SARS-CoV-2 Mutations and Variants May Muddle the Sensitivity of COVID-19 Diagnostic Assays
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rausch, J.W.; Capoferri, A.A.; Katusiime, M.G.; Patro, S.C.; Kearney, M.F. Low genetic diversity may be an Achilles heel of SARS-CoV-2. Proc. Natl. Acad. Sci. USA 2020, 117, 24614–24616. [Google Scholar] [CrossRef] [PubMed]
- CNCB. Variation Annotation—2019 Novel Coronavirus Resource; China National Center for Bioinformation: Beijing, China, 2021. [Google Scholar]
- Alkhatib, M.; Svicher, V.; Salpini, R.; Ambrosio, F.A.; Bellocchi, M.C.; Carioti, L.; Piermatteo, L.; Scutari, R.; Costa, G.; Artese, A.; et al. SARS-CoV-2 Variants and Their Relevant Mutational Profiles: Update Summer 2021. Microbiol. Spectr. 2021, 9, e01096-21. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, M.; Salpini, R.; Carioti, L.; Ambrosio, F.A.; D’Anna, S.; Duca, L.; Costa, G.; Bellocchi, M.C.; Piermatteo, L.; Artese, A.; et al. Update on SARS-CoV-2 Omicron Variant of Concern and Its Peculiar Mutational Profile. Microbiol. Spectr. 2022, 10, e02732-21. [Google Scholar] [CrossRef] [PubMed]
- WHO. Technical Specifications for Selection of Essential In Vitro Diagnostics for SARS-CoV-2; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- CDC. CDC Diagnostic Tests for COVID-19; CDC: Atlanta, GA, USA, 2021. [Google Scholar]
- ECDC. Diagnostic Testing and Screening for SARS-CoV-2; ECDC: Solna, Sweden, 2022. [Google Scholar]
- Stadhouders, R.; Pas, S.D.; Anber, J.; Voermans, J.; Mes, T.H.M.; Schutten, M. The effect of primer-template mismatches on the detection and quantification of nucleic acids using the 5’ nuclease assay. J. Mol. Diagn. 2010, 12, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Arnheim, N.; Erlich, H. Polymerase chain reaction strategy. Annu. Rev. Biochem. 1992, 61, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Kwok, S.; Kellogg, D.E.; McKinney, N.; Spasic, D.; Goda, L.; Levenson, C.; Sninsky, J.J. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucleic Acids Res. 1990, 18, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.M.; Arnheim, N.; Goodman, M.F. Extension of base mispairs by Taq DNA polymerase: Implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 1992, 20, 4567–4573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopherson, C.; Sninsky, J.; Kwok, S. The effects of internal primer-template mismatches on RT-PCR: HIV-1 model studies. Nucleic Acids Res. 1997, 25, 654–658. [Google Scholar] [CrossRef] [Green Version]
- Bru, D.; Martin-Laurent, F.; Philippot, L. Quantification of the detrimental effect of a single primer-template mismatch by real-time PCR using the 16S rRNA gene as an example. Appl. Environ. Microbiol. 2008, 74, 1660–1663. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.; Vigilant, L.; Morin, P.A. The effects of sequence length and oligonucleotide mismatches on 5’ exonuclease assay efficiency. Nucleic Acids Res. 2002, 30, e111. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data—From vision to reality. Eurosurveillance. 2017, 22, 30494. Available online: https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2017.22.13.30494 (accessed on 25 January 2022). [CrossRef] [Green Version]
- Chan, J.F.W.; Yip, C.C.Y.; To, K.K.W.; Tang, T.H.C.; Wong, S.C.Y.; Leung, K.H.; Fung, A.Y.F.; Ng, A.C.K.; Zou, Z.; Tsoi, H.W.; et al. Improved Molecular Diagnosis of COVID-19 by the Novel, Highly Sensitive and Specific COVID-19-RdRp/Hel Real-Time Reverse Transcription-PCR Assay Validated In Vitro and with Clinical Specimens. J. Clin. Microbiol. 2020, 58, e00310-20. Available online: http://mpoc.org.my/malaysian-palm-oil-industry/ (accessed on 12 January 2022). [CrossRef] [Green Version]
- Corman, V.; Bleicker, T.; Brunink, S.; Drosten, C. Diagnostic Detection of Wuhan Coronavirus 2019 by Real-Time RT-PCR; Public Health England: London, UK, 2020; pp. 1–12. [Google Scholar]
- Sigma-Aldrich. Sigma-Aldrich Coronavirus qPCR Design Case Study to Support SARS-CoV-2 Research. 2020. Available online: https://www.sigmaaldrich.com/technical-documents/protocols/biology/ncov-coronavirus.html (accessed on 12 January 2022).
