epicatechin, trans-resveratrol, and gallic and caffeic acids in intestinal model systems. J. Agric. Food Chem. 2006, 54, 10288–10293. [Google Scholar] [CrossRef]
- Kataria, R.; Khatkar, A. Resveratrol in various pockets: A review. Curr. Top. Med. Chem. 2019, 19, 116–122. [Google Scholar] [CrossRef]
- Hong, M.; Li, J.; Li, S.; Almutairi, M.M. Resveratrol derivative, trans-3, 5, 4′-trimethoxystilbene, prevents the developing of atherosclerotic lesions and attenuates cholesterol accumulation in macrophage foam cells. Mol. Nutr. Food Res. 2020, 64, 1901115. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef]
- Mellado, M.; González, C.; Mella, J.; Aguilar, L.F.; Celik, I.; Borges, F.; Uriarte, E.; Delogu, G.; Viña, D.; Matos, M.J. Coumarin-resveratrol-inspired hybrids as monoamine oxidase B inhibitors: 3-Phenylcoumarin versus trans-6-styrylcoumarin. Molecules 2022, 27, 928. [Google Scholar] [CrossRef]
- Salla, M.; Pandya, V.; Bhullar, K.S.; Kerek, E.; Wong, Y.F.; Losch, R.; Ou, J.; Aldawsari, F.S.; Velazquez-Martinez, C.; Thiesen, A.; et al. Resveratrol and resveratrol-aspirin hybrid compounds as potent intestinal anti-inflammatory and anti-tumor drugs. Molecules 2020, 25, 3849. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Wu, J.B.; Yin, W.; Zhang, Y.H.; Huang, Z.J. Design, synthesis, and biological evaluation of ligustrazine/resveratrol hybrids as potential anti-ischemic stroke agents. Chin. J. Nat. Med. 2020, 18, 633–640. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Song, Q.; Cao, Z.; Shi, Y.; Deng, Y.; Zhang, L. Pyridoxine-resveratrol hybrids as novel inhibitors of MAO-B with antioxidant and neuroprotective activities for the treatment of Parkinson’s disease. Bioorg. Chem. 2020, 97, 103707. [Google Scholar] [CrossRef] [PubMed]
- Thakkar, S.S.; Thakor, P.; Ray, A.; Doshi, H.; Thakkar, V.R. Benzothiazole analogues: Synthesis, characterization, MO calculations with PM6 and DFT, in silico studies and in vitro antimalarial as DHFR inhibitors and antimicrobial activities. Bioorg. Med. Chem. 2017, 25, 5396–5406. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Lim, S.M.; Ramasamy, K.; Vasudevan, M.; Shah, S.A.A.; Narasimhan, B. Diazenyl schiff bases: Synthesis, spectral analysis, antimicrobial studies and cytotoxic activity on human colorectal carcinoma cell line (HCT-116). Arab. J. Chem. 2020, 13, 377–392. [Google Scholar] [CrossRef]
- Chioma, F.; Ekennia, A.C.; Osowole, A.A.; Okafor, S.N.; Ibeji, C.U.; Onwudiwe, D.C.; Ujam, O.T. Synthesis, characterization, in-vitro antimicrobial properties, molecular docking and DFT studies of 3-{(E)-[(4,6-dimethylpyrimidin-2-yl)imino]methyl} naphthalen-2-ol and Heteroleptic Mn(II), Co(II), Ni(II) and Zn(II) complexes. Open Chem. 2018, 16, 184–200. [Google Scholar] [CrossRef]
- Ünver, H.; Yıldız, M.; Kiraz, A.; Iskeleli, N.O.; Erdönmez, A.; Dülger, B.; Durlu, T.N. Spectroscopic studies, antimicrobial activities, and crystal structure of N-[2-hydroxy-1-naphthylidene]3, 5-bis(trifluoromethyl)aniline. J. Chem. Crystallogr. 2006, 36, 229–237. [Google Scholar] [CrossRef]
- Yıldız, M.; Ünver, H.; Dülger, B.; Erdener, D.; Ocak, N.; Erdönmez, A.; Durlu, T.N. Spectroscopic study, antimicrobial activity and crystal structures of N-(2-hydroxy-5-nitrobenzalidene)4-aminomorpholine and N-(2-hydroxy-1-naphthylidene)4-aminomorpholine. J. Mol. Struct. 2005, 738, 253–260. [Google Scholar] [CrossRef]
- Liu, H.; Chu, Z.-W.; Xia, D.-G.; Cao, H.-Q.; Lv, X.-H. Discovery of novel multi-substituted benzo-indole pyrazole schiff base derivatives with antibacterial activity targeting DNA gyrase. Bioorg. Chem. 2020, 99, 103807. [Google Scholar] [CrossRef]
