Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation of Microbial Strains and of Plants
2.1.1. Bacterial Strains
2.1.2. Phytophthora Infestans
2.1.3. Potato Plantsa
2.2. Inoculation of Plants and Collection of Volatiles
2.3. Analysis of the Emitted Volatiles by HS-SPME GC-PFPD/MS
2.4. Data and Statistical Analysis
3. Results
3.1. Inoculation with Pseudomonas strains Leads to Major Changes in Potato Leaf Volatile Emissions
3.2. Volatiles with Known Anti-Phytophthora Activity Are Emitted on Potato Leaves by Pseudomonas sp. S35
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schlaeppi, K.; Bulgarelli, D. The Plant Microbiome at Work. Mol. Plant-Microbe Interact. 2015, 28, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The Plant Microbiota: Systems-Level Insights and Perspectives. Annu. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef] [PubMed]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef]
- Haas, D.; Défago, G. Biological Control of Soil-Borne Pathogens by Fluorescent Pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.M.; Bakker, P.A.H.M.H.M.; Pieterse, M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; et al. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Weisskopf, L. The Potential of Bacterial Volatiles for Crop Protection against Phytophathogenic Fungi. In Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Formatex: Guadalajara, Mexico, 2013; pp. 1352–1363. [Google Scholar]
- Garbeva, P.; Weisskopf, L. Airborne Medicine—Bacterial Volatiles and Their Influence on Plant Health. New Phytol. 2020, 226, 32–43. [Google Scholar] [CrossRef]
- Hunziker, L.; Bönisch, D.; Groenhagen, U.; Bailly, A.; Schulz, S.; Weisskopf, L. Pseudomonas Strains Naturally Associated with Potato Plants Produce Volatiles with High Potential for Inhibition of Phytophthora Infestans. Appl. Environ. Microbiol. 2015, 81, 821–830. [Google Scholar] [CrossRef]
- Corre, M.; Mercier, A.; Bouteiller, M.; Khalil, A.; Ginevra, C.; Depayras, S.; Dupont, C. Bacterial Long-Range Warfare: Aerial Killing of Legionella Pneumophila by Pseudomonas Fl Uorescens. Microbiol. Spectr. 2021, 9, e00404-21. [Google Scholar] [CrossRef]
- Ossowicki, A.; Jafra, S.; Garbeva, P. The Antimicrobial Volatile Power of the Rhizospheric Isolate Pseudomonas Donghuensis P482. PLoS ONE 2017, 12, e0174362. [Google Scholar] [CrossRef]
- Fernando, W.G.D.; Ramarathnam, R.; Krishnamoorthy, A.S.; Savchuk, S.C. Identification and Use of Potential Bacterial Organic Antifungal Volatiles in Biocontrol. Soil Biol. Biochem. 2005, 37, 955–964. [Google Scholar] [CrossRef]
- Ryu, C.-M.; Farag, M.A.; Hu, C.-H.; Reddy, M.S.; Wei, H.-X.; Paré, P.W.; Kloepper, J.W. Bacterial Volatiles Promote Growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 2003, 100, 4927–4932. [Google Scholar] [CrossRef]