- Thermo Fisher. Protocol for Sequencing the SARS-CoV-2 S Gene. 2020, pp. 1–8. Available online: https://www.thermofisher.com/it/en/home/life-science/sequencing/sanger-sequencing/applications/sars-cov-2-research.html (accessed on 12 January 2022).
- WHO. Molecular Assays to Diagnose COVID-19. 2020. Available online: https://www.who.int/docs/default-source/coronaviruse/whoinhouseassays.pdf (accessed on 12 January 2022).
- Won, J.; Lee, S.; Park, M.; Kim, T.Y.; Park, M.G.; Choi, B.Y.; Kim, D.; Chang, H.; Kim, V.N.; Lee, C.J. Development of a laboratory-safe and low-cost detection protocol for SARS-CoV-2 of the Coronavirus Disease 2019 (COVID-19). Exp. Neurobiol. 2020, 29, 107–119. [Google Scholar] [CrossRef]
- Young, B.E.; Ong, S.W.X.; Kalimuddin, S.; Low, J.G.; Tan, S.Y.; Loh, J.; Ng, O.T.; Marimuthu, K.; Ang, L.W.; Mak, T.M.; et al. Epidemiologic Features and Clinical Course of Patients Infected with SARS-CoV-2 in Singapore. JAMA—J. Am. Med. Assoc. 2020, 323, 1488–1494. [Google Scholar] [CrossRef] [Green Version]
- Vogels, C.B.; Brito, A.F.; Wyllie, A.L.; Fauver, J.R.; Ott, I.M.; Kalinich, C.C.; Petrone, M.E. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT-qPCR primer-probe sets. Nat. Microbiol. 2020, 5, 1299–1305. [Google Scholar] [CrossRef]
- Lai, A.; Bergna, A.; Menzo, S.; Zehender, G.; Caucci, S.; Ghisetti, V.; Rizzo, F.; Maggi, F.; Cerutti, F.; Giurato, G.; et al. Circulating SARS-CoV-2 variants in Italy, October 2020-March 2021. Virol. J. 2021, 18, 168. [Google Scholar] [CrossRef]
- Kidd, M.; Richter, A.; Best, A.; Cumley, N.; Mirza, J.; Percival, B.; Mayhew, M.; Megram, O.; Ashford, F.; White, T.; et al. S-Variant SARS-CoV-2 Lineage B1.1.7 Is Associated with Significantly Higher Viral Load in Samples Tested by TaqPath Polymerase Chain Reaction. J. Infect. Dis. 2021, 223, 1666–1670. [Google Scholar] [CrossRef]
- Bustin, S.; Kirvell, S.; Huggett, J.F.; Nolan, T. RT-qPCR Diagnostics: The “Drosten” SARS-CoV-2 Assay Paradigm. Int. J. Mol. Sci. 2021, 22, 8702. [Google Scholar] [CrossRef]
- Osório, N.S.; Correia-Neves, M. Implication of SARS-CoV-2 evolution in the sensitivity of RT-qPCR diagnostic assays. Lancet Infect. Dis. 2021, 21, 166–167. Available online: http://www.ncbi.nlm.nih.gov/pubmed/32473662 (accessed on 27 January 2022). [CrossRef]
