Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Sites, and Population
2.2. Sample Size and Sampling Strategy
2.3. Sample Collection and Epidemiological Survey
2.4. Laboratory Analysis
2.4.1. Isolation and Identification of E. coli
2.4.2. Antimicrobial Susceptibility Testing (AST)
2.5. Data Analysis
2.6. Ethical Consideration
3. Results
3.1. Characteristics of Study Participants
3.2. Antimicrobial Susceptibility Patterns
3.3. Potential Risk Factors Associated with AMR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Antimicrobial resistance. In Fact Sheets; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/en/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 15 April 2022).
- Ingle, D.J.; Levine, M.M.; Kotloff, K.L.; Holt, K.E.; Robins-Browne, R.M. Dynamics of antimicrobial resistance in intestinal Escherichia coli from children in community settings in South Asia and sub-Saharan Africa. Nat. Microbiol. 2018, 3, 1063–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medernach, R.L.; Logan, L.K. The growing threat of antibiotic resistance in children. Infect. Dis. Clin. 2018, 32, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Johnson, J.R. Medical and economic impact of extraintestinal infections due to Escherichia coli: Focus on an increasingly important endemic problem. Microbes Infect. 2003, 5, 449–456. [Google Scholar] [CrossRef]
- Omolajaiye, S.; Afolabi, K.; Iweriebor, B. Pathotyping and antibiotic resistance profiling of Escherichia coli isolates from children with acute diarrhea in Amatole district municipality of Eastern Cape, South Africa. Biomed Res. Int. 2020, 2020, 4250165. [Google Scholar] [CrossRef]
- Roser, M.; Ritchie, H. Burden of disease. In Our World in Data; Global Change Data Lab: Oxford, UK, 2021; Available online: https://ourworldindata.org/burden-of-disease?fbclid=IwAR0I88KzppGueXUvnzb84O86C86NsCzk81r89Ng79SpYq-TbtfH_x84G86Jm83_k_c80#citation (accessed on 10 April 2022).
- Iskandar, K.M.L.; Hallit, S.; Sartelli, M.; Hardcastle, T.C.; Haque, M.; Lugova, H.; Dhingra, S.; Sharma, P.; Islam, S. Surveillance of antimicrobial resistance in low-and middle-income countries: A scattered picture. Antimicrob. Resist. Infect. Control 2021, 10, 63. [Google Scholar] [CrossRef]
- Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Oyewale, J.O. Childhood diarrhoeal diseases in developing countries. Heliyon 2020, 6, e03690. [Google Scholar] [CrossRef]
- Hubbard, S.C.; Meltzer, M.I.; Kim, S.; Malambo, W.; Thornton, A.T.; Shankar, M.B.; Adhikari, B.B.; Jeon, S.; Bampoe, V.D.; Cunningham, L.C. Household illness and associated water and sanitation factors in peri-urban Lusaka, Zambia, 2016–2017. NPJ Clean Water 2020, 3, 26. [Google Scholar] [CrossRef]
- Mogasale, V.V.; Saldanha, P.; Pai, V.; Rekha, P.; Mogasale, V. A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India. Sci. Rep. 2021, 11, 5116. [Google Scholar] [CrossRef]
- Subramaniam, G.; Girish, M. Antibiotic resistance—A cause for reemergence of infections. Indian J. Pediatr. 2020, 87, 937–944. [Google Scholar] [CrossRef]
- Kostyanev, T.; Can, F. The global crisis of antimicrobial resistance. In Antimicrobial Stewardship; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–12. [Google Scholar] [CrossRef]
- Bloomfield, S. Significance of biocide usage and antimicrobial resistance in domiciliary environments. J. Appl. Microbiol. 2002, 92, 144S–157S. [Google Scholar] [CrossRef] [Green Version]
- McEwen, S.A.; Fedorka-Cray, P.J. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 2002, 34 (Suppl. 3), S93–S106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidaver, A.K. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 2002, 34 (Suppl. 3), S107–S110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, R.; Soulsby, E. Antibiotic resistance—An evolving problem. Vet. Rec. 2002, 151, 371–372. [Google Scholar] [PubMed]
- Ngigi, A.N.; Magu, M.M.; Muendo, B.M. Occurrence of antibiotics residues in hospital wastewater, wastewater treatment plant, and in surface water in Nairobi County, Kenya. Environ. Monit. Assess. 2020, 192, 18. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Mehmood, S.; Rasheed, T.; Iqbal, H.M. Antibiotics traces in the aquatic environment: Persistence and adverse environmental impact. Curr. Opin. Environ. Sci. Health 2020, 13, 68–74. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.; Matee, M.I. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ. Int. 2018, 114, 131–142. [Google Scholar] [CrossRef]
- Muonga, E.; Mainda, G.; Mukuma, M.; Kwenda, G.; Hang’ombe, B.; Bumbangi, F.; Phiri, N.; Mwansa, M.; Munyeme, M.; Muma, J. Antimicrobial Resistance of Escherichia coli and Salmonella isolated from Raw Retail Broiler Chicken Carcasses in Zambia. J. Epidemiol. Res. 2020, 6, 35–43. [Google Scholar] [CrossRef]
- Phiri, N.; Mainda, G.; Mukuma, M.; Sinyangwe, N.; Banda, L.; Kwenda, G.; Muligisa-Muonga, E.; Flavien, B.; Mwansa, M.; Yamba, K. Antibiotic-resistant Salmonella species and Escherichia coli in broiler chickens from farms, abattoirs and open markets in selected districts of Zambia. J. Epidemiol. Res. 2020, 6, 13–21. [Google Scholar] [CrossRef]
- Larson, E. Community factors in the development of antibiotic resistance. Annu. Rev. Public Health 2007, 28, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet. Health 2018, 2, e398–e405. [Google Scholar] [CrossRef]
- Aiello, A.E.; Larson, E. Antibacterial cleaning and hygiene products as an emerging risk factor for antibiotic resistance in the community. Lancet Infect. Dis. 2003, 3, 501–506. [Google Scholar] [CrossRef]
- Alividza, V.; Mariano, V.; Ahmad, R.; Charani, E.; Rawson, T.M.; Holmes, A.H.; Castro-Sanchez, E. Investigating the impact of poverty on colonization and infection with drug-resistant organisms in humans: A systematic review. Infect. Dis. Poverty 2018, 7, 76. [Google Scholar] [CrossRef]
- Alvarez-Uria, G.; Gandra, S.; Laxminarayan, R. Poverty and prevalence of antimicrobial resistance in invasive isolates. Int. J. Infect. Dis. 2016, 52, 59–61. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef] [Green Version]
- Bebell, L.M.; Muiru, A.N. Antibiotic use and emerging resistance: How can resource-limited countries turn the tide? Glob. Heart 2014, 9, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.S.; Kissler, S.M.; Kanjilal, S.; Olesen, S.W.; Lipsitch, M.; Grad, Y.H. Analysis of multiple bacterial species and antibiotic classes reveals large variation in the association between seasonal antibiotic use and resistance. PLoS Biol. 2022, 20, e3001579. [Google Scholar] [CrossRef]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef]
- Chokshi, A.; Sifri, Z.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36. [Google Scholar] [CrossRef]
- Mudenda, S.; Malama, S.; Munyeme, M.; Hang’ombe, B.M.; Mainda, G.; Kapona, O.; Mukosha, M.; Yamba, K.; Bumbangi, F.N.; Mfune, R.L. Awareness of Antimicrobial Resistance and Associated Factors among Layer Poultry Farmers in Zambia: Implications for Surveillance and Antimicrobial Stewardship Programs. Antibiotics 2022, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- WHO. Recommendations for Management of Common Childhood Conditions: Evidence for Technical Update of Pocket Book Recommendations: Newborn Conditions, Dysentery, Pneumonia, Oxygen Use and Delivery, Common Causes of Fever, Severe Acute Malnutrition and Supportive Care; World Health Organization: Geneva, Switzerland, 2012; Available online: https://apps.who.int/iris/handle/10665/44774 (accessed on 15 November 2020).
- Rhee, C.; Aol, G.; Ouma, A.; Audi, A.; Muema, S.; Auko, J.; Omore, R.; Odongo, G.; Wiegand, R.E.; Montgomery, J.M. Inappropriate use of antibiotics for childhood diarrhea case management—Kenya, 2009–2016. BMC Public Health 2019, 19, 468. [Google Scholar] [CrossRef] [PubMed]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, D.; Kakehashi, M.; Anderson, R. The transmission dynamics of antibiotic–resistant bacteria: The relationship between resistance in commensal organisms and antibiotic consumption. Proc. R. Soc. London. Ser. B Biol. Sci. 1997, 264, 1629–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenover, F.C.; McGowan, J.E., Jr. Reasons for the emergence of antibiotic resistance. Am. J. Med. Sci. 1996, 311, 9–16. [Google Scholar] [CrossRef]
- Lambrecht, E.; Van Coillie, E.; Van Meervenne, E.; Boon, N.; Heyndrickx, M.; Van de Wiele, T. Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). Int. J. Food Microbiol. 2019, 311, 108357. [Google Scholar]
- Thanh Duy, P.; Thi Nguyen, T.N.; Vu Thuy, D.; Chung The, H.; Alcock, F.; Boinett, C.; Dan Thanh, H.N.; Thanh Tuyen, H.; Thwaites, G.E.; Rabaa, M.A. Commensal Escherichia coli are a reservoir for the transfer of XDR plasmids into epidemic fluoroquinolone-resistant Shigella sonnei. Nat. Microbiol. 2020, 5, 256–264. [Google Scholar] [CrossRef]
- De la Fuente, A.; Murr, A.; Rascón, E. Mapping Subnational Poverty in Zambia; World Bank Group: Washington, DC, USA, 2015; Available online: http://hdl.handle.net/10986/21783 (accessed on 10 June 2019).
- CSO. Zambia Population and Demographic Projections, 2011–2035; Central Statistical Office: Lusaka, Zambia, 2013; Available online: https://zambia.opendataforafrica.org/ZMPHC2015/population-and-demographic-projections-2011–2035 (accessed on 10 June 2019).
- Bright, T.; Felix, L.; Kuper, H.; Polack, S. A systematic review of strategies to increase access to health services among children in low- and middle-income countries. BMC Health Serv. Res. 2017, 17, 252. [Google Scholar] [CrossRef] [Green Version]
- WHO. Diarrhoeal disease. In Fact Sheets; World Health Organization: Geneva, Switzerland, 2017; Available online: https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease (accessed on 10 January 2019).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; CLSI supplement M100; Clinical and Laboratory Standard Institute: Berwyn, PA, USA, 2021; Available online: https://clsi.org/about/press-releases/clsi-publishes-m100-performance-standards-for-antimicrobial-susceptibility-testing-131st-edition/ (accessed on 12 December 2021).
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria. An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Dabo, N.T.; Muhammad, B.; Saka, H.K.; Kalgo, Z.M.; Raheem, R.A. Antibiotic resistance pattern of Escherichia coli isolated from diarrhoeic and non-diarrhoeic under-five children in Kano, Nigeria. J. Microbiol. Biotechnol. 2019, 4, 94–102. [Google Scholar]
- Singh, A.K.; Das, S.; Singh, S.; Gajamer, V.R.; Pradhan, N.; Lepcha, Y.D.; Tiwari, H.K. Prevalence of antibiotic resistance in commensal Escherichia coli among the children in rural hill communities of Northeast India. PLoS ONE 2018, 13, e0199179. [Google Scholar] [CrossRef] [PubMed]
- Bartoloni, A.; Pallecchi, L.; Benedetti, M.; Fernandez, C.; Vallejos, Y.; Guzman, E.; Villagran, A.L.; Mantella, A.; Lucchetti, C.; Bartalesi, F. Multidrug-resistant commensal Escherichia coli in children, Peru and Bolivia. Emerg. Infect. Dis. 2006, 12, 907. [Google Scholar] [CrossRef]
- Dyar, O.J.; Hoa, N.Q.; Trung, N.V.; Phuc, H.D.; Larsson, M.; Chuc, N.T.; Lundborg, C.S. High prevalence of antibiotic resistance in commensal Escherichia coli among children in rural Vietnam. BMC Infect. Dis. 2012, 12, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omulo, S.; Lofgren, E.T.; Lockwood, S.; Thumbi, S.M.; Bigogo, G.; Ouma, A.; Verani, J.R.; Juma, B.; Njenga, M.K.; Kariuki, S. Carriage of antimicrobial-resistant bacteria in a high-density informal settlement in Kenya is associated with environmental risk-factors. Antimicrob. Resist. Infect. Control 2021, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Purohit, M.R.; Lindahl, L.F.; Diwan, V.; Marrone, G.; Lundborg, C.S. High levels of drug resistance in commensal E. coli in a cohort of children from rural central India. Sci. Rep. 2019, 9, 6682. [Google Scholar] [CrossRef]
- Kalyani, V.; Bisht, M.; Thapliyal, S.; Rohilla, K.K. Comparison of practice and attitude of self-treatment in rural and urban population in Uttarakhand, India: A comparative study. Natl. J. Physiol. Pharm. Pharmacol. 2020, 10, 1052–1059. [Google Scholar] [CrossRef]
- Nga, D.T.T.; Chuc, N.T.K.; Hoa, N.P.; Hoa, N.Q.; Nguyen, N.T.T.; Loan, H.T.; Toan, T.K.; Phuc, H.D.; Horby, P.; Van Yen, N. Antibiotic sales in rural and urban pharmacies in northern Vietnam: An observational study. BMC Pharmacol. Toxicol. 2014, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Konaté, A.; Dembélé, R.; Zongo, C.; Kaboré, W.A.; Bonkoungou, I.; Traoré, A.; Barro, N. Occurrence of Multiple Antibiotic Resistances of Escherichia coli Isolated from Diarrheal Children Less Than Five Years in Burkina. Eur. J. Pharm. Med. Res. 2017, 4, 165–171. [Google Scholar]
- Tola, M.A.; Abera, N.A.; Gebeyehu, Y.M.; Dinku, S.F.; Tullu, K.D. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae fecal carriage among children under five years in Addis Ababa, Ethiopia. PLoS ONE 2021, 16, e0258117. [Google Scholar] [CrossRef]
- Huang, I.-F.; Lee, W.-Y.; Wang, J.-L.; Hung, C.-H.; Hu, H.-H.; Hung, W.-Y.; Hung, Y.-J.; Chen, W.-C.; Shen, Y.-T.; Cheng, M.-F. Fecal carriage of multidrug-resistant Escherichia coli by community children in southern Taiwan. BMC Gastroenterol. 2018, 18, 86. [Google Scholar] [CrossRef]
- Masood, F.; Abdullah, R.M.; Anam, S.; Arshad, M.I.; Anjum, F.R. Occurrence and antibiogram of enteric bacterial isolates from stool samples of gastroenteritis children under 5 years of age in district Faisalabad, Pakistan. PAB 2019, 8, 2087–2094. [Google Scholar] [CrossRef]
- Eltai, N.O.; Al Thani, A.A.; Al Hadidi, S.H.; Al Ansari, K.; Yassine, H.M. Antibiotic resistance and virulence patterns of pathogenic Escherichia coli strains associated with acute gastroenteritis among children in Qatar. BMC Microbiol. 2020, 20, 54. [Google Scholar] [CrossRef] [PubMed]
- Mainda, G.; Bessell, P.R.; Muma, J.B.; McAteer, S.P.; Chase-Topping, M.E.; Gibbons, J.; Stevens, M.P.; Gally, D.L. Prevalence and patterns of antimicrobial resistance among Escherichia coli isolated from Zambian dairy cattle across different production systems. Sci. Rep. 2015, 5, 12439. [Google Scholar] [CrossRef] [Green Version]
- Mweemba, C.; Hangoma, P.; Fwemba, I.; Mutale, W.; Masiye, F. Estimating district HIV prevalence in Zambia using small-area estimation methods (SAE). Popul. Health Metr. 2022, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, E.; Parkhurst, J.; Phiri, S.; Gibb, D.M.; Chishinga, N.; Droti, B.; Hoskins, S. National policy development for cotrimoxazole prophylaxis in Malawi, Uganda and Zambia: The relationship between context, evidence and links. Health Res. Policy Syst. 2011, 9, S6. [Google Scholar] [CrossRef] [Green Version]
- Chintu, C.; Bhat, G.; Walker, A.; Mulenga, V.; Sinyinza, F.; Lishimpi, K.; Farrelly, L.; Kaganson, N.; Zumla, A.; Gillespie, S. Co-trimoxazole as prophylaxis against opportunistic infections in HIV-infected Zambian children (CHAP): A double-blind randomised placebo-controlled trial. Lancet 2004, 364, 1865–1871. [Google Scholar] [CrossRef]
- Chiyangi, H.; Muma, J.B.; Malama, S.; Manyahi, J.; Abade, A.; Kwenda, G.; Matee, M.I. Identification and antimicrobial resistance patterns of bacterial enteropathogens from children aged 0–59 months at the University Teaching Hospital, Lusaka, Zambia: A prospective cross-sectional study. BMC Infect. Dis. 2017, 17, 117. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Zambia National Formulary Committee. Standard Treatment Guidelines, Essential Medicines List, Essential Laboratory Supplies for Zambia, 5th ed.; Ministry of Health, Zambia National Formulary Committee: Lusaka, Zambia, 2020. Available online: https://www.moh.gov.zm/?wpfb_dl=32 (accessed on 20 July 2022).
- WHO. WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA list); World Health Organization: Geneva, Switzerland, 2019; Available online: https://apps.who.int/iris/handle/10665/325036 (accessed on 16 April 2022).
- Zhou, Y.; Zhu, X.; Hou, H.; Lu, Y.; Yu, J.; Mao, L.; Mao, L.; Sun, Z. Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: A hospital-based study. BMC Infect. Dis. 2018, 18, 63. [Google Scholar] [CrossRef] [Green Version]
- Saka, H.K.; Dabo, N.T.; Muhammad, B.; García-Soto, S.; Ugarte-Ruiz, M.; Alvarez, J. Diarrheagenic Escherichia coli pathotypes from children younger than 5 years in Kano State, Nigeria. Front. Public Health 2019, 7, 348. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 2004, 4, 478–485. [Google Scholar] [CrossRef]
- Byarugaba, D. Antimicrobial resistance in developing countries and responsible risk factors. Int. J. Antimicrob. Agents 2004, 24, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopal Rao, G. Risk factors for the spread of antibiotic-resistant bacteria. Drugs 1998, 55, 323–330. [Google Scholar]
- Shakya, P.; Barrett, P.; Diwan, V.; Marothi, Y.; Shah, H.; Chhari, N.; Tamhankar, A.J.; Pathak, A.; Lundborg, C.S. Antibiotic resistance among Escherichia coli isolates from stool samples of children aged 3 to 14 years from Ujjain, India. BMC Infect. Dis. 2013, 13, 477. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.W.; Bergeron, G.; Bourassa, M.W.; Dickson, J.; Gomes, F.; Howe, A.; Kahn, L.H.; Morley, P.S.; Scott, H.M.; Simjee, S. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019, 1441, 17–30. [Google Scholar] [CrossRef]
- Rousham, E.K.; Unicomb, L.; Islam, M.A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and One Health approaches. Proc. R. Soc. B Biol. Sci. 2018, 285, 20180332. [Google Scholar] [CrossRef]
Antibiotics | Class of Antibiotic | Description | Source * |
---|---|---|---|
Amoxicillin-clavulanate | Penicillin + beta-lactamase inhibitor | 20 µg | Oxoid |
Ampicillin | Penicillin (Beta-lactam) | 10 µg | Oxoid |
Cefotaxime | Third Generation Cephalosporin (Beta-lactam) | 30 µg | Oxoid |
Chloramphenicol | Phenicols | 30 µg | Oxoid |
Ciprofloxacin | Fluoroquinolone | 5 µg | Oxoid |
Gentamicin | Aminoglycosides | 10 µg | Oxoid |
Nalidixic acid | Quinolones | 30 µg | Oxoid |
Imipenem | Carbapenems | 10 µg | Oxoid |
Tetracycline | Tetracycline | 30 µg | Oxoid |
Trimethoprim-Sulphamethoxazole | Folate Pathway Antagonist | 25 µg | Oxoid |
Variables | Categories | N (1020) | Percent |
---|---|---|---|
Health status | Healthy | 455 | 44.61 |
Diarrhoeic | 565 | 55.39 | |
Gender | Female | 499 | 48.92 |
Male | 521 | 51.08 | |
Age | 0–5 months | 322 | 31.57 |
6–11 months | 239 | 23.43 | |
12–35 months | 359 | 58.92 | |
36–59 months | 100 | 9.80 | |
Guardian’s level of education | None | 51 | 5.00 |
Primary | 253 | 24.80 | |
Secondary | 601 | 30.29 | |
Tertiary | 115 | 11.27 | |
Population density in the area of habitation | Low density | 36 | 3.53 |
Medium density | 190 | 18.63 | |
High density | 794 | 77.84 | |
Size of the household | Below 5 people | 422 | 41.37 |
Equal or above 5 people | 598 | 58.63 | |
Keeping animals at the household level | No | 864 | 84.71 |
Yes | 156 | 15.29 | |
Types of animals kept at household level * (N = 156) | Livestock | 11 | 7.05 |
Poultry | 84 | 53.85 | |
Pets | 82 | 52.56 | |
Other animals | 8 | 5.13 |
Variables | Categories | N (1020) | Percent |
---|---|---|---|
Source of water for drinking * | Pipe borne (council water) | 859 | 84.22 |
Borehole | 147 | 14.41 | |
River/Pond/Dam | 18 | 1.76 | |
Sachet/Bottled/Filtered | 11 | 1.08 | |
Treatment of drinking water | No | 366 | 35.88 |
Sometimes | 215 | 21.08 | |
Yes | 439 | 43.04 | |
Washing hands before cooking and feeding the child | No | 51 | 5.00 |
Sometimes | 241 | 23.63 | |
Yes | 728 | 71.37 | |
Washing hands after disposing of the child’s faeces | No | 55 | 5.39 |
Sometimes | 182 | 17.84 | |
Yes | 783 | 76.76 | |
Types of toilets * | Flush toilet | 495 | 48.53 |
Pit latrine | 536 | 52.55 | |
Disposing of solid waste * | Bin | 749 | 73.43 |
Pit | 238 | 23.33 | |
Roadside | 36 | 3.53 | |
Storage of prepared food for the child | No | 284 | 27.84 |
Yes | 736 | 72.16 | |
Storage methods of prepared food for the child (N = 736) | At room temperature | 331 | 44.97 |
In a cold chain | 83 | 11.28 | |
In a warmer | 322 | 43.75 | |
Exclusive breastfeeding | No | 92 | 9.02 |
Partially | 737 | 72.25 | |
Exclusively | 191 | 18.73 | |
Child feeding methods * | Spoon | 736 | 72.16 |
Fingers/hands | 623 | 61.08 | |
Bottle feeding | 3 | 0.29 |
Variables | Categories | N | Percent |
---|---|---|---|
Knowledge of antibiotics (N = 1020) | No | 845 | 82.84 |
Yes | 175 | 17.16 | |
Correct knowledge of antibiotics by examples (N = 175) | No | 65 | 37.14 |
Yes | 110 | 62.86 | |
Awareness of AMR (N = 1020) | No | 983 | 96.37 |
Yes | 37 | 3.63 | |
Correct awareness of AMR by the concept definition (N = 37) | No | 11 | 29.73 |
Yes | 26 | 70.27 | |
Use of antibiotics suggested by unauthorized personnel | No | 740 | 72.55 |
Sometimes | 135 | 13.24 | |
Yes | 145 | 14.22 | |
Knowledge of causes of diarrhoea (N = 1020) | No | 337 | 33.04 |
Yes | 683 | 66.96 | |
Perceived causes of diarrhoea * (N = 683) | Poor hygiene | 261 | 38.21 |
Food likely to be contaminated | 531 | 77.75 | |
Teething | 134 | 19.62 | |
Undercooked food | 18 | 2.64 | |
Complimentary food before six months | 33 | 4.83 | |
Change of diet | 5 | 0.73 | |
Germs | 13 | 1.90 | |
Others | 26 | 3.81 | |
Symptoms of diarrhoeic children * (N = 565) | Bloody diarrhoea | 33 | 5.86 |
Diarrhoea with mucus | 301 | 53.46 | |
Fever | 347 | 61.63 | |
Vomiting | 269 | 47.78 |
MDR | OR (95% C.I) | p > |z| | OR Adjusted for HC (95% C.I) | p > |z| |
---|---|---|---|---|
All children | ||||
Household in a high-density area | 0.13 (0.02–0.99) | 0.050 | ||
Storing prepared food for the child | 0.65 (0.44–0.96) | 0.031 | 0.65 (0.43–0.98) | 0.040 |
Disposing of solid waste in a pit | 1.60 (1.04–2.45) | 0.033 | ||
Disposing of solid waste on the roadside | 8.80 (1.19–64.96) | 0.033 | ||
Diarrhoeic children | ||||
Disposing of solid waste in a bin | 0.46 (0.27–0.79) | 0.006 | ||
Knowledge of antibiotics | 1.96 (1.00–3.83) | 0.049 | ||
Healthy children | ||||
Gender | 0.51 (0.31–0.86) | 0.011 | 0.57 (0.32–0.98) | 0.041 |
Storing prepared food for the child | 0.60 (0.37–0.98) | 0.046 | ||
Knowledge of antibiotics | 0.53 (0.28–1.02) | 0.057 | 0.48 (0.23–0.99) | 0.049 |
Possible XDR | OR (95% C.I) | p > |z| | OR adjusted for HC (95% C.I) | p > |z| |
All children | ||||
Age group 6–11 months | 0.77 (0.44–1.34) | 0.365 | 0.47 (0.28–0.79) | 0.005 |
Age group 12–35 months | 1.02 (0.63–1.65) | 0.918 | 0.55 (0.35–0.88) | 0.013 |
Age group 36–59 months | 0.28 (0.11–0.74) | 0.010 | 0.14 (0.05–0.39) | 0.000 |
Child feeding with a spoon | 0.61 (0.39–0.95) | 0.028 | ||
Size of the household | 1.57 (1.08–2.29) | 0.019 | ||
Diarrhoeic children | ||||
Child feeding with fingers/hands | 2.47 (1.02–5.95) | 0.044 | 2.90 (1.16–7.19) | 0.022 |
Keeping poultry at the household level | 2.67 (1.18–6.01) | 0.018 | 2.54 (1.09–5.87) | 0.029 |
Using ATB given by non-professional | 1.36 (0.98–1.88) | 0.058 | ||
Healthy children | ||||
Storing prepared food in a warmer | 0.48 (0.23–0.99) | 0.049 | ||
Keeping pets at household | 0.28 (0.08–0.93) | 0.038 | 0.19 (0.05–0.71) | 0.013 |
Treatment of drinking water | 1.26 (0.95–1.66) | 0.107 | ||
Possible PDR | OR (95% C.I) | p > |z| | OR adjusted for HC (95% C.I) | p > |z| |
Healthy children | ||||
Awareness of AMR | 10.33 (1.93–55.04) | 0.006 | 9.06 (1.48–55.45) | 0.017 |
Variables | OR (95% C.I) | p > |z| | OR Adjusted for HC (95% C.I) | p > |z| |
---|---|---|---|---|
All children | ||||
Age group 36–59 months | 0.58 (0.34–0.98 | 0.041 | ||
Household in a medium-density area | 0.47 (0.22–0.99) | 0.049 | ||
Household in a high-density area | 0.48 (0.24–0.98) | 0.045 | ||
Storing prepared food for the child | 0.61 (0.42–0.87) | 0.007 | 0.65 (0.43–0.98) | 0.040 |
Disposing solid waste in a bin | 0.66 (0.48–0.89) | 0.006 | ||
Diarrhoeic children | ||||
Disposing solid waste in a bin | 0.57 (0.38–0.85) | 0.006 | ||
Keeping poultry in the household | 2.37 (1.17–4.80) | 0.016 | ||
Knowledge of antibiotics | 1.70 (1.06–2.72) | 0.026 | ||
Healthy children | ||||
Storing prepared food for the child | 0.62 (0.42–0.91) | 0.015 | ||
SWH after disposing of the child’s faeces | 0.26 (0.08–0.81) | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bumbangi, F.N.; Llarena, A.-K.; Skjerve, E.; Hang’ombe, B.M.; Mpundu, P.; Mudenda, S.; Mutombo, P.B.; Muma, J.B. Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia. Microorganisms 2022, 10, 1684. https://doi.org/10.3390/microorganisms10081684
Bumbangi FN, Llarena A-K, Skjerve E, Hang’ombe BM, Mpundu P, Mudenda S, Mutombo PB, Muma JB. Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia. Microorganisms. 2022; 10(8):1684. https://doi.org/10.3390/microorganisms10081684
Chicago/Turabian StyleBumbangi, Flavien Nsoni, Ann-Katrin Llarena, Eystein Skjerve, Bernard Mudenda Hang’ombe, Prudence Mpundu, Steward Mudenda, Paulin Beya Mutombo, and John Bwalya Muma. 2022. "Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia" Microorganisms 10, no. 8: 1684. https://doi.org/10.3390/microorganisms10081684
APA StyleBumbangi, F. N., Llarena, A. -K., Skjerve, E., Hang’ombe, B. M., Mpundu, P., Mudenda, S., Mutombo, P. B., & Muma, J. B. (2022). Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia. Microorganisms, 10(8), 1684. https://doi.org/10.3390/microorganisms10081684