- Lamba, J.; Tour, J.M. Imine-bridged planar poly(p-phenylene) derivatives for maximization of extended.pi.-conjugation. The common intermediate approach. J. Am. Chem. Soc. 1994, 116, 11723–11736. [Google Scholar] [CrossRef]
- Aguilar-Valdez, N.; Maldonado-Domínguez, M.; Arcos-Ramos, R.; Romero-Ávila, M.; Santillan, R.; Farfán, N. Synthesis of steroidal molecular compasses: Exploration of the controlled assembly of solid organic materials. CrystEngComm 2017, 19, 1771–1777. [Google Scholar] [CrossRef]
- Wilson, D.; Djukic, B.; Lemaire, M.T. Synthesis of bromine- or aryl-substituted ditopic Schiff base ligands and their bimetallic iron(II) complexes: Electronic and magnetic properties. Transit. Met. Chem. 2014, 39, 17–24. [Google Scholar] [CrossRef]
- Díaz, K.; Espinoza, L.; Madrid, A.; Pizarro, L.; Chamy, R. Isolation and identification of compounds from bioactive extracts of Taraxacum officinale Weber ex F. H. Wigg. (dandelion) as a potential source of antibacterial agents. Evid.-Based Complement. Altern. Med. 2018, 2018, 2706417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olea, A.F.; Espinoza, L.; Sedan, C.; Thomas, M.; Martínez, R.; Mellado, M.; Carrasco, H.; Díaz, K. Synthesis and In Vitro Growth Inhibition of 2-Allylphenol Derivatives Against Phythopthora cinnamomi Rands. Molecules 2019, 24, 4196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 2011, 10, 128–134. [Google Scholar] [CrossRef]
- Luczywo, A.; González, L.G.; Aguiar, A.C.C.; de Souza, J.O.; Souza, G.E.; Oliva, G.; Aguilar, L.F.; Casal, J.J.; Guido, R.V.C.; Asís, S.E.; et al. 3-aryl-indolinones derivatives as antiplasmodial agents: Synthesis, biological activity and computational analysis. Nat. Prod. Res. 2021, 1–7. [Google Scholar] [CrossRef]
- Mellado, M.; Salas, C.O.; Uriarte, E.; Viña, D.; Jara-Gutiérrez, C.; Matos, M.J.; Cuellar, M. Design, synthesis and docking calculations of prenylated chalcones as selective monoamine oxidase B inhibitors with antioxidant activity. ChemistrySelect 2019, 4, 7698–7703. [Google Scholar] [CrossRef]
- Hall, M.; Grundström, C.; Begum, A.; Lindberg, M.J.; Sauer, U.H.; Almqvist, F.; Johansson, J.; Sauer-Eriksson, A.E. Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria. Proc. Natl. Acad. Sci. USA 2016, 113, 14733–14738. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.-H.; Kim, Y.-S.; Rojviriya, C.; Ha, S.-C.; Kang, B.S.; Kim, Y.-G. Crystal structures of bifunctional penicillin-binding protein 4 from Listeria monocytogenes. Antimicrob. Agents Chemother. 2013, 57, 3507–3512. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Anand, R.; Allan, P.W.; Hassan, A.E.A.; Hong, J.S.; Levasseur, D.N.; McPherson, D.T.; Parker, W.B.; Secrist, J.A.; Sorscher, E.J.; et al. Designer gene therapy using an Escherichia coli purine nucleoside phosphorylase/prodrug system. Chem. Biol. 2003, 10, 1173–1181. [Google Scholar] [CrossRef] [Green Version]
- Ferraris, D.M.; Gherardi, E.; Di, Y.; Heinz, D.W.; Niemann, H.H. Ligand-mediated dimerization of the Met receptor tyrosine kinase by the bacterial invasion protein InlB. J. Mol. Biol. 2010, 395, 522–532. [Google Scholar] [CrossRef]
- Ooi, A.; Hussain, S.; Seyedarabi, A.; Pickersgill, R.W. Structure of internalin C from Listeria monocytogenes. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006, 62, 1287–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The PyMOL Molecular Graphics System; Version 2.0 Schrödinger; LLC, Educational Licence: New York, NY, USA, 2010.