- Ryu, C.-M.; Farag, M.A.; Hu, C.-H.; Reddy, M.S.; Kloepper, J.W.; Paré, P.W. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiol. 2004, 134, 1017–1026. [Google Scholar] [CrossRef]
- Baroja-Fernández, E.; Almagro, G.; Sánchez-López, Á.M.; Bahaji, A.; Gámez-Arcas, S.; De Diego, N.; Dolezal, K.; Muñoz, F.J.; Climent Sanz, E.; Pozueta-Romero, J. Enhanced Yield of Pepper Plants Promoted by Soil Application of Volatiles From Cell-Free Fungal Culture Filtrates Is Associated With Activation of the Beneficial Soil Microbiota. Front. Plant Sci. 2021, 12, 752653. [Google Scholar] [CrossRef]
- Chinchilla, D.; Bruisson, S.; Meyer, S.; Zühlke, D.; Hirschfeld, C.; Joller, C.; L’Haridon, F.; Mène-Saffrané, L.; Riedel, K.; Weisskopf, L. A Sulfur-Containing Volatile Emitted by Potato-Associated Bacteria Confers Protection against Late Blight through Direct Anti-Oomycete Activity. Sci. Rep. 2019, 9, 18778. [Google Scholar] [CrossRef]
- Li, Q.; Ning, P.; Zheng, L.; Huang, J.; Li, G.; Hsiang, T. Effects of Volatile Substances of Streptomyces Globisporus JK-1 on Control of Botrytis Cinerea on Tomato Fruit. Biol. Control 2012, 61, 113–120. [Google Scholar] [CrossRef]
- Lazazzara, V.; Vicelli, B.; Bueschl, C.; Parich, A.; Pertot, I.; Schuhmacher, R.; Perazzolli, M. Trichoderma Spp. Volatile Organic Compounds Protect Grapevine Plants by Activating Defense-Related Processes against Downy Mildew. Physiol. Plant. 2021, 172, 1950–1965. [Google Scholar] [CrossRef]
- Kamoun, S.; Furzer, O.; Jones, J.D.G.; Judelson, H.S.; Ali, G.S.; Dalio, R.J.D.; Roy, S.G.; Schena, L.; Zambounis, A.; Panabières, F.; et al. The Top 10 Oomycete Pathogens in Molecular Plant Pathology. Mol. Plant Pathol. 2015, 16, 413–434. [Google Scholar] [CrossRef]
- Fry, W.E.; Birch, P.R.J.; Judelson, H.S.; Grünwald, N.J.; Danies, G.; Everts, K.L.; Gevens, A.J.; Gugino, B.K.; Johnson, D.A.; Johnson, S.B.; et al. Five Reasons to Consider Phytophthora Infestans a Reemerging Pathogen. Phytopathology 2015, 105, 966–981. [Google Scholar] [CrossRef]
- Goodwin, S.B.; Smart, C.D.; Sandrock, R.W.; Deahl, K.L.; Punja, Z.K.; Fry, W.E. Genetic Change Within Populations of Phytophthora Infestans in the United States and Canada During 1994 to 1996: Role of Migration and Recombination. Phytopathology 1998, 88, 939–949. [Google Scholar] [CrossRef]
- De Vrieze, M.; Pandey, P.; Bucheli, T.D.; Varadarajan, A.R.; Ahrens, C.H.; Weisskopf, L.; Bailly, A. Volatile Organic Compounds from Native Potato-Associated Pseudomonas as Potential Anti-Oomycete Agents. Front. Microbiol. 2015, 6, 1295. [Google Scholar] [CrossRef]
- Meldau, D.G.; Meldau, S.; Hoang, L.H.; Underberg, S.; Wünsche, H.; Baldwin, I.T.; Wunsche, H.; Baldwin, I.T. Dimethyl Disulfide Produced by the Naturally Associated Bacterium Bacillus Sp B55 Promotes Nicotiana Attenuata Growth by Enhancing Sulfur Nutrition. Plant Cell 2013, 25, 2731–2747. [Google Scholar] [CrossRef]