- Artesi, M.; Bontems, S.; Göbbels, P.; Franckh, M.; Maes, P.; Boreux, R.; Meex, C.; Melin, P.; Hayette, M.P.; Bours, V.; et al. A Recurrent Mutation at Position 26340 of SARS-CoV-2 Is Associated with Failure of the E Gene Quantitative Reverse Transcription-PCR Utilized in a Commercial Dual-Target Diagnostic Assay. J. Clin. Microbiol. 2020, 58, e01598-20. [Google Scholar] [CrossRef]
- Alkhatib, M.; Bellocchi, M.C.; Marchegiani, G.; Grelli, S.; Micheli, V.; Stella, D.; Zerillo, B.; Carioti, L.; Svicher, V.; Rogliani, P.; et al. First Case of a COVID-19 Patient Infected by Delta AY.4 with a Rare Deletion Leading to a N Gene Target Failure by a Specific Real Time PCR Assay: Novel Omicron VOC Might Be Doing Similar Scenario? Microorganisms 2022, 10, 268. [Google Scholar] [CrossRef]
- Wollschläger, P.; Todt, D.; Gerlitz, N.; Pfaender, S.; Bollinger, T.; Sing, A.; Dangel, A.; Ackermann, N.; Korn, K.; Ensser, A.; et al. SARS-CoV-2 N gene dropout and N gene Ct value shift as indicator for the presence of B.1.1.7 lineage in a commercial multiplex PCR assay. Clin. Microbiol. Infect. 2021, 27, 1353.e1–1353.e5. [Google Scholar] [CrossRef]
- So, M.K.; Park, S.; Lee, K.; Kim, S.K.; Chung, H.S.; Lee, M. Variant Prediction by Analyzing RdRp/S Gene Double or Low Amplification Pattern in Allplex SARS-CoV-2 Assay. Diagnostics 2021, 11, 1854. [Google Scholar] [CrossRef]
- Ziegler, K.; Steininger, P.; Ziegler, R.; Steinmann, J.; Korn, K.; Ensser, A. SARS-CoV-2 samples may escape detection because of a single point mutation in the N gene. Euro Surveill. Bull. Eur. Sur Les Mal. Transm. Eur. Commun. Dis. Bull. 2020, 25, 2001650. [Google Scholar] [CrossRef]
- Hasan, M.R.; Sundararaju, S.; Manickam, C.; Mirza, F.; Al-Hail, H.; Lorenz, S.; Tang, P. A Novel Point Mutation in the N Gene of SARS-CoV-2 May Affect the Detection of the Virus by Reverse Transcription-Quantitative PCR. J. Clin. Microbiol. 2021, 59, e03278-20. [Google Scholar] [CrossRef]
- Ko, K.K.; Abdul Rahman, N.B.; Tan, S.Y.L.; Chan, K.X.; Goh, S.S.; Sim, J.H.C.; Lim, K.L.; Tan, W.L.; Chan, K.S.; Oon, L.L.; et al. SARS-CoV-2 N Gene G29195T Point Mutation May Affect Diagnostic Reverse Transcription-PCR Detection. Microbiol. Spectr. 2022, 10, e0222321. [Google Scholar] [CrossRef]
- Bekliz, M.; Adea, K.; Essaidi-Laziosi, M.; Sacks, J.A.; Escadafal, C.; Kaiser, L.; Eckerle, I. SARS-CoV-2 antigen-detecting rapid tests for the delta variant. Lancet Microbe 2022, 3, e90. [Google Scholar] [CrossRef]
