Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganisms and Cultivation Conditions
2.2. Measuring Surface Tension
2.3. Measurement of the Content of Glycolipid Biosurfactants
2.4. Hydrophobicity of the Cell Surface of Microorganisms
2.5. Transmission Electron Microscopy
2.6. Total Cell Lipid Content in Bacteria
2.7. Content of Cell-Bound Hexadecane
2.8. Determination of Fatty Acid Composition of Lipids
2.9. Determination of Residual Hexadecane in the Cultivation Medium
2.10. Experimental and Statistics Analysis
3. Results
3.1. Production of Biosurfactants by Bacterial Strains X5 and S67 of R. erythropolis during Degradation of Hexadecane in Different States of Aggregation
3.2. Hydrophobicity of the Cell Wall of R. erythropolis Strains X5 and S67 during Growth on Hexadecane in Different Aggregated States
3.3. Isolation and Characterization of Total Cell Lipids of Bacterial Strains X5 and S67, Grown on Medium with Hexadecane in Different Aggregation States
3.4. Extracellular Lipids from Cultivation Medium of Strains X5 and S67 Grown on Medium with Hexadecane in Different Aggregate States
3.5. Morphology and Ultrastructural Organization of Cells of R. erythropolis Strains X5 and S67 When Grown on Hexadecane in Different Aggregate States
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivshina, I.; Kuyukina, M.; Krivoruchko, A. Chapter 6. Hydrocarbon-oxidizing bacteria and their potential in eco-biotechnology and bioremediation. In Microbial Resources: From Functional Existence in Nature to Applications; Kurtböke, I., Ed.; Academic Press: London, UK; San Diego, CA, USA; Cambridge, MA, USA; Oxford, UK, 2017; pp. 121–148. [Google Scholar] [CrossRef]
- Villela, H.D.M.; Peixoto, R.S.; Soriano, A.U.; Carmo, F.L. Microbial bioremediation of oil contaminated seawater: A survey of patent deposits and the characterization of the top genera applied. Sci. Total Environ. 2019, 666, 743–758. [Google Scholar] [CrossRef] [PubMed]
- Zampolli, J.; Zeaiter, Z.; Di Canito, A.; Di Gennaro, P. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus. Appl. Microbiol. Biotechnol. 2019, 103, 1069–1080. [Google Scholar] [CrossRef] [PubMed]
- Filonov, A.; Akhmetov, L.; Puntus, I.; Solyanikova, I. Removal of oil spills in temperate and cold climates of Russia experience in the creation and use of biopreparations based on effective microbial consortia. In Biodegradation, Pollutants and Bioremediation Principles; Bidoia, E.D., Monagniolli, R.N., Eds.; Taylor’s & Francis CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2021; pp. 137–159. [Google Scholar] [CrossRef]
- McDonald, R.; Knox, O.G.G. Cold region bioremediation of hydrocarbon contaminated soils: Do we know enough? Environ. Sci. Technol. 2014, 48, 9980–9981. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H.; Hua, F. Uptake modes of fluoranthene by strain Rhodococcus sp. Bap-1. Biotechnol. Biotechnol. Equip. 2013, 27, 4256–4262. [Google Scholar] [CrossRef]
- Perfumo, A.; Banat, I.M.; Marchant, R. Going green and cold: Biosurfactants from low-temperature environments to biotechnology applications. Trends Biotechnol. 2018, 36, 277–289. [Google Scholar] [CrossRef]
- Philp, J.C.; Kuyukina, M.S.; Ivshina, I.B.; Dunbar, S.A.; Christofi, N.; Lang, S.; Wray, V. Alkanotrophic Rhodococcus ruber as a biosurfactant producer. Appl. Microbiol. Biotechnol. 2002, 59, 318–324. [Google Scholar] [CrossRef]
