First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella
Abstract
:1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Area of Study and Collection of Samples
2.3. Bartonella Isolation
2.4. Quantitative Real-Time PCR Assay (qPCR) for Bartonella sp. Based on the nuoG Gene (Nicotinamide Adenine Dinucleotide Dehydrogenase Gamma Subunit) and Conventional PCR (PCR) for the Mammalian Endogenous Gene
2.5. Multilocus Analysis for Bartonella sp.
2.6. Concatenated Phylogenetic Analysis Based on the 16S rRNA, gltA, groEL, ftsZ, rpoB Genes and ITS Intergenic Region
2.7. Phenotypic Characterization of Bartonella sp.
2.8. Light Microscopy and Scanning Electron Microscopy (SEM)
2.9. Biochemical and Metabolic Characterization
2.10. Growth Curve
2.11. Whole Genome Sequencing of Bartonella Isolated from Blood Samples of Thylamys Macrurus (Strain 117A) and Genome Annotation
2.12. Phylogenomic Analyses
2.13. Taxonomic Reclassification of Bartonella Species Based on ANI
2.14. “In Silico” Analysis of the Metabolic Profile and Ribosomal and Polymerase Phylogenetic Markers for Bartonella Species
2.15. Search for Active Carbohydrate Enzymes (CAZy) Families
3. Results
3.1. Occurrence of Bartonella sp. in Marsupial Blood Samples
3.2. Isolation of Bartonella sp. in Chocolate Agar
3.3. Multilocus and Phylogenetic Analyses for Bartonella sp.
3.4. Diversity Analyses
3.5. Phenotypic and Morphological Characterization of Bartonella sp.
3.6. Biochemical and Metabolic Characterization
3.7. Growth Curve
3.8. Phylogenomic Analysis
3.9. Use of Average Nucleotide Identity (ANI) to Separate Species of the Genus Bartonella
3.10. “In Silico” Analysis of Metabolic Profiles, Ribosomal and Polymerase Phylogenetic Markers for Species of the Genus Bartonella
3.11. Search for Active Carbohydrate Enzymes (CAZy) Families
4. Discussion
Description of Bartonella harrusi sp. nov.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chomel, B.B.; Boulouis, H.-J.; Maruyama, S.; Breitschwerdt, E.B. Bartonella spp. in pets and effect on human health. Emerg. Infect. Dis. 2006, 12, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, R.; Shalit, T.; Markus, B.; Yuan, C.; Nachum-Biala, Y.; Elad, D.; Harrus, S. Bartonella kosoyi sp. nov. and Bartonella krasnovii sp. nov., two novel species closely related to the zoonotic Bartonella elizabethae, isolated from black rats and wild desert rodent-fleas. Int. J. Syst. Evol. Microbiol. 2020, 70, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Boulouis, H.-J.; Chao-Chin, C.; Henn, J.B.; Kasten, R.W.; Chomel, B.B. Factors associated with the rapid emergence of zoonotic Bartonella infections. Vet. Res. 2005, 36, 383–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breitschwerdt, E.B.; Kordick, D.L. Bartonella infection in animals: Carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin. Microbiol. Rev. 2000, 13, 428–438. [Google Scholar] [CrossRef]
- Chomel, B.B.; Kasten, R.W. Bartonellosis, an increasingly recognized zoonosis. J. Appl. Microbiol. 2010, 109, 743–750. [Google Scholar] [CrossRef]
- Breitschwerdt, E.B.; Maggi, R.G.; Chomel, B.B.; Lappin, M.R. Bartonellosis: An emerging infectious disease of zoonotic importance to animals and human beings. J. Vet. Emerg. Crit. Care 2010, 20, 8–30. [Google Scholar] [CrossRef]