- Krüger, L.J.; Tanuri, A.; Lindner, A.K.; Gaeddert, M.; Köppel, L.; Tobian, F.; Brümmer, L.E.; Klein, J.A.; Lainati, F.; Schnitzler, P.; et al. Accuracy and ease-of-use of seven point-of-care SARS-CoV-2 antigen-detecting tests: A multi-centre clinical evaluation. EBioMedicine 2022, 75, 103774. [Google Scholar] [CrossRef]
- Schuit, E.; Veldhuijzen, I.K.; Venekamp, R.P.; Van den Bijllaardt, W.; Pas, S.D.; Lodder, E.B.; Molenkamp, R.; GeurtsvanKessel, C.H.; Velzing, J.; Huisman, R.C.; et al. Diagnostic accuracy of rapid antigen tests in asymptomatic and presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infection: Cross sectional study. BMJ 2021, 374, n1676. [Google Scholar] [CrossRef]
- Jian, M.J.; Chung, H.Y.; Chang, C.K.; Lin, J.C.; Yeh, K.M.; Chen, C.W.; Lin, D.Y.; Chang, F.Y.; Hung, K.S.; Perng, C.L.; et al. SARS-CoV-2 variants with T135I nucleocapsid mutations may affect antigen test performance. Int. J. Infect. Dis. 2022, 114, 112–114. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.; Herbert, C.; Filippaios, A.; Broach, J.; Colubri, A.; Fahey, N.; Woods, K.; Nanavati, J.; Wright, C.; Orwig, T.; et al. Comparison of Rapid Antigen Tests’ Performance between Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529; BA1) Variants of SARS-CoV-2: Secondary Analysis from a Serial Home Self-Testing Study. medRxiv 2022. [Google Scholar] [CrossRef]
- FDA. SARS-CoV-2 Viral Mutations: Impact on COVID-19 Tests; FDA: Silver Spring, MD, USA, 2021. [Google Scholar]
Assay a | Gene b | Primer/Probe Sequence | Primer | Start c | End c | Mismatch Targets in Genomes d (Frequency) | Assay Reference | ||
---|---|---|---|---|---|---|---|---|---|
>1 | >2 | >3 | |||||||
Frequencies in Group A/B | |||||||||
Real-time PCR primers | |||||||||
CDC China | N | GGGGAACTTCTCCTGCTAGAAT | F | 608 | 629 | 83.25/99.90 | 34.60/99.17 | 33.76/99.15 | [20] |
N | CAGACATTTTGCTCTCAAGCTG | R | 552 | 573 | 32.73/0.65 | 0.42/0.08 | 0.05/0.03 | ||
N | TTGCTGCTGCTTGACAGATT | P | 661 | 680 | 1.59/0.64 | 0.03/0.43 | 0.02/0.42 | ||
Charité Hospital Germany | N | CACATTGGCACCCGCAATC | F | 433 | 451 | 1.02/0.36 | 0.01/0.01 | 0.00/0.01 | [17,20] |
N | GAGGAACGAGAAGAGGCTTG | R | 698 | 717 | 2.12/0.64 | 0.04/0.03 | 0.01/0.01 | ||
N | ACTTCCTCAAGGAACAACATTGCCA | P | 480 | 504 | 1.57/0.65 | 0.04/0.03 | 0.02/0.01 | ||
CDC USA | N1 | GACCCCAAAATCAGCGAAAT | F | 14 | 33 | 3.96/3.18 | 0.02/0.02 | 0.00/0.00 | [20] |