- Huang, C.J.; Tsay, J.F.; Chang, S.Y.; Yang, H.P.; Wu, W.S.; Chen, C.Y. Dimethyl Disulfide Is an Induced Systemic Resistance Elicitor Produced by Bacillus Cereus C1L. Pest Manag. Sci. 2012, 68, 1306–1310. [Google Scholar] [CrossRef]
- De Vrieze, M.; Varadarajan, A.R.; Schneeberger, K.; Bailly, A.; Ahrens, C.H.; Weisskopf, L. Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates with Their Differing Biocontrol Potential against Late Blight. Front. Microbiol. 2020, 11, 857. [Google Scholar] [CrossRef]
- Clark, D.J.; Maaløe, O. DNA Replication and the Division Cycle in Escherichia Coli. J. Mol. Biol. 1967, 23, 99–112. [Google Scholar] [CrossRef]
- De Vrieze, M.; Gloor, R.; Massana Codina, J.; Torriani, S.; Gindro, K.; L’Haridon, F.; Bailly, A.; Weisskopf, L. Biocontrol Activity of Three Pseudomonas on a Newly Assembled Collection of Phytophthora Infestans Isolates. Phytopathology 2019, 109, 1555–1565. [Google Scholar] [CrossRef]
- Jaime-Garcia, R.; Trinidad-Correa, R.; Felix-Gastelum, R.; Orum, T.V.; Wasmann, C.C.; Nelson, M.R. Temporal and Spatial Patterns of Genetic Structure of Phytophthora Infestans from Tomato and Potato in the Del Fuerte Valley. Phytopathology 2000, 90, 1188–1195. [Google Scholar] [CrossRef]
- Fuchsmann, P.; Stern, M.T.; Brügger, Y.A.; Breme, K. Olfactometry Profiles and Quantitation of Volatile Sulfur Compounds of Swiss Tilsit Cheeses. J. Agric. Food Chem. 2015, 63, 7511–7521. [Google Scholar] [CrossRef]
- Carrapiso, A.I.; Jurado, Á.; Timón, M.L.; García, C. Odor-Active Compounds of Iberian Hams with Different Aroma Characteristics. J. Agric. Food Chem. 2002, 50, 6453–6458. [Google Scholar] [CrossRef]
- Varming, C.; Petersen, M.A.; Poll, L. Comparison of Isolation Methods for the Determination of Important Aroma Compounds in Black Currant (Ribes nigrum L.) Juice, Using Nasal Impact Frequency Profiling. J. Agric. Food Chem. 2004, 52, 1647–1652. [Google Scholar] [CrossRef]
- Ott, A.; Fay, L.B.; Chaintreau, A. Determination and Origin of the Aroma Impact Compounds of Yogurt Flavor. J. Agric. Food Chem. 1997, 45, 850–858. [Google Scholar] [CrossRef]
- Tatsuka, K.; Suekane, S.; Sakai, Y.; Sumitani, H. Volatile Constituents of Kiwi Fruit Flowers: Simultaneous Distillation and Extraction versus Headspace Sampling. J. Agric. Food Chem. 1990, 38, 2176–2180. [Google Scholar] [CrossRef]
- Guillard, A.-S.; Le Quere, J.-L.; Vendeuvre, J.-L. Emerging Research Approaches Benefit to the Study of Cooked Cured Ham Flavour. Food Chem. 1997, 59, 567–572. [Google Scholar] [CrossRef]
- Piyachaiseth, T.; Jirapakkul, W.; Chaiseri, S. Aroma Compounds of Flash-Fried Rice. Kasetsart J.-Nat. Sci. 2011, 45, 717–729. [Google Scholar]
- Alasalvar, C.; Shahidi, F.; Cadwallader, K.R. Comparison of Natural and Roasted Turkish Tombul Hazelnut (Corylus avellana L.) Volatiles and Flavor by DHA/GC/MS and Descriptive Sensory Analysis. J. Agric. Food Chem. 2003, 51, 5067–5072. [Google Scholar] [CrossRef]