- Kaewmongkol, G.; Kaewmongkol, S.; Owen, H.; Fleming, P.A.; Adams, P.J.; Ryan, U.; Irwin, P.J.; Fenwick, S.G. Candidatus Bartonella antechini: A novel Bartonella species detected in fleas and ticks from the yellow-footed Antechinus (Antechinus flavipes), an australian marsupial. Vet. Microbiol. 2011, 149, 517–521. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, E.; Raoult, D. Pathogenicity and treatment of Bartonella infections. Int. J. Antimicrob. Agents 2014, 44, 16–25. [Google Scholar] [CrossRef]
- Okaro, U.; Addisu, A.; Casanas, B.; Anderson, B. Bartonella species, an emerging cause of blood-culture-negative endocarditis. Clin. Microbiol. Rev. 2017, 30, 709–746. [Google Scholar] [CrossRef] [Green Version]
- Do Amaral, R.B.; Cardozo, M.V.; de Mello Varani, A.; Gonçalves, L.R.; Furquim, M.E.C.; Dias, C.M.; de Souza Santana, M.; de Assis, W.O.; da Silva, A.R.; Herrera, H.M.; et al. Bartonella machadoae sp. nov. isolated from wild rodents in the pantanal wetland. Acta Trop. 2022, 229, 106368. [Google Scholar] [CrossRef]
- Yadav, M. The Transmissions of antibodies across the gut of pouch-young marsupials. Immunology 1971, 21, 839–851. [Google Scholar]
- Fournier, P.-E.; Taylor, C.; Rolain, J.-M.; Barrassi, L.; Smith, G.; Raoult, D. Bartonella australis sp. nov. from kangaroos, australia. Emerg. Infect. Dis. 2007, 13, 1961–1963. [Google Scholar] [CrossRef]
- Vilcins, I.-M.E.; Kosoy, M.; Old, J.M.; Deane, E.M. Bartonella-like DNA detected in Ixodes tasmani ticks (acari: Ixodida) infesting koalas (Phascolarctos cinereus) in Victoria, Australia. Vector-Borne Zoonotic Dis. 2009, 9, 499–503. [Google Scholar] [CrossRef]
- Reeves, W.K.; Nelder, M.P.; Korecki, J.A. Bartonella and Rickettsia in fleas and lice from mammals in South Carolina, USA. J. Vector Ecol. 2005, 30, 310–315. [Google Scholar]
- Nelder, M.P.; Reeves, W.K.; Adler, P.H.; Wozniak, A.; Wills, W. Ectoparasites and associated pathogens of free-roaming and captive animals in zoos of South Carolina. Vector-Borne Zoonotic Dis. 2009, 9, 469–477. [Google Scholar] [CrossRef]
- De Sousa, K.C.M.; do Amaral, R.B.; Herrera, H.M.; Santos, F.M.; Macedo, G.C.; de Andrade Pinto, P.C.E.; Barros-Battesti, D.M.; Machado, R.Z.; André, M.R. Genetic diversity of Bartonella spp. in wild mammals and ectoparasites in brazilian pantanal. Microb. Ecol. 2018, 76, 554. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, L.R.; Harrus, S.; Herrera, H.M.; Gutiérrez, R.; Pedrassani, D.; Nantes, W.A.G.; Santos, F.M.; de Oliveira Porfírio, G.E.; Barreto, W.T.G.; de Macedo, G.C.; et al. Low occurrence of Bartonella in synanthropic mammals and associated ectoparasites in peri-urban areas from central-western and southern brazil. Acta Trop. 2020, 207, 105513. [Google Scholar] [CrossRef]
- Gonçalves-Oliveira, J.; Rozental, T.; Guterres, A.; Teixeira, B.R.; Andrade-Silva, B.E.; da Costa-Neto, S.F.; Furtado, M.C.; Moratelli, R.; D’Andrea, P.S.; Lemos, E.R.S. Investigation of Bartonella spp. in brazilian mammals with emphasis on rodents and bats from the atlantic forest. Int. J. Parasitol. Parasites Wildl. 2020, 13, 80–89. [Google Scholar] [CrossRef]
- Duncan, A.W.; Maggi, R.G.; Breitschwerdt, E.B. A Combined approach for the enhanced detection and isolation of Bartonella species in dog blood samples: Pre-enrichment liquid culture followed by pcr and subculture onto agar plates. J. Microbiol. Methods 2007, 69, 273–281. [Google Scholar] [CrossRef]
- Maggi, R.G.; Breitschwerdt, E.B. Isolation of bacteriophages from Bartonella vinsonii subsp. berkhoffii and the characterization of pap31 gene sequences from bacterial and phage DNA. J. Mol. Microbiol. Biotechnol. 2005, 9, 44–51. [Google Scholar] [CrossRef]