N1 | TCTGGTTACTGCCAGTTGAATCTG | R | 1173 | 1196 | 1.20/0.21 | 0.01/0.05 | 0.01/0.01 | ||
N1 | ACCCCGCATTACGTTTGGTGGACC | P | 36 | 59 | 3.08/99.79 | 0.06/0.40 | 0.01/0.01 | ||
N2 | TTACAAACATTGGCCGCAAA | F | 891 | 910 | 1.78/0.28 | 0.02/0.01 | 0.01/0.00 | ||
N2 | GCGCGACATTCCGAAGAA | R | 301 | 318 | 1.48/0.34 | 0.02/0.01 | 0.01/0.00 | ||
N2 | ACAATTTGCCCCCAGCGCTTCAG | P | 915 | 937 | 2.12/0.36 | 0.04/0.02 | 0.01/0.00 | ||
N3 | GGGAGCCTTGAATACACCAAAA | F | 408 | 429 | 1.81/2.15 | 0.02/0.04 | 0.01/0.02 | ||
N3 | TGTAGCACGATTGCAGCATTG | R | 779 | 799 | 1.11/0.32 | 0.03/0.01 | 0.01/0.01 | ||
N3 | AYCACATTGGCACCCGCAATCCTG | P | 431 | 454 | 1.61/0.43 | 0.02/0.27 | 0.00/0.02 | ||
NIID Japan | N | AAATTTTGGGGACCAGGAAC | F | 852 | 871 | 1.20/0.25 | 0.03/0.01 | 0.01/0.01 | [20] |
N | TGGCACCTGTGTAGGTCAAC | R | 249 | 268 | 1.86/0.40 | 0.05/0.02 | 0.02/0.01 | ||
N | ATGTCGCGCATTGGCATGGA | P | 949 | 968 | 1.46/0.36 | 0.04/0.04 | 0.02/0.03 | ||
HKU Med Hong-Kong | N | TAATCAGACAAGGAACTGATTA | F | 892 | 893 | 1.23/0.27 | 0.02/0.01 | 0.01/0.00 | [20] |
N | CGAAGGTGTGACTTCCATG | R | 277 | 295 | 2.70/0.44 | 0.04/0.01 | 0.01/0.01 | ||
N | GCAAATTGTGCAATTTGCGG | P e | 335 | 354 | 1.65/0.25 | 0.04/0.01 | 0.01/0.00 | ||
NIH Thailand | N | CGTTTGGTGGACCCTCAGAT | F | 47 | 66 | 1.86/3.15 | 0.02/0.01 | 0.00/0.00 | [20] |
N | CCCCACTGCGTTCTCCATT | R | 1155 | 1173 | 1.34/99.49 | 0.05/99.45 | 0.01/99.39 | ||
N | CAACTGGCAGTAACCA | P | 67 | 84 | 0.96/3.11 | 0.01/0.05 | 0.00/0.03 | ||
Chan China | N | GCGTTCTTCGGAATGTCG | F | 937 | 954 | 1.54/0.33 | 0.02/0.01 | 0.01/0.00 | [16] |
N | TTGGATCTTTGTCATCCAATTTG | R | 225 | 247 | 1.56/13.04 | 0.02/0.06 | 0.01/0.01 | ||
N | AACGTGGTTGACCTACACAGST | P | 984 | 1005 | 2.08/1.79 | 1.20/0.16 | 0.01/0.01 | ||
Young Singapore | N | CTCAGTCCAAGATGGTATTTCT | F | 310 | 331 | 1.40/2.94 | 0.01/0.01 | 0.00/0.00 | [22] |
N | AGCACCATAGGGAAGTCC | R | 883 | 900 | 1.01/0.12 | 0.02/0.02 | 0.01/0.01 | ||
N | ACCTAGGAACTGGCCCAGAAGCT | P | 335 | 357 | 100/100 | 1.26/2.89 | 0.02/0.02 | ||
Young Singapore | S | TATACATGTCTCTGGGACCA | F | 201 | 220 | 38.59/97.37 | 23.20/97.03 | 22.08/97.01 | [22] |
S | ATCCAGCCTCTTATTATGTTAGAC | R | 3506 | 3529 | 1.51/1.68 | 0.11/0.02 | 0.04/0.01 | ||
S | CTAAGAGGTTTGATAACCCTGTCCTACC | P | 227 | 254 | 12.96/2.51 | 0.28/0.36 | 0.18/0.31 | ||
Chan China | S | CCTACTAAATTAAATGATCTCTGCTTTACT | F | 1150 | 1179 | 1.92/0.32 | 0.06/0.16 | 0.03/0.09 | [16] |