- Kuyukina, M.S.; Kochina, O.A.; Gein, S.V.; Ivshina, I.B.; Chereshnev, V.A. Mechanisms of immunomodulatory and membranotropic activity of trehalolipid biosurfactants (a Review). Appl. Biochem. Microbiol. 2020, 56, 245–255. [Google Scholar] [CrossRef]
- Rapp, P.; Gabriel-Jurgens, L.H. Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 2003, 149, 2879–2890. [Google Scholar] [CrossRef]
- Marques, A.M.; Pinazo, A.; Farfan, M.; Aranda, F.J.; Teruel, J.A.; Ortiz, A.; Manresa, A.; Espuny, M.J. The physicochemical properties and chemical composition of trehalose lipids produced by Rhodococcus erythropolis 51T7. Chem. Phys. Lipids 2009, 158, 110–117. [Google Scholar] [CrossRef]
- Tokumoto, Y.; Nomura, N.; Uchiyama, H.; Imura, T.; Morita, T.; Fukuoka, T.; Kitamoto, D. Structural characterization and surface-active properties of a succinoyl trehalose lipid produced by Rhodococcus sp. SD-74. J. Oleo Sci. 2009, 58, 97–102. [Google Scholar] [CrossRef]
- Tuleva, B.; Christova, N.; Cohen, R.; Stoev, G.; Stoineva, I. Production and structural elucidation of trehalose tetraesters (biosurfactants) from a novel alkanothrophic Rhodococcus wratislaviensis strain. J. Appl. Microbiol. 2008, 104, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Petrikov, K.; Delegan, Y.; Surin, A.; Ponamoreva, O.; Puntus, I.; Filonov, A.; Boronin, A. Glycolipids of Pseudomonas and Rhodococcus oil-degrading bacteria used in bioremediation preparations: Formation and structure. Process Biochem. 2013, 48, 931–935. [Google Scholar] [CrossRef]
- Cappelletti, M.; Presentato, A.; Piacenza, E.; Firrincieli, A.; Turner, R.J.; Zannoni, D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl. Microbiol. Biotechnol. 2020, 104, 8567–8594. [Google Scholar] [CrossRef] [PubMed]
- Aranda, F.J.; Teruel, J.A.; Espuny, M.J.; Marques, A.; Manresa, A.; Palacios-Lidon, E.; Ortiz, A. Domain formation by a Rhodococcus sp. biosurfactant trehalose lipid incorporated into phosphatidylcholine membranes. Biochim. Biophys. Acta 2007, 1768, 2596–2604. [Google Scholar] [CrossRef]
- Ron, E.Z.; Rosenberg, E. Natural roles of biosurfactants. Environ. Microbiol. 2001, 3, 229–236. [Google Scholar] [CrossRef]
- Ortiz, A.; Teruel, J.A.; Espuny, M.J.; Marqués, A.; Manresa, Á.; Aranda, F.J. Interactions of a Rhodococcus sp. biosurfactant trehalose lipid with phosphatidylethanolamine membranes. Biochim. Biophys. Acta 2008, 1778, 2806–2813. [Google Scholar] [CrossRef]
- Ortiz, A.; Teruel, J.A.; Espuny, M.J.; Marques, A.; Manresa, A.; Aranda, F.J. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes. Chem. Phys. Lipids 2009, 158, 46–53. [Google Scholar] [CrossRef]
- Luong, T.M.; Ponamoreva, O.N.; Nechaeva, I.A.; Petrikov, K.V.; Delegan, Y.A.; Surin, A.K.; Linklater, D.; Filonov, A.E. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature. World J. Microbiol. Biotechnol. 2018, 34, 20. [Google Scholar] [CrossRef]
- Malavenda, R.; Rizzo, C.; Michaud, L.; Gerçe, B.; Bruni, V.; Syldatk, C.; Hausmann, R.; Lo Giudice, A. Biosurfactant production by Arctic and Antarctic bacteria growing on hydrocarbons. Polar Biol. 2015, 38, 1565–1574. [Google Scholar] [CrossRef]
- Dang, N.P.; Landfald, B.; Willassen, N.P. Biological surface-active compounds from marine bacteria. Environ. Technol. 2016, 37, 1151–1158. [Google Scholar] [CrossRef]