- Sánchez-González, R.; Imbarack, E.; Suazo, C.; Soto, J.P.; Leyton, P.; Sánchez-Cortés, S.; Campos-Vallette, M. Synthesis, characterization and surface enhanced Raman spectroscopy study of a new family of different substituted cruciform molecular systems deposited on gold nanoparticles. J. Raman Spectrosc. 2021, 52, 959–970. [Google Scholar] [CrossRef]
- Doornbos, T.; Strating, J. The complete N-alkylation of 1,4-diamino-2,5-dibromobenzene and of 1,4-diamino-2,5-dimethoxybenzene. Org. Prep. Proced. 1969, 1, 287–303. [Google Scholar] [CrossRef]
- Buser, H.R. Selective detection of brominated aromatic compounds using gas chromatography/negative chemical ionization mass spectrometry. Anal. Chem. 1986, 58, 2913–2919. [Google Scholar] [CrossRef]
- Beveridge, T.J. Structures of Gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 1999, 181, 4725–4733. [Google Scholar] [CrossRef] [Green Version]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Bazzaz, B.S.F. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Al-Zereini, W.; Schuhmann, I.; Laatsch, H.; Helmke, E.; Anke, H. New aromatic nitro compounds from Salegentibacter sp. T436, an arctic sea ice bacterium: Taxonomy, fermentation, isolation and biological activities. J. Antibiot. 2007, 60, 301–308. [Google Scholar] [CrossRef] [Green Version]
- Misra, P.; Mishra, B.K.; Behera, G.B. Hydrolysis of schiff bases, 1: Kinetics and mechanism of spontaneous, acid, and base hydrolysis of N-(2/4-hydroxybenzylidene)-2-aminobenzothiazoles. Int. J. Chem. Kinet. 1991, 23, 639–654. [Google Scholar] [CrossRef]
- Robertson, J.; Gizdavic-Nikolaidis, M.; Nieuwoudt, M.K.; Swift, S. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ 2018, 6, e5135. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.S.L.; Tan, L.T.-H.; Chan, K.-G.; Yap, W.H.; Pusparajah, P.; Chuah, L.-H.; Ming, L.C.; Khan, T.M.; Lee, L.-H.; Goh, B.-H. Resveratrol—potential antibacterial agent against foodborne pathogens. Front. Pharmacol. 2018, 9, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.; Mendonsa, R.; Koli, M.; Subramanian, M.; Nayak, S.K. Antibacterial activity of resveratrol structural analogues: A mechanistic evaluation of the structure-activity relationship. Toxicol. Appl. Pharmacol. 2019, 367, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Mattio, L.M.; Dallavalle, S.; Musso, L.; Filardi, R.; Franzetti, L.; Pellegrino, L.; D’Incecco, P.; Mora, D.; Pinto, A.; Arioli, S. Antimicrobial activity of resveratrol-derived monomers and dimers against foodborne pathogens. Sci. Rep. 2019, 9, 19525. [Google Scholar] [CrossRef] [PubMed]
- Bierne, H.; Cossart, P. Listeria monocytogenes surface proteins: From genome predictions to function. Microbiol. Mol. Biol. Rev. 2007, 71, 377–397. [Google Scholar] [CrossRef] [Green Version]