S | CAAGCTATAACGCAGCCTGTA | R | 2513 | 2533 | 1.81/0.58 | 0.03/0.39 | 0.01/0.24 | ||
S | CGCTCCAGGGCAAACTGGAAAG | P | 1230 | 1251 | 6.43/97.22 | 0.07/2.5 | 0.01/0.37 | ||
Sigma-Aldrich | S1 | CAGGTATATGCGCTAGTTATCAGAC | F | 2003 | 2027 | 1.79/0.37 | 0.02/0.02 | 0.01/0.01 | [18] |
S1 | CCAAGTGACATAGTGTAGGCAATG | R | 1721 | 1744 | 2.00/0.26 | 0.02/0.14 | 0.01/0.08 | ||
S1 | AGACTAATTCTCCTCGGCGGGCACG | P | 2030 | 2054 | 73.34/99.97 | 0.90/91.34 | 0.02/0.16 | ||
S2 | GCAGGTATATGCGCTAGTTATCAG | F | 2002 | 2025 | 1.73/0.35 | 0.02/0.01 | 0.01/0.01 | ||
S2 | ACACTGGTAGAATTTCTGTGGTAAC | R | 1632 | 1656 | 1.00/0.23 | 0.10/0.11 | 0.07/0.05 | ||
S2 | CTAATTCTCCTCGGCGGGCACG | P | 2033 | 2054 | 72.42/99.97 | 0.55/91.34 | 0.02/0.12 | ||
Charité Hospital Germany | RdRp1 | GTGARATGGTCATGTGTGGCGG | F | 1991 | 2012 | 42.34/0.34 | 0.14/0.01 | 0.00/0.00 | [17,20] |
RdRp1 | CARATGTTAAASACACTATTAGCATA | R | 707 | 732 | 100/100 | 0.11/2.38 | 0.01/0.05 | ||
RdRp1 | CCAGGTGGWACRTCATCMGGTGATGC | P1 | 2029 | 2054 | 1.11/0.11 | 0.06/0.05 | 0.05/0.02 | ||
RdRp1 | CAGGTGGAACCTCATCAGGAGATGC | P2 | 2030 | 2054 | 1.14/0.11 | 0.06/0.05 | 0.05/0.02 | ||
Institut Pasteur France | RdRp-IP4 | GGTAACTGGTATGATTTCG | F | 640 | 658 | 0.41/0.18 | 0.17/0.08 | 0.16/0.08 | [20] |
RdRp-IP4 | CTGGTCAAGGTTAATATAGG | R | 2051 | 2070 | 0.98/0.48 | 0.01/0.02 | 0.00/0.01 | ||
RdRp-IP4 | TCATACAAACCACGCCAGG | P | 665 | 683 | 4.77/1.53 | 0.03/0.03 | 0.01/0.03 | ||
Chan China f | RdRp/Hel | CGCATACAGTCTTRCAGGCT | F | 2780/1 | 2796/3 | 2.16/1.14 | 0.04/0.98 | 0.02/0.97 | [16] |
Hel | GTGTGATGTTGAWATGACATGGTC | R | 1687 | 1710 | 100/100 | 2.68/1.25 | 0.57/0.19 | ||
Hel | TTAAGATGTGGTGCTTGCATACGTAGAC | p | 40 | 67 | 2.66/1.34 | 0.05/0.03 | 0.02/0.01 | ||
Young Singapore | RdRp | TCATTGTTAATGCCTATATTAACC | F | 715 | 738 | 0.58/0.37 | 0.01/0.01 | 0.00/0.00 | [22] |
RdRp | CACTTAATGTAAGGCTTTGTTAAG | R | 1994 | 2017 | 0.81/0.42 | 0.02/0.01 | 0.01/0.00 | ||
RdRp | AACTGCAGAGTCACATGTTGACA | P | 753 | 775 | 0.80/0.34 | 0.02/0.01 | 0.01/0.01 | ||
Quantitative PCR and Sequencing primers | |||||||||
Won Korea | N | CAATGCTGCAATCGTGCTAC | F | 459 | 478 | 1.10/0.32 | 0.03/0.01 | 0.00/0.01 | [21] |
N | GTTGCGACTACGTGATGAGG | R | 682 | 701 | 2.31/0.57 | 0.03/0.02 | 0.01/0.01 | ||
Sigma-Aldrich | N1 | GCCTCTTCTCGTTCCTCATCAC | F | 544 | 565 | 2.17/0.52 | 0.03/0.02 | 0.01/0.01 | [18] |
N1 | AGCAGCATCACCGCCATTG | R | 604 | 622 | 36.93/0.71 | 0.34/0.04 | 0.02/0.03 | ||
N2 | AGCCTCTTCTCGTTCCTCATCAC | F | 543 | 565 | 2.18/0.64 | 0.03/0.02 | 0.01/0.01 | ||
N2 | CCGCCATTGCCAGCCATTC | R | 614 | 632 | 37.69/0.74 | 0.37/0.03 | 0.07/0.01 | ||
Won Korea | S | CTACATGCACCAGCAACTGT | F | 1552 | 1571 | 0.79/0.60 | 0.12/0.25 | 0.04/0.09 | [21] |
S | CACCTGTGCCTGTTAAACCA | R | 2169 | 2188 | 0.66/97.46 | 0.01/0.04 | 0.00/0.01 | ||
NIID Japan | S1 | TTGGCAAAATTCAAGACTCACTTT | F | 2792 | 2815 | 1.76/0.71 | 0.02/0.08 | 0.01/0.01 | [20] |
S1 | TGTGGTTCATAAAAATTCCTTTGTG | R | 482 | 506 | 2.02/0.29 | 0.01/0.01 | 0.00/0.00 | ||
S2 | TCAAGACTCACTTTCTTCCAC | F | 2802 | 2822 | 1.28/0.26 | 0.10/0.02 | 0.01/0.01 | ||
S2 | ATTTGAAACAAAGACACCTTCAC | R | 526 | 548 | 1.96/0.22 | 0.03/0.03 | 0.00/0.01 | ||
S | AAGACTCACTTTCTTCCACAG | F | 2804 | 2824 | 1.32/0.29 | 0.10/0.03 | 0.01/0.02 | ||
S | CAAAGACACCTTCACGAGG | R | 534 | 552 | 1.97/0.20 | 0.13/0.04 | 0.00/0.01 | ||
Thermo Fisher | S | GTGTTAATCTTACAACCAGAACTCAATTAC | F | 44 | 73 | 48.73/4.16 | 3.22/2.18 | 0.05/2.18 | [19] |
S | CACAGACTTTAATAACAACATTAGTAGCG | R | 3426 | 3454 | 0.48/0.11 | 0.13/0.04 | 0.06/0.01 | ||
Won Korea | RdRp | CATGTGTGGCGGTTCACTAT | F | 2001 | 2020 | 42.21/0.24 | 0.11/0.05 | 0.03/0.03 | [21] |
RdRp | TGCATTAACATTGGCCGTGA | R | 679 | 698 | 1.08/0.18 | 0.01/0.09 | 0.01/0.08 |
Assays | Protein | Primers/Probes | Direction | Mutation Location | SARS-CoV-2 Varaints | |||||
---|---|---|---|---|---|---|---|---|---|---|
RT-PCR Assays | Alpha | Beta | Gamma | Delta | Omicron | Other Variants | ||||
China CDC | N | GGGGAACTTCTCCTGCTAGAAT | F | 5′ end | R203K, G204R | T205I | R203K, G204R | R203M | R203K, G204R | |
N | CAGACATTTTGCTCTCAAGCTG | R | 3′ end | S235F | M234I | |||||
Charité Hospital Germany | N | GAGGAACGAGAAGAGGCTTG | R | Both ends | A182S, S183Y, S186Y, S187L, S188L | |||||
US CDC | N | GACCCCAAAATCAGCGAAAT | F | 3′ end | Q9L * | |||||
N | ACCCCGCATTACGTTTGGTGGACC | P | 5′ end | P13L | P13L, P13S | |||||
HKU Med Hong-Kong | N | CGAAGGTGTGACTTCCATG | R | 5′ end | S327L * | |||||
NIH Thailand | N | CCCCACTGCGTTCTCCATT | R | Both ends | E31-R32-S33del | |||||
Chan CHINA | N | TTGGATCTTTGTCATCCAATTTG | R | 3′ end | D343G* | |||||
Young Singapore | S | TATACATGTCTCTGGGACCA | F | 5′ end | H69del, V70del | H69del, V70del | H69del, V70del | |||
S | CTAAGAGGTTTGATAACCCTGTCCTACC | P | 5’ end | D80A | K77T * | T76I, D80G | ||||
Chan China | S | CGCTCCAGGGCAAACTGGAAAG | P | 3′ end | K417N | K417T | Q414R | K417N | Q414K | |
Sigma-Aldrich | S | AGACTAATTCTCCTCGGCGGGCACG | P | Both ends | P681H | N679K | Q677H, P681R | N679K, P681H | Q677H, Ins679GIAL | |
S | CTAATTCTCCTCGGCGGGCACG | P | 5′ end | P681H | N679K | Q677H, P681R | N679K, P681H | Q677H, Ins679GIAL | ||
Charité Hospital Germany | RdRp | GTGARATGGTCATGTGTGGCGG | F | Both ends | G671S | M666I, M666T | ||||
Institut Pasteur FRANCE | RdRp | TCATACAAACCACGCCAGG | P | 3′ end | P227S | P227S | ||||
Qualitative PCR, and Sequencing assays | ||||||||||
Sigma-Aldrich | N | GCCTCTTCTCGTTCCTCATCAC | F | Both ends | A182S, S183Y, S186Y, S187L, S188L | |||||
N | AGCAGCATCACCGCCATTG | R | 5′ end | G215C | G212C, G212V, N213Y, G214C | |||||
N | AGCCTCTTCTCGTTCCTCATCAC | F | Both ends | A182S, S183Y, S186Y, S187L, S188L | ||||||
N | CCGCCATTGCCAGCCATTC | R | Both ends | G215C | R209del, R209I, G212C, G212V, N213Y, G214C | |||||
Won South Korea | S | CACCTGTGCCTGTTAAACCA | R | 5′ end | T547K | |||||
Thermo Fisher | S | GTGTTAATCTTACAACCAGAACTCAATTAC | F | Both ends | L18F | L18F, T20N | T19R | T19I, L24S, P25del* | L18F | |
Won South Korea | RdRp | CATGTGTGGCGGTTCACTAT | F | 3′ end | G671S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhatib, M.; Carioti, L.; D’Anna, S.; Ceccherini-Silberstein, F.; Svicher, V.; Salpini, R. SARS-CoV-2 Mutations and Variants May Muddle the Sensitivity of COVID-19 Diagnostic Assays. Microorganisms 2022, 10, 1559. https://doi.org/10.3390/microorganisms10081559
Alkhatib M, Carioti L, D’Anna S, Ceccherini-Silberstein F, Svicher V, Salpini R. SARS-CoV-2 Mutations and Variants May Muddle the Sensitivity of COVID-19 Diagnostic Assays. Microorganisms. 2022; 10(8):1559. https://doi.org/10.3390/microorganisms10081559
Chicago/Turabian StyleAlkhatib, Mohammad, Luca Carioti, Stefano D’Anna, Francesca Ceccherini-Silberstein, Valentina Svicher, and Romina Salpini. 2022. "SARS-CoV-2 Mutations and Variants May Muddle the Sensitivity of COVID-19 Diagnostic Assays" Microorganisms 10, no. 8: 1559. https://doi.org/10.3390/microorganisms10081559
APA StyleAlkhatib, M., Carioti, L., D’Anna, S., Ceccherini-Silberstein, F., Svicher, V., & Salpini, R. (2022). SARS-CoV-2 Mutations and Variants May Muddle the Sensitivity of COVID-19 Diagnostic Assays. Microorganisms, 10(8), 1559. https://doi.org/10.3390/microorganisms10081559