- Furquim, M.E.C.; do Amaral, R.; Dias, C.M.; Gonçalves, L.R.; Perles, L.; de Paula Lima, C.A.; Barros-Battesti, D.M.; Machado, R.Z.; André, M.R. Genetic Diversity and multilocus sequence typing analysis of Bartonella henselae in domestic cats from southeastern Brazil. Acta Trop. 2021, 222, 106037. [Google Scholar] [CrossRef]
- Keim, P.; Price, L.B.; Klevytska, A.M.; Smith, K.L.; Schupp, J.M.; Okinaka, R.; Jackson, P.J.; Hugh-Jones, M.E. Multiple-Locus Variable-Number Tandem Repeat Analysis Reveals Genetic Relationships within Bacillus Anthracis. J. Bacteriol. 2000, 182, 2928–2936. [Google Scholar] [CrossRef] [Green Version]
- André, M.R.; Dumler, J.S.; Herrera, H.M.; Gonçalves, L.R.; de Sousa, K.C.; Scorpio, D.G.; de Santis, A.C.G.A.; Domingos, I.H.; de Macedo, G.C.; Machado, R.Z. Assessment of a quantitative 5’ nuclease real-time polymerase chain reaction using the nicotinamide adenine dinucleotide dehydrogenase gamma subunit (NuoG) for Bartonella species in domiciled and stray cats in Brazil. J. Feline Med. Surg. 2016, 18, 783–790. [Google Scholar] [CrossRef]
- Birkenheuer, A.J.; Levy, M.G.; Breitschwerdt, E.B. Development and evaluation of a seminested PCR for detection and differentiation of Babesia gibsoni (Asian Genotype) and B. canis DNA in canine blood samples. J. Clin. Microbiol. 2003, 41, 4172–4177. [Google Scholar] [CrossRef] [Green Version]
- Dauga, C.; Miras, I.; Grimont, P.A.D. Identification of Bartonella henselae and B. quintana 16S DNA sequences by branch-, genus- and species-specific amplification. J. Med. Microbiol. 1996, 45, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Norman, A.F.; Regnery, R.; Jameson, P.; Greene, C.; Krause, D.C. Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. J. Clin. Microbiol. 1995, 33, 1797–1803. [Google Scholar] [CrossRef] [Green Version]
- Paziewska, A.; Harris, P.D.; Zwolińska, L.; Bajer, A.; Siński, E. Recombination within and between species of the alpha proteobacterium Bartonella infecting rodents. Microb. Ecol. 2011, 61, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Ewing, B.; Green, P. Base-calling of automated sequencer traces using Phred. II. Error Probabilities. Genome Res. 1998, 8, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Ewing, B.; Hillier, L.; Wendl, M.C.; Green, P. Base-Calling of automated sequencer traces using Phred. I. Accuracy Assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Benson, D.A.; Cavanaugh, M.; Clark, K.; Karsch-Mizrachi, I.; Ostell, J.; Pruitt, K.D.; Sayers, E.W. GenBank. Nucleic Acids Res. 2018, 46, D41–D47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Trifinopoulos, J.; Nguyen, L.-T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Stöver, B.C.; Müller, K.F. TreeGraph 2: Combining and visualizing evidence from different phylogenetic analyses. BMC Bioinform. 2010, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 2017, 3, e000132. [Google Scholar] [CrossRef]
- Zimin, A.V.; Marçais, G.; Puiu, D.; Roberts, M.; Salzberg, S.L.; Yorke, J.A. The MaSuRCA genome assembler. Bioinformatics 2013, 29, 2669–2677. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (refseq) database at ncbi: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [Green Version]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Ouk Kim, Y.; Park, S.-C.; Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 2016, 66, 1100–1103. [Google Scholar] [CrossRef]