- Schubert, W.D.; Urbanke, C.; Ziehm, T.; Beier, V.; Machner, M.P.; Domann, E.; Wehland, J.; Chakraborty, T.; Heinz, D.W. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 2002, 111, 825–836. [Google Scholar] [CrossRef] [Green Version]
Comp | CLogP † | P. aeruginosa | S. aureus | L. monocytogenes | Bacillus sp. | ||||
---|---|---|---|---|---|---|---|---|---|
Activity | EC50 a | Activity | EC50 a | Activity | EC50 a | Activity | EC50 a | ||
Res c | 2.83 | +++ | 226.97 ± 0.07 | +++ | 152.21 ± 0.03 | + | >320 | + | >320 |
6 | 3.07 | ++++ | 18.72 ± 0.97 | ++ | 305 ± 0.65 | ++++ | 24.29 ± 1.02 | ++ | >320 |
7 | 2.97 | ++++ | 43.20 ± 0.99 | + | >320 | ++++ | 3.07± 0.38 * | − | − |
8 | 1.96 | ++++ | 21.49 ± 1.50 | ++ | >320 | ++++ | 1.00± 0.32 * | − | − |
9a | 3.10 | ++++ | 26.04 ± 1.18 | + | >320 | ++++ | 1.43 ± 0.60 * | − | − |
9b | 5.58 | ++ | >320 | + | >320 | ++++ | 0.75 ± 0.25 * | ++++ | ODSC |
9c | 6.27 | ++++ | 40.0 ± 0.95 | + | >320 | ++++ | 10.07 ± 1.31 | ++++ | ODSC |
9d | 7.35 | In b | In b | In b | In b | In b | In b | In b | In b |
9e | 6.05 | In b | In b | In b | In b | In b | In b | In b | In b |
10a | 2.06 | ++ | >320 | ++ | >320 | ++++ | 5.02 ± 1.02 * | ++++ | ODSC |
C+ | 1.28 | ++++ | ODSC | ++++ | ODSC | ++++ | 10.33 ± 1.61 | ++++ | 18.20 ± 0.69 * |
Compound | Calculated Affinity Energy (kcal/mol) | ||||
---|---|---|---|---|---|
5LRR | 3ZG8 | 1O6V | 2WQU | 1XEU | |
Res a | −6.6 | −6.1 | −4.3 | −4.6 | −3.6 |
6 | −4.9 | −4.3 | −3.7 | −3.5 | −3.7 |
7 | −6.2 | −5.8 | −3.9 | −4.4 | −4.5 |
8 | −5.1 | −4.6 | −3.9 | −4.1 | −3.9 |
9a | −7.6 | −7.1 | −5.0 | −4.9 | −5.1 |
9b | −7.5 | −6.8 | −5.2 | −5.1 | −5.1 |
9c | −7.3 | −6.3 | −5.5 | −4.6 | −4.4 |
10a | −5.9 | −6.1 | −4.5 | −4.6 | −4.8 |
NL b | −6.1 | −5.8 | −4.3 | −4.1 | −3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-González, R.; Leyton, P.; Aguilar, L.F.; Reyna-Jeldes, M.; Coddou, C.; Díaz, K.; Mellado, M. Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study. Microorganisms 2022, 10, 1483. https://doi.org/10.3390/microorganisms10081483
Sánchez-González R, Leyton P, Aguilar LF, Reyna-Jeldes M, Coddou C, Díaz K, Mellado M. Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study. Microorganisms. 2022; 10(8):1483. https://doi.org/10.3390/microorganisms10081483
Chicago/Turabian StyleSánchez-González, Rodrigo, Patricio Leyton, Luis F. Aguilar, Mauricio Reyna-Jeldes, Claudio Coddou, Katy Díaz, and Marco Mellado. 2022. "Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study" Microorganisms 10, no. 8: 1483. https://doi.org/10.3390/microorganisms10081483
APA StyleSánchez-González, R., Leyton, P., Aguilar, L. F., Reyna-Jeldes, M., Coddou, C., Díaz, K., & Mellado, M. (2022). Resveratrol-Schiff Base Hybrid Compounds with Selective Antibacterial Activity: Synthesis, Biological Activity, and Computational Study. Microorganisms, 10(8), 1483. https://doi.org/10.3390/microorganisms10081483