Effect of Surface Roughness of Deciduous and Permanent Tooth Enamel on Bacterial Adhesion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tooth Selection and Sample Preparation
2.2. Surface Roughness Analysis
2.3. Profilometry
2.4. Atomic Force Microscopy
2.5. Bacterial Adhesion Test
2.6. XTT Cell Viability Assay
2.7. Confocal Laser Scanning Microscopy
2.8. Scanning Electron Microscopy
2.9. Statistical Analysis
3. Results
3.1. Surface Roughness
3.2. XTT Cell Viability Assay
3.3. CLSM Observations
3.4. SEM Observations
4. Discussion
4.1. Surface Roughness
4.2. XTT Cell-Viability Assay
4.3. CLSM Observations
4.4. SEM Observations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Skinner, H.C.W. Biominerals. Mineral. Mag. 2005, 69, 621–641. [Google Scholar] [CrossRef]
- De Menezes Oliveira, M.A.; Torres, C.P.; Gomes-Silva, J.M.; Chinelatti, M.A.; De Menezes, F.C.; Palma-Dibb, R.G.; Borsatto, M.C. Microstructure and mineral composition of dental enamel of permanent and deciduous teeth. Microsc. Res. Tech. 2010, 73, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Cui, F.Z.; Ge, J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J. Tissue. Eng. Regen. Med. 2007, 1, 185–191. [Google Scholar] [CrossRef] [PubMed]
- White, S.N.; Luo, W.; Paine, M.L.; Fong, H.; Sarikaya, M.; Snead, M.L. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J. Dent. Res. 2001, 80, 321–326. [Google Scholar] [CrossRef]
- Whitehead, K.A.; Verran, J. The effect of surface topography on the retention of microorganisms. Trans. IChemE Part. C. 2006, 84, 253–259. [Google Scholar] [CrossRef]
- Pacha-Olivenza, M.Á.; Tejero, R.; Fernández-Calderón, M.C.; Anitua, E.; Troya, M.; González-Martín, M.L. Relevance of topographic parameters on the adhesion and proliferation of human gingival fibroblasts and oral bacterial strains. Biomed. Res. Int. 2019, 2019, 8456342. [Google Scholar] [CrossRef] [Green Version]
- Radlanski, R.J. Micromorphological features of human dental enamel. In Dental Anthropology; Alt, K.W., Rösing, F.W., Teschler-Nicola, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 129–145. [Google Scholar] [CrossRef]
- Ten Cate, A.R. Oral Histology: Development, Structure and Function, 3rd ed.; Mosby: St. Louis, MO, USA, 1989. [Google Scholar]
- Lucchese, A.; Storti, E. Morphological characteristics of primary enamel surfaces versus permanent enamel surfaces: SEM digital analysis. Eur. J. Paediatr. Dent. 2011, 12, 179–183. [Google Scholar]
- Bollen, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef] [Green Version]
- Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.; Marcenes, W. Global burden of untreated caries: A systematic review and metaregression. J. Dent. Res. 2015, 94, 650–658. [Google Scholar] [CrossRef]
- Song, F.; Koo, H.; Ren, D. Effects of material properties on bacterial adhesion and biofilm formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Teughels, W.; Van Assche, N.; Sliepen, I.; Quirynen, M. Effect of material characteristics and/or surface topography on biofilm development. Clin. Oral. Implants. Res. 2006, 17 (Suppl. S2), S68–S81. [Google Scholar] [CrossRef] [PubMed]
- Kreth, J.; Merritt, J.; Qi, F. Bacterial and Host Interactions of Oral Streptococci. DNA Cell Biol. 2009, 28, 397–403. [Google Scholar] [CrossRef] [PubMed]
- van Houte, J. Role of micro-organisms in caries etiology. J. Dent. Res. 1994, 73, 672–681. [Google Scholar] [CrossRef]
- Seow, W.K. Biological mechanisms of early childhood caries. Community Dent. Oral. Epidemiol. 1998, 26, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Tanzer, J.M.; Livingston, J.; Thompson, A.M. The microbiology of primary dental caries in humans. J. Dent. Educ. 2001, 65, 1028–1037. [Google Scholar] [CrossRef]
- Teutle-Coyotecatl, B.; Contreras-Bulnes, R.; Scougall-Vilchis, R.J.; Almaguer-Flores, A.; García-Pérez, V.I.; Rodríguez-Vilchis, L.E.; Arenas-Alatorre, J.A. Adhesion of Streptococcus mutans and Streptococcus sanguinis on Er: YAG laser irradiated dental enamel: Effect of surface roughness. Photomed. Laser. Surg. 2018, 36, 660–666. [Google Scholar] [CrossRef]
- Teutle-Coyotecatl, B.; Contreras-Bulnes, R.; Scougall-Vilchis, R.J.; Almaguer-Flores, A.; Rodríguez-Vilchis, L.E.; Velazquez-Enriquez, U.; Alatorre, J. Effect of Er: YAG laser irradiation on deciduous enamel roughness and bacterial adhesion: An in vitro study. Microsc. Res. Tech. 2019, 82, 1869–1877. [Google Scholar] [CrossRef]
- ISO 4287:1997; Geometrical Product Specifications (GPS)–Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2005.