- Olm, M.R.; Brown, C.T.; Brooks, B.; Banfield, J.F. DRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-Replication. ISME J. 2017, 11, 2864–2868. [Google Scholar] [CrossRef] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, T.J.; Eddy, S.R. Nhmmer: DNA Homology search with profile hmms. Bioinformatics 2013, 29, 2487–2489. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Zhang, H.; Wu, P.; Entwistle, S.; Li, X.; Yohe, T.; Yi, H.; Yang, Z.; Yin, Y. DbCAN-Seq: A database of carbohydrate-active enzyme (cazyme) sequence and annotation. Nucleic Acids Res. 2018, 46, D516–D521. [Google Scholar] [CrossRef] [PubMed]
- Clarridge, J.E.; Raich, T.J.; Pirwani, D.; Simon, B.; Tsai, L.; Rodriguez-Barradas, M.C.; Regnery, R.; Zollo, A.; Jones, D.C.; Rambo, C. Strategy to detect and identify bartonella species in routine clinical laboratory yields Bartonella henselae from human immunodeficiency virus-positive patient and unique bartonella strain from his cat. J. Clin. Microbiol. 1995, 33, 2107–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, R.; Krasnov, B.; Morick, D.; Gottlieb, Y.; Khokhlova, I.S.; Harrus, S. Bartonella infection in rodents and their flea ectoparasites: An overview. Vector-Borne Zoonotic Dis. 2015, 15, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, D.F.; Carroll, K.C.; Hofmeister, E.K.; Persing, D.H.; Robison, D.A.; Steigerwalt, A.G.; Brenner, D.J. Isolation of a new subspecies, Bartonella vinsonii subsp. arupensis, from a cattle rancher: Identity with isolates found in conjunction with Borrelia burgdorferi and Babesia microti among naturally infected mice. J. Clin. Microbiol. 1999, 37, 2598–2601. [Google Scholar] [CrossRef] [Green Version]
- Chenoweth, M.R.; Somerville, G.A.; Krause, D.C.; O’Reilly, K.L.; Gherardini, F.C. Growth characteristics of Bartonella henselae in a novel liquid medium: Primary isolation, growth-phase-dependent phage induction, and metabolic studies. Appl. Environ. Microbiol. 2004, 70, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Breitschwerdt, E.B.; Kordick, D.L.; Malarkey, D.E.; Keene, B.; Hadfield, T.L.; Wilson, K. Endocarditis in a dog due to infection with a novel Bartonella subspecies. J. Clin. Microbiol. 1995, 33, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Inoue, K.; Kabeya, H.; Shiratori, H.; Ueda, K.; Kosoy, M.Y.; Chomel, B.B.; Boulouis, H.-J.; Maruyama, S. Bartonella japonica sp. nov. and Bartonella silvatica sp. nov., isolated from Apodemus mice. Int. J. Syst. Evol. Microbiol. 2010, 60, 759–763. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-M.; Hou, Y.; Song, X.-P.; Fu, Y.-Q.; Li, G.-C.; Li, M.; Eremeeva, M.E.; Wu, H.-X.; Pang, B.; Yue, Y.-J.; et al. High Prevalence and genetic heterogeneity of rodent-borne Bartonella species on heixiazi island, China. Appl. Environ. Microbiol. 2015, 81, 7981–7992. [Google Scholar] [CrossRef] [Green Version]
- Heller, R.; Riegel, P.; Hansmann, Y.; Delacour, G.; Bermond, D.; Dehio, C.; Lamarque, F.; Monteil, H.; Chomel, B.; Piemont, Y. Bartonella tribocorum sp. nov., a new Bartonella species isolated from the blood of wild rats. Int. J. Syst. Bacteriol. 1998, 48, 1333–1339. [Google Scholar] [CrossRef] [Green Version]
- Heller, R.; Kubina, M.; Mariet, P.; Riegel, P.; Delacour, G.; Dehio, C.; Lamarque, F.; Kasten, R.; Boulouis, H.-J.; Monteil, H.; et al. Bartonella alsatica sp. nov., a new Bartonella species isolated from the blood of wild rabbits. Int. J. Syst. Evol. Microbiol. 1999, 49, 283–288. [Google Scholar] [CrossRef]