- Delegan, Y.; Valentovich, L.; Petrikov, K.; Vetrova, A.; Akhremchuk, A.; Akimov, V. Complete genome sequence of Rhodococcus erythropolis X5, a psychrotrophic hydrocarbon-degrading biosurfactant-producing bacterium. Microbiol. Resour. Announc. 2019, 8, e01234-19. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Foght, J.M.; Gray, M.R. Selective transport and accumulation of alkanes by Rhodococcus erythropolis S+14He. Biotechnol. Bioeng. 2002, 80, 650–659. [Google Scholar] [CrossRef] [PubMed]
- White, D.A.; Hird, L.C.; Ali, S.T. Production and characterization of a trehalolipid biosurfactant produced by the novel marine bacterium Rhodococcus sp., strain PML026. J. Appl. Microbiol. 2013, 115, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Whyte, L.G.; Hawari, J.; Zhou, E.; Bourbonniere, L.; Inniss, W.E.; Greer, C.W. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 1998, 64, 2578–2584. [Google Scholar] [CrossRef]
- Margesin, R.; Moertelmaier, C.; Mair, J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int. Biodeterior. Biodegrad. 2013, 84, 185–191. [Google Scholar] [CrossRef]
- Franzetti, A.; Bestetti, G.; Caredda, P.; La Colla, P.; Tamburini, E. Surface-active compounds and their role in the access to hydrocarbons in Gordonia strains. FEMS Microbiol. Ecol. 2008, 63, 238–248. [Google Scholar] [CrossRef]
- Whyte, L.G.; Slagman, S.J.; Pietrantonio, F.; Bourbonniere, L.; Koval, S.F.; Lawrence, J.R.; Inniss, W.E.; Greer, C.W. Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl. Environ. Microbiol. 1999, 65, 2961–2968. [Google Scholar] [CrossRef]
- de Carvalho, C.C.C.R. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res. Microbiol. 2012, 163, 125–136. [Google Scholar] [CrossRef]
- Peng, F.; Liu, Z.; Wang, L.; Shao, Z. An oil-degrading bacterium: Rhodococcus erythropolis strain 3C-9 and its biosurfactants. J. Appl. Microbiol. 2007, 102, 1603–1611. [Google Scholar] [CrossRef]
- Solyanikova, I.P.; Suzina, N.E.; Emelyanova, E.V.; Polivtseva, V.N.; Pshenichnikova, A.B.; Lobanok, A.G.; Golovleva, L.A. Morphological, physiological, and biochemical characteristics of a benzoate-degrading strain Rhodococcus opacus 1CP under stress conditions. Mikrobiologiia 2017, 86, 188–200. [Google Scholar] [CrossRef]
- Suzina, I.E.; Severina, L.O.; Senyushkin, A.A.; Karavaiko, G.I.; Duda, V.I. Ultrastructural organization of the membrane apparatus of Sulfobacillus thermosulfidooxidans. Microbiology 1999, 68, 491–500. [Google Scholar]
- Stavskaya, S.S.; Suzina, N.E.; Grigoryeva, T.Y.; Fichte, B.A.; Rotmistrov, M.N. Ultrastructural organization of SDS destructor bacteria. Rep. Acad. Sci. USSR 1982, 262, 1261–1265. [Google Scholar]
- Susina, N.E.; Stavskaya, S.S.; Fichte, B.A. Changes in ultrastructural organization of Pseudomonas aeruginosa cells under the action of SDS. Microbiology 1988, 57, 255–260. [Google Scholar]
- Scott, C.C.; Finnerty, W.R. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxdizing Acinetobacter species HO1-N. J. Bacteriol. 1976, 127, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Ivshina, I.B.; Kamenskikh, T.N.; Anokhin, B.A. Adaptive mechanisms of Alkanotrophic rhodococci survival under unfavorable conditions. Bull. Perm Univ. Biol. 2007, 5, 107–112. [Google Scholar]
- Mishra, S.; Singh, S.N. Microbial degradation of n-hexadecane in mineral salt medium as mediated by degradative enzymes. Bioresour. Technol. 2012, 111, 148–154. [Google Scholar] [CrossRef]
- Hernandez, M.A.; Arabolaza, A.; Rodriguez, E.; Gramajo, H.; Alvarez, H.M. The atf2 gene is involved in triacylglycerol biosynthesis and accumulation in the oleaginous Rhodococcus opacus PD630. Appl. Microbiol. Biotechnol. 2013, 97, 2119–2130. [Google Scholar] [CrossRef]