- Boti, J.B.; Koukoua, G.; N’Guessan, T.Y.; Muselli, A.; Bernardini, A.-F.; Casanova, J. Composition of the Leaf, Stem Bark and Root Bark Oils of Isolona Cooperi Investigated by GC (Retention Index), GC-MS and 13C-NMR Spectroscopy. Phytochem. Anal. 2005, 16, 357–363. [Google Scholar] [CrossRef]
- Cho, I.H.; Namgung, H.J.; Choi, H.K.; Kim, Y.S. Volatiles and Key Odorants in the Pileus and Stipe of Pine-Mushroom (Tricholoma Matsutake Sing.). Food Chem. 2008, 106, 71–76. [Google Scholar] [CrossRef]
- Hirth, M.; Leiter, A.; Beck, S.M.; Schuchmann, H.P. Effect of Extrusion Cooking Process Parameters on the Retention of Bilberry Anthocyanins in Starch Based Food. J. Food Eng. 2014, 125, 139–146. [Google Scholar] [CrossRef]
- Jarunrattanasri, A.; Theerakulkait, C.; Cadwallader, K.R. Aroma Components of Acid-Hydrolyzed Vegetable Protein Made by Partial Hydrolysis of Rice Bran Protein. J. Agric. Food Chem. 2007, 55, 3044–3050. [Google Scholar] [CrossRef]
- Mockute, D.; Bernotiene, G. The Main Citral−Geraniol and Carvacrol Chemotypes of the Essential Oil of Thymus pulegioides L. Growing Wild in Vilnius District (Lithuania). J. Agric. Food Chem. 1999, 47, 3787–3790. [Google Scholar] [CrossRef]
- Radulović, N.; Blagojević, P.; Palić, R. Comparative Study of the Leaf Volatiles of Arctostaphylos Uva-ursi (L.) Spreng. and Vaccinium Vitis-idaea L. (Ericaceae). Molecules 2010, 15, 6168–6185. [Google Scholar] [CrossRef] [PubMed]
- Deasy, W.; Shepherd, T.; Alexander, C.J.; Birch, A.N.E.; Evans, K.A. Development and Validation of a SPME-GC-MS Method for In Situ Passive Sampling of Root Volatiles from Glasshouse-Grown Broccoli Plants Undergoing Below-Ground Herbivory by Larvae of Cabbage Root Fly, Delia radicum L. Phytochem. Anal. 2016, 27, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Technical University of Munich Garching: München, Germany, 1998. [Google Scholar]
- Wei, S.; Marton, I.; Dekel, M.; Shalitin, D.; Lewinsohn, E.; Bravdo, B.-A.; Shoseyov, O. Manipulating Volatile Emission in Tobacco Leaves by Expressing Aspergillus Nigerβ-Glucosidase in Different Subcellular Compartments. Plant Biotechnol. J. 2004, 2, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Wakamura, S.; Hattori, M.; Igita, K.; Yasuda, K. Tridjaka Sex Pheromone of Etiella Behrii, a Pod Borer of Soybean in Indonesia: Identification and Field Attraction. Entomol. Exp. Appl. 1999, 91, 413–420. [Google Scholar] [CrossRef]
- Weisskopf, L.; Schulz, S.; Garbeva, P. Microbial Volatile Organic Compounds in Intra-Kingdom and Inter-Kingdom Interactions. Nat. Rev. Microbiol. 2021, 19, 391–404. [Google Scholar] [CrossRef]
- Netzker, T.; Shepherdson, E.M.F.; Zambri, M.P.; Elliot, M.A. Bacterial Volatile Compounds: Functions in Communication, Cooperation, and Competition. Annu. Rev. Microbiol. 2020, 74, 409–430. [Google Scholar] [CrossRef]
- Garbeva, P.; Hordijk, C.; Gerards, S.; de Boer, W. Volatiles Produced by the Mycophagous Soil Bacterium Collimonas. FEMS Microbiol. Ecol. 2014, 87, 639–649. [Google Scholar] [CrossRef]
- Kai, M.; Crespo, E.; Cristescu, S.M.; Harren, F.J.M.; Francke, W.; Piechulla, B. Serratia Odorifera: Analysis of Volatile Emission and Biological Impact of Volatile Compounds on Arabidopsis Thaliana. Appl. Microbiol. Biotechnol. 2010, 88, 965–976. [Google Scholar] [CrossRef]
- Blom, D.; Fabbri, C.; Connor, E.C.; Schiestl, F.P.; Klauser, D.R.; Boller, T.; Eberl, L.; Weisskopf, L. Production of Plant Growth Modulating Volatiles Is Widespread among Rhizosphere Bacteria and Strongly Depends on Culture Conditions. Environ. Microbiol. 2011, 13, 3047–3058. [Google Scholar] [CrossRef]
- Becher, P.G.; Verschut, V.; Bibb, M.J.; Bush, M.J.; Molnár, B.P.; Barane, E.; Al-Bassam, M.M.; Chandra, G.; Song, L.; Challis, G.L.; et al. Developmentally Regulated Volatiles Geosmin and 2-Methylisoborneol Attract a Soil Arthropod to Streptomyces Bacteria Promoting Spore Dispersal. Nat. Microbiol. 2020, 5, 821–829. [Google Scholar] [CrossRef]
- Rui, Z.; Li, X.; Zhu, X.; Liu, J.; Domigan, B.; Barr, I.; Cate, J.H.D.; Zhang, W. Microbial Biosynthesis of Medium-Chain 1-Alkenes by a Nonheme Iron Oxidase. Proc. Natl. Acad. Sci. USA 2014, 111, 10–15. [Google Scholar] [CrossRef]
- Kremr, D.; Bajerová, P.; Bajer, T.; Eisner, A.; Adam, M.; Ventura, K. Using Headspace Solid-Phase Microextraction for Comparison of Volatile Sulphur Compounds of Fresh Plants Belonging to Families Alliaceae and Brassicaceae. J. Food Sci. Technol. 2015, 52, 5727–5735. [Google Scholar] [CrossRef]
- Ameye, M.; Allmann, S.; Verwaeren, J.; Smagghe, G.; Haesaert, G.; Schuurink, R.C.; Audenaert, K. Green Leaf Volatile Production by Plants: A Meta-Analysis. New Phytol. 2018, 220, 666–683. [Google Scholar] [CrossRef]
- De Vrieze, M.; Germanier, F.; Vuille, N.; Weisskopf, L. Combining Different Potato-Associated Pseudomonas Strains for Improved Biocontrol of Phytophthora Infestans. Front. Microbiol. 2018, 9, 2573. [Google Scholar] [CrossRef]
CAS (1) | Name | Factor Strain (2) | Factor Pathogen (3) | Strain: Pathogen (4) | Qualifier and Quantifier Ions (5) | Identification (6) | Sample RI (7) | Ref RI (8) |
---|---|---|---|---|---|---|---|---|
74-93-1 | methanethiol | *** | 45, 47, 48 | MS; STD; RI | 799 | 800 [30] | ||
75-18-3 | dimethylsulfide | ** | 45, 47, 62 | MS; STD; RI | 822 | 844 [31] | ||
67-63-0 | isopropyl alcohol | ** | 45, 59 | MS; RI | 945 | 950 [32] | ||
96-22-0 | 3-pentanone | * | 29, 57, 86 | MS; RI | 1001 | 970 [33] | ||
unknown-5C | *** | MS | 1003 | |||||
1629-58-9 | 1-penten-3-one | * | 27, 55, 84 | MS; RI | 1048 | 1034 [30] | ||
71-23-8 | 1-propanol | ** | 31, 42, 59 | MS | 1062 | |||
624-92-0 | dimethyldisulfide | *** | 45, 79, 94 | MS; STD; RI | 1106 | 1057 [34] | ||
66-25-1 | hexanal | * | *** | * | 44, 56, 72 | MS; RI | 1111 | 1082 [30] |
821-95-4 | 1-undecene | ** | 43, 55, 70 | MS; STD; RI | 1138 | 1135 [35] | ||
625-33-2 | 3-penten-2-one | * | 41, 69, 84 | MS; RI | 1164 | 1123 [36] | ||
123-35-3 | beta-myrcene | * | 41, 69, 93 | MS; STD; RI | 1169 | 1161 [37] | ||
110-43-0 | 2-heptanone | *** | * | 43, 58, 71 | MS | 1208 | ||
123-51-3 | 3-methyl-1-butanol | * | 55, 57, 70 | MS | 1237 | |||
556-64-9 | thiocyanic methylester | ** | 45, 58, 73 | MS; RI | 1311 | 1276 [38] | ||
1576-95-0 | (Z)-2-penten-1-ol | * | 57, 68, 86 | MS | 1340 | |||
57266-86-1 | (Z)-2-heptenal | *** | 70, 83, 112 | MS | 1356 | |||
35194-31-1 | 6-octen-2-one | *** | 68, 108, 126 | MS | 1359 | |||
63012-97-5 | 2-methyl-3-methylthiofuran | * | 99, 113, 128 | MS | 1372 | |||
38401-84-2 | 1,6-dioxaspiro[4,4]nonane, 2-ethyl | * | 87, 98, 127 | MS; RI | 1376 | 1353 [39] | ||
3658-80-8 | dimethyltrisulfide | ** | 79, 111, 126 | MS; STD; RI | 1415 | 1381 [40] | ||
3228-02-2/89-83-8 | 3-methyl-4-isopropylphenol t or p- thymol t | * | 91, 135, 150 | MS | 1441 | 2196 [41] | ||
2548-87-0 | (E)-2-octenal | * | 55, 70, 83 | MS | 1457 | |||
64180-68-3 | Longiverbenone t or isomer | *** | 135, 148, 218 | MS | 1468 | 2207 [42] | ||
868-84-8 | carbonodithioic acid, S,S-dimethyl ester | * | 75, 94, 122 | MS | 1484 | 1059 [43] | ||
98-01-1 | furfural | * | 67, 95, 96 | MS; RI | 1498 | 1457 [44] | ||
88919-66-8 | cyclobutane, tetrakis (1-methylethylidene)- | *** | 173, 201, 216 | MS; RI | 1545 | 1522 n | ||
56691-74-8 | (2,6,6-trimethylcyclohexen-1-yl)methylsulfonylbenzene | *** | 81, 95, 137 | MS | 1580 | |||
67-68-5 | dimethylsulfoxide | *** | 45, 63, 78 | MS; STD; RI | 1618 | 1553 [45] | ||
1679-49-8 | 2(3H)-furanone, dihydro-4-methyl- | *** | 42, 56, 100 | MS | 1663 | |||
1449-49-6 | cyclobutanone,2,3,3-trimethyl- | *** | 41, 55, 70 | MS | 1778 | |||
124-25-4 | tetradecanal | * | 82, 96, 168 | MS; RI | 1941 | 1930 [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gfeller, A.; Fuchsmann, P.; De Vrieze, M.; Gindro, K.; Weisskopf, L. Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms 2022, 10, 1510. https://doi.org/10.3390/microorganisms10081510
Gfeller A, Fuchsmann P, De Vrieze M, Gindro K, Weisskopf L. Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms. 2022; 10(8):1510. https://doi.org/10.3390/microorganisms10081510
Chicago/Turabian StyleGfeller, Aurélie, Pascal Fuchsmann, Mout De Vrieze, Katia Gindro, and Laure Weisskopf. 2022. "Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains" Microorganisms 10, no. 8: 1510. https://doi.org/10.3390/microorganisms10081510
APA StyleGfeller, A., Fuchsmann, P., De Vrieze, M., Gindro, K., & Weisskopf, L. (2022). Bacterial Volatiles Known to Inhibit Phytophthora infestans Are Emitted on Potato Leaves by Pseudomonas Strains. Microorganisms, 10(8), 1510. https://doi.org/10.3390/microorganisms10081510