Mycobacterium tuberculosis Diversity Exploration: A Way to Serve the Three Main Weapons against Epidemics, Hygiene, Vaccine Development and Chemotherapy
Author Contributions
Funding
Conflicts of Interest
References
- Eilersen, A.; Sneppen, K. Cost-benefit of limited isolation and testing in COVID-19 mitigation. Sci. Rep. 2020, 10, 18543. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kang, A.; Luo, X.; Jeyanathan, M.; Gillgrass, A.; Afkhami, S.; Xing, Z. COVID-19: Current knowledge in clinical features, immunological responses, and vaccine development. FASEB J. 2021, 35, e21409. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Jakhmola, S.; Indari, O.; Jha, H.C.; Chen, Z.S.; Tripathi, V.; Perez de la Lastra, J.M. Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Front. Immunol. 2021, 12, 658519. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lai, S.; Gao, G.F.; Shi, W. The emergence, genomic diversity and global spread of SARS-CoV-2. Nature 2021, 600, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Pinto Neto, O.; Kennedy, D.M.; Reis, J.C.; Wang, Y.; Brizzi, A.C.B.; Zambrano, G.J.; de Souza, J.M.; Pedroso, W.; de Mello Pedreiro, R.C.; de Matos Brizzi, B.; et al. Mathematical model of COVID-19 intervention scenarios for Sao Paulo-Brazil. Nat. Commun. 2021, 12, 418. [Google Scholar] [CrossRef] [PubMed]
- Arita, I. Virological evidence for the success of the smallpox eradication programme. Nature 1979, 279, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Houben, R.M.; Dodd, P.J. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med. 2016, 13, e1002152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanmuganathan, R.; Subramaniam, I.D. Clinical manifestation and risk factors of tuberculosis infection in Malaysia: Case study of a community clinic. Glob. J. Health Sci. 2015, 7, 110–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolf, F.; Joaquim, L.C.; Vieira, C.; Bjerregaard-Andersen, M.; Andersen, A.; Erlandsen, M.; Sodemann, M.; Andersen, P.L.; Wejse, C. The Bandim tuberculosis score: Reliability and comparison with the Karnofsky performance score. Scand. J. Infect. Dis. 2013, 45, 256–264. [Google Scholar] [CrossRef]
- McHenry, M.L.; Bartlett, J.; Igo, R.P., Jr.; Wampande, E.M.; Benchek, P.; Mayanja-Kizza, H.; Fluegge, K.; Hall, N.B.; Gagneux, S.; Tishkoff, S.A.; et al. Interaction between host genes and Mycobacterium tuberculosis lineage can affect tuberculosis severity: Evidence for coevolution? PLoS Genet. 2020, 16, e1008728. [Google Scholar] [CrossRef] [PubMed]
- Gagneux, S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018, 16, 202–213. [Google Scholar] [CrossRef] [PubMed]
- Coscolla, M.; Gagneux, S.; Menardo, F.; Loiseau, C.; Ruiz-Rodriguez, P.; Borrell, S.; Otchere, I.D.; Asante-Poku, A.; Asare, P.; Sanchez-Buso, L.; et al. Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microb. Genom. 2021, 7, 477. [Google Scholar] [CrossRef] [PubMed]
- Fenner, L.; Gagneux, S.; Janssens, J.P.; Fehr, J.; Cavassini, M.; Hoffmann, M.; Bernasconi, E.; Schrenzel, J.; Bodmer, T.; Bottger, E.C.; et al. Tuberculosis in HIV-negative and HIV-infected patients in a low-incidence country: Clinical characteristics and treatment outcomes. PLoS ONE 2012, 7, e34186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mokrousov, I.; Pasechnik, O.; Vyazovaya, A.; Yarusova, I.; Gerasimova, A.; Blokh, A.; Zhuravlev, V. Impact of pathobiological diversity of Mycobacterium tuberculosis on clinical features and lethal outcome of tuberculosis. BMC Microbiol. 2022, 22, 50. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Refrégier, G.; Genestet, C. Mycobacterium tuberculosis Diversity Exploration: A Way to Serve the Three Main Weapons against Epidemics, Hygiene, Vaccine Development and Chemotherapy. Microorganisms 2022, 10, 1492. https://doi.org/10.3390/microorganisms10081492
Refrégier G, Genestet C. Mycobacterium tuberculosis Diversity Exploration: A Way to Serve the Three Main Weapons against Epidemics, Hygiene, Vaccine Development and Chemotherapy. Microorganisms. 2022; 10(8):1492. https://doi.org/10.3390/microorganisms10081492
Chicago/Turabian StyleRefrégier, Guislaine, and Charlotte Genestet. 2022. "Mycobacterium tuberculosis Diversity Exploration: A Way to Serve the Three Main Weapons against Epidemics, Hygiene, Vaccine Development and Chemotherapy" Microorganisms 10, no. 8: 1492. https://doi.org/10.3390/microorganisms10081492
APA StyleRefrégier, G., & Genestet, C. (2022). Mycobacterium tuberculosis Diversity Exploration: A Way to Serve the Three Main Weapons against Epidemics, Hygiene, Vaccine Development and Chemotherapy. Microorganisms, 10(8), 1492. https://doi.org/10.3390/microorganisms10081492