- Herrero, O.M.; Villalba, M.S.; Lanfranconi, M.P.; Alvarez, H.M. Rhodococcus bacteria as a promising source of oils from olive mill wastes. World J. Microbiol. Biotechnol. 2018, 34, 114. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Hernández, M.A.; Lanfranconi, M.P.; Silva, R.A.; Villalba, M.S. Rhodococcus as biofactories for microbial oil production. Molecules 2021, 26, 4871. [Google Scholar] [CrossRef]
- Salvachua, D.; Werner, A.Z.; Pardo, I.; Michalska, M.; Black, B.A.; Donohoe, B.S.; Haugen, S.J.; Katahira, R.; Notonier, S.; Ramirez, K.J.; et al. Outer membrane vesicles catabolize lignin-derived aromatic compounds in Pseudomonas putida KT2440. Proc. Natl. Acad. Sci. USA 2020, 117, 9302–9310. [Google Scholar] [CrossRef]
- Delegan, Y.; Petrikov, K.; Frantsuzova, E.; Rudenko, N.; Solomentsev, V.; Suzina, N.; Travkin, V.; Solyanikova, I. Complete genome analysis of Rhodococcus opacus S8 capable of degrading alkanes and producing biosurfactant reveals its genetic adaptation for crude oil decomposition. Microorganisms 2022, 10, 1172. [Google Scholar] [CrossRef] [PubMed]
Lipid Components, mg g−1 | R. erythropolis X5 | R. erythropolis S67 | ||
---|---|---|---|---|
26 °C | 10 °C | 26 °C | 10 °C | |
TCL content | 115 ± 12 | 168 ± 13 | 92 ± 7 | 143 ± 15 |
Methyl esters of fatty acids | 81 ± 5 | 118 ± 12 | 66 ± 5 | 105 ± 8 |
Total content of fatty acids | 76 ± 6 | 111 ± 9 | 62 ± 7 | 99 ± 10 |
Hexadecane | 0.01 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.14 ± 0.01 |
Fatty Acids, % | R. erythropolis X5 | R. erythropolis S67 | ||
---|---|---|---|---|
26 °C | 10 °C | 26 °C | 10 °C | |
Saturated unbranched | ||||
Octanoic | - | 3.7 ± 0.3 | - | |
Decanoic | - | 8.2 ± 0.8 | - | 6.2 ± 0.4 |
Dodecanoic | 5.4 ± 0.4 | 3.8 ± 0.6 | 5.2 ± 0.4 | 5.6 ± 0.8 |
Tetradecanoic | 13.7 ± 1.0 | 9.4 ± 0.7 | 14.8 ± 1.0 | - |
Pentadecanoic | 10.6 ± 1.0 | - | ||
Hexadecanoic | 35.6 ± 4.6 | 31.2 ± 2.9 | 51.8 ± 5.7 | 33.6 ± 2.4 |
Heptadecanoic | 8.7 ± 0.6 | |||
Total | 65 | 56 | 81 | 45 |
Saturated branched | ||||
12-methyl-tridecanoic | - | 10.6 ± 0.4 | ||
14-methyl-hexadecanoic | - | 14.2 ± 0.7 | ||
15-methyl-hexadecanoic | 12.1 ± 0.7 | 11.6 ± 1.0 | ||
4-4-dimethyl-hexadecanoic | - | 12.3 ± 0.7 | ||
Total | 12 | 11 | 0 | 37 |
Unsaturated | ||||
9-hexadecenoic | 22.7 ± 2 | 32.8 ± 3.1 | 19.4 ± 2.2 | 17.6 ± 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thi Mo, L.; Irina, P.; Natalia, S.; Irina, N.; Lenar, A.; Andrey, F.; Ekaterina, A.; Sergey, A.; Olga, P. Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms 2022, 10, 1594. https://doi.org/10.3390/microorganisms10081594
Thi Mo L, Irina P, Natalia S, Irina N, Lenar A, Andrey F, Ekaterina A, Sergey A, Olga P. Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms. 2022; 10(8):1594. https://doi.org/10.3390/microorganisms10081594
Chicago/Turabian StyleThi Mo, Luong, Puntus Irina, Suzina Natalia, Nechaeva Irina, Akhmetov Lenar, Filonov Andrey, Akatova Ekaterina, Alferov Sergey, and Ponamoreva Olga. 2022. "Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States" Microorganisms 10, no. 8: 1594. https://doi.org/10.3390/microorganisms10081594
APA StyleThi Mo, L., Irina, P., Natalia, S., Irina, N., Lenar, A., Andrey, F., Ekaterina, A., Sergey, A., & Olga, P. (2022). Hydrocarbons Biodegradation by Rhodococcus: Assimilation of Hexadecane in Different Aggregate States. Microorganisms, 10(8), 1594. https://doi.org/10.3390/microorganisms10081594