- Sato, S.; Kabeya, H.; Fujinaga, Y.; Inoue, K.; Une, Y.; Yoshikawa, Y.; Maruyama, S. Bartonella jaculi sp. nov., Bartonella callosciuri sp. nov., Bartonella pachyuromydis sp. nov. and Bartonella acomydis sp. nov., isolated from wild rodentia. Int. J. Syst. Evol. Microbiol. 2013, 63, 1734–1740. [Google Scholar] [CrossRef] [Green Version]
- La Scola, B.; Zeaiter, Z.; Khamis, A.; Raoult, D. Gene-sequence-based criteria for species definition in bacteriology: The Bartonella paradigm. Trends Microbiol. 2003, 11, 318–321. [Google Scholar] [CrossRef]
- Krügel, M.; Król, N.; Kempf, V.A.J.; Pfeffer, M.; Obiegala, A. Emerging rodent-associated Bartonella: A threat for human health? Parasites Vectors 2022, 15, 113. [Google Scholar] [CrossRef]
- Matano, C.; Kolkenbrock, S.; Hamer, S.N.; Sgobba, E.; Moerschbacher, B.M.; Wendisch, V.F. Corynebacterium Glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiol. 2016, 16, 177. [Google Scholar] [CrossRef] [Green Version]
- Peláez Bejarano, A.; del Moral, R.S.; Guisado-Gil, A.B. Bartonella henselae encephalopathy in a paediatric patient: A case report and treatment review. J. Clin. Pharm. Ther. 2020, 45, 840–844. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Jain, C.; Rodriguez-R, L.M.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [Green Version]
- Schott, D.; Umeno, K.; Dall’Agnol, B.; Souza, U.A.; Webster, A.; Michel, T.; Peters, F.; Christoff, A.U.; André, M.R.; Ott, R.; et al. Detection of Bartonella sp. and a novel spotted fever group Rickettsia sp. in neotropical fleas of wild rodents (cricetidae) from southern Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2020, 73, 101568. [Google Scholar] [CrossRef]
- De Souza Santana, M.; Hoppe, E.G.L.; Carraro, P.E.; Calchi, A.C.; de Oliveira, L.B.; do Amaral, R.B.; Mongruel, A.C.B.; Machado, D.M.R.; Burger, K.P.; Barros-Batestti, D.M.; et al. Molecular detection of vector-borne agents in wild boars (Sus Scrofa) and associated ticks from brazil, with evidence of putative new genotypes of Ehrlichia, Anaplasma, and Haemoplasmas. Transbound. Emerg. Dis. 2022, in press. [Google Scholar] [CrossRef]
- Roux, V.; Eykyn, S.J.; Wyllie, S.; Raoult, D. Bartonella vinsonii subsp. berkhoffii as an agent of afebrile blood culture-negative endocarditis in a human. J. Clin. Microbiol. 2000, 38, 1698–1700. [Google Scholar] [CrossRef] [Green Version]
- Fenollar, F.; Sire, S.; Raoult, D. Bartonella vinsonii subsp. arupensis as an agent of blood culture-negative endocarditis in a human. J. Clin. Microbiol. 2005, 43, 945–947. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Kosoy, M.Y.; Diaz, M.H.; Winchell, J.; Baggett, H.; Maloney, S.A.; Boonmar, S.; Bhengsri, S.; Sawatwong, P.; Peruski, L.F. Bartonella vinsonii subsp. arupensis in humans, Thailand. Emerg. Infect. Dis. 2012, 18, 989–991. [Google Scholar] [CrossRef] [PubMed]
qPCR for Bartonella spp. (Number of nuoG Copies/µL) | |||
---|---|---|---|
Marsupial Species (ID) | Blood | Liquid Culture (BAPGM) | Solid Culture (Chocolate Agar) |
Thylamys macrurus (#22) | Neg | Neg | Neg |
Thylamys macrurus (#36) | Neg | Neg | Neg |
Monodelphis domestica (#70) | Neg | Neg | Neg |
Monodelphis domestica (#78) | Neg | 1.39 × 105 | Pos |
Thylamys macrurus (#79) | Neg | Neg | Neg |
Monodelphis domestica(#96) | Neg | 2.16 × 107 | Pos |
Thylamys macrurus (#116) | Neg | 1.37 × 105 | Pos |
Thylamys macrurus (#117) | Neg | 5.9 × 102 | Pos |
Target Gene | Species | Host | Locality | Identity | Query Cover | “E-Value” | GenBank Accession Number |
---|---|---|---|---|---|---|---|
16S rRNA | Bartonella sp. strain R-phy1 | Não descrito | France | 99.16% | 100% | 1 × 10−179 | Z70005 |
gltA | Bartonella sp. | Polygenis (P.) bohlsi bohlsi | Mato Grosso do Sul, Brazil | 100% | 100% | 0 | KY304483 |
groEL | Bartonella sp. | Hylaeamys sp.; Akodon sp. | Ceará and Maranhão, Brazil | 100% | 97.46% | 0 | KX086735 |
ftsZ | Bartonella sp. | Polygenis (P.) bohlsi bohlsi | Mato Grosso do Sul, Brazil | 100% | 100% | 0 | KY304486 |
rpoB | B. machadoae | Trichomys fosteri | Mato Grosso do Sul, Brazil | 95.54% | 99% | 0 | CP087114 |
ITS | B. machadoae | Trichomys fosteri | Mato Grosso do Sul, Brazil | 91.77% | 32% | 1 × 10−52 | CP087114 |
Phenotypic Characterization | |
---|---|
Gram | Negative |
Morphology | rods |
Size | 1–2.0 µm—0.3–0.6 µm |
Growing conditions | Capnophilic, microaerophilic and aerobic |
Plasmid characterization | |
Total size | 29.892 pb |
%C + G | 34.5% |
Genomic characterization | |
estimated completeness | 99.35% |
Total size | 2.235.184 pb |
%C + G | 38.8% |
Genes (total) | 2013 |
CDSs (total) | 1961 |
Genes (coding) | 1737 |
CDSs (with proteins) | 1737 |
Genes (RNA) | 44 |
rRNAs | 2, 2, 2 (5S, 16S, 23S) |
rRNAs completes | 2, 2, 2 (5S, 16S, 23S) |
tRNAs | 44 |
ncRNAs | 4 |
Pseudo Genes (total) | 224 |
CDSs (without proteins) | 224 |
Pseudo Genes (ambiguous residues) | 0 of 224 |
Pseudo Genes (frameshift) | 144 of 224 |
Pseudo Genes (incomplete) | 83 of 224 |
Pseudo Genes (stop internal) | 68 of 224 |
Pseudo Genes (multiple problems) | 63 of 224 |
Flagellum genes (FlagA and FlagB) | Absent |
Adhesin genes (BadA) | Absent |
Target Gene Region | Identity | Query Cover | E-Value | Cut-Off Point [62] |
---|---|---|---|---|
16S rRNA | 100% | 100% | 0.0 | 98.3% |
gltA | 94.53% | 100% | 0.0 | 93.6% |
groEL | 96.09% | 100% | 0.0 | 92.6% |
ftsZ | 92.84% | 100% | 0.0 | 94.4% |
rpoB | 95.54% | 99% | 0.0 | 92.8% |
ITS | 91.77% | 32% | 1 × 10−52 | 93.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Amaral, R.B.; Cardozo, M.V.; Varani, A.d.M.; Furquim, M.E.C.; Dias, C.M.; Assis, W.O.d.; da Silva, A.R.; Herrera, H.M.; Machado, R.Z.; André, M.R. First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella. Microorganisms 2022, 10, 1609. https://doi.org/10.3390/microorganisms10081609
do Amaral RB, Cardozo MV, Varani AdM, Furquim MEC, Dias CM, Assis WOd, da Silva AR, Herrera HM, Machado RZ, André MR. First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella. Microorganisms. 2022; 10(8):1609. https://doi.org/10.3390/microorganisms10081609
Chicago/Turabian Styledo Amaral, Renan Bressianini, Marita Vedovelli Cardozo, Alessandro de Mello Varani, Maria Eduarda Chiaradia Furquim, Clara Morato Dias, William Oliveira de Assis, Alanderson Rodrigues da Silva, Heitor Miraglia Herrera, Rosangela Zacarias Machado, and Marcos Rogério André. 2022. "First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella" Microorganisms 10, no. 8: 1609. https://doi.org/10.3390/microorganisms10081609
APA Styledo Amaral, R. B., Cardozo, M. V., Varani, A. d. M., Furquim, M. E. C., Dias, C. M., Assis, W. O. d., da Silva, A. R., Herrera, H. M., Machado, R. Z., & André, M. R. (2022). First Report of Bartonella spp. in Marsupials from Brazil, with a Description of Bartonella harrusi sp. nov. and a New Proposal for the Taxonomic Reclassification of Species of the Genus Bartonella. Microorganisms, 10(8), 1609. https://doi.org/10.3390/microorganisms10081609