- Hu, D.; Gong, J.; He, B.; Chen, Z.; Li, M. Surface properties and Streptococcus Mutans-Streptococcus Sanguinis adhesion of fluorotic enamel. Arch. Oral Biol. 2021, 121, 104970. [Google Scholar] [CrossRef]
- Konishi, N.; Torii, Y.; Kurosaki, A.; Takatsuka, T.; Itota, T.; Yoshiyama, M. Confocal laser scanning microscopic analysis of early plaque formed on resin composite and human enamel. J. Oral Rehabil. 2003, 30, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Ota-Tsuzuki, C.; Martins, F.L.; Giorgetti, A.P.; de Freitas, P.M.; Duarte, P.M. In vitro adhesion of Streptococcus sanguinis to dentine root surface after treatment with Er: YAG laser, ultrasonic system, or manual curette. Photomed. Laser. Surg. 2009, 27, 735–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.; Featherstone, J.D.; Le, C.Q.; Steinberg, D.; Feuerstein, O. Effects of CO2 laser irradiation on tooth enamel coated with biofilm. Lasers Surg. Med. 2014, 46, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Gentile, E.; Di Stasio, D.; Santoro, R.; Contaldo, M.; Salerno, C.; Serpico, R.; Lucchese, A. In vivo microstructural analysis of enamel in permanent and deciduous teeth. Ultrastruct. Pathol. 2015, 39, 131–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manuela Díaz-Monroy, J.; Contreras-Bulnes, R.; Fernando Olea-Mejía, O.; Emma Rodríguez-Vilchis, L.; Sanchez-Flores, I. Morphological changes produced by acid dissolution in Er: YAG laser irradiated dental enamel. Microsc. Res. Tech. 2014, 77, 410–414. [Google Scholar] [CrossRef]
- Alcantara-Galeana, M.D.C.Z.; Contreras-Bulnes, R.; Rodríguez-Vilchis, L.E.; Espinosa-Pesqueira, M.E.; Barrera-Ortega, C.C.; López-Hurtado, I.M.; Fernández-Bobadilla, A. Microhardness, structure, and morphology of primary enamel after phosphoric acid, self-etching adhesive, and Er:YAG laser etching. Int. J. Opt. 2017, 2017, 7634739. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Anderson, P.; Dowker, S.E.; Elliott, J.C. Optical profilometric study of changes in surface roughness of enamel during in vitro demineralization. Caries Res. 2000, 34, 164–174. [Google Scholar] [CrossRef]
- Hegedüs, C.; Bistey, T.; Flóra-Nagy, E.; Keszthelyi, G.; Jenei, A. An atomic force microscopy study on the effect of bleaching agents on enamel surface. J. Dent. 1999, 27, 509–515. [Google Scholar] [CrossRef]
- Ripa, L.W.; Gwinnett, A.J.; Buonocore, M.G. The ‘‘prismless’’ outer layer of deciduous and permanent enamel. Arch. Oral. Biol. 1966, 11, 41–48. [Google Scholar] [CrossRef]
- Kodaka, T.; Nakajima, F.; Higashi, S. Structure of the so-called ‘prismless’ enamel in human deciduous teeth. Caries Res. 1989, 23, 290–296. [Google Scholar] [CrossRef]
- Syed, S.; Yassin, S.M.; Almalki, A.Y.; Ali, S.; Alqarni, A.; Moadi, Y.M.; Alkhaldi, A.M.; Alqahtani, N.M.; Hosmani, J.; Heboyan, A.; et al. Structural changes in primary teeth of diabetic children: Composition and ultrastructure analysis. Children 2022, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P.R.; Beynon, A.D. Mineralization differences between human deciduous and permanent enamel measured by quantitative microradiography. Arch. Oral. Biol. 1989, 34, 85–88. [Google Scholar] [CrossRef]
- Stack, M.V. Variation in the organic content of deciduous enamel and dentine. Biochem. J. 1953, 54, xv. [Google Scholar] [PubMed]
- Lippert, F.; Parker, D.M.; Jandt, K.D. Susceptibility of deciduous and permanent enamel to dietary acid-induced erosion studied with atomic force microscopy nanoindentation. Eur. J. Oral. Sci. 2004, 112, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Assunção, C.M.; Lussi, A.; Rodrigues, J.A.; Carvalho, T.S. Efficacy of toothpastes in the prevention of erosive tooth wear in permanent and deciduous teeth. Clin. Oral. Investig. 2019, 23, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Assunção, C.M.; Schlueter, N.; Rodrigues, J.A.; Carvalho, T.S.; Lussi, A. Do fluoride toothpastes have similar preventive effect in permanent and primary teeth against erosive tooth wear? Int. J. Paediatr. Dent. 2018, 29, 228–236. [Google Scholar] [CrossRef]
- McConnell, M.D.; Liu, Y.; Nowak, A.P.; Pilch, S.; Masters, J.G.; Composto, R.J. Bacterial plaque retention on oral hard materials: Effect of surface roughness, surface composition, and physisorbed polycarboxylate. J. Biomed. Mater. Res. A 2010, 92, 1518–1527. [Google Scholar] [CrossRef]
- Karatas, O.; Gul, P.; Gündoğdu, M.; Iskenderoglu, D.T. An evaluation of surface roughness after staining of different composite resins using atomic force microscopy and a profilometer. Microsc. Res. Tech. 2020, 83, 1251–1259. [Google Scholar] [CrossRef]
- Leach, R.; Haitjema, H. Bandwidth characteristics and comparisons of surface texture measuring instruments. Meas. Sci. Technol. 2010, 21, 79801. [Google Scholar] [CrossRef]
- González-Sotelo, A.; Contreras-Bulnes, R.; Rodríguez-Vilchis, L.E.; de Los Angeles Moyaho-Bernal, M.; Rubio-Rosas, E.; Teutle-Coyotecatl, B.; Mézquita-Rodrigo, I. Morphological and porosity changes in primary enamel surface after an in vitro demineralization model. Microsc. Res. Tech. 2022, 85, 1956–1963. [Google Scholar] [CrossRef]
- Zamudio-Ortega, C.M.; Contreras-Bulnes, R.; Scougall-Vilchis, R.J.; Morales-Luckie, R.A.; Olea-Mejía, O.F.; Rodríguez-Vilchis, L.E. Morphological, chemical and structural characterisation of deciduous enamel: SEM, EDS, XRD, FTIR and XPS analysis. Eur. J. Paediatr. Dent. 2014, 15, 275–280. [Google Scholar] [PubMed]
- Kozmos, M.; Virant, P.; Rojko, F.; Abram, A.; Rudolf, R.; Raspor, P.; Zore, A.; Bohinc, K. Bacterial adhesion of Streptococcus mutans to dental material surface. Molecules 2021, 26, 1152. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Busscher, H.J.; van der Mei, H.C.; Chen, Y.; de Vries, J.; Ren, Y. Oral bacterial adhesion forces to biomaterial surfaces constituting the bracket-adhesive-enamel junction in orthodontic treatment. Eur. J. Oral. Sci. 2009, 117, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, J.E.; Hesketh, L.M.; Handley, P.S. Lack of correlation between fibrils, hydrophobicity and adhesion for strains of Streptococcus sanguis biotypes I and II. Microbios 1987, 50, 7–15. [Google Scholar] [PubMed]
- Hogt, A.H.; Dankert, J.; Feijen, J. Adhesion of Staphylococcus epidermidis and Staphylococcus saprophyticus to a hydrophobic biomaterial. J. Gen. Microbiol. 1985, 131, 2485–2491. [Google Scholar] [CrossRef] [Green Version]
- Kreth, J.; Zhang, Y.; Herzberg, M.C. Streptococcal antagonism in oral biofilms: Streptococcus sanguinis and Streptococcus gordonii interference with Streptococcus mutans. J. Bacteriol. 2008, 190, 4632–4640. [Google Scholar] [CrossRef] [Green Version]
- Mitrakul, K.; Vongsawan, K.; Sriutai, A.; Thosathan, W. Association between S. mutans and S. sanguinis in severe early childhood caries and caries-free children a quantitative real-time PCR analysis. J. Clin. Pediatr. Dent. 2016, 40, 281–289. [Google Scholar] [CrossRef]
- Caufield, P.W.; Dasanayake, A.P.; Li, Y.; Pan, Y.; Hsu, J.; Hardin, J.M. Natural history of Streptococcus sanguinis in the oral cavity of infants: Evidence for a discrete window of infectivity. Infect. Immun. 2000, 68, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Lynch, R.J. The primary and mixed dentition, post-eruptive enamel maturation and dental caries: A review. Int. Dent. J. 2013, 63, 253–259. [Google Scholar] [CrossRef]
- Hannig, C.; Follo, M.; Hellwig, E.; Al-Ahmad, A. Visualization of adherent micro-organisms using different techniques. J. Med. Microbiol. 2010, 59, 1–7. [Google Scholar] [CrossRef]
- Banas, J.A. Virulence properties of Streptococcus mutans. Front. Biosci. 2004, 9, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.A. Bacterial factor in the ætiology of dental caries. Br. J. Exp. Pathol. 1924, 5, 141–147. [Google Scholar]
- Olsson, J.; Carlén, A.; Holmberg, K. Inhibition of Streptococcus mutans adherence to hydroxyapatite with combinations of alkyl phosphates and nonionic surfactants. Caries Res. 1991, 25, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Mitik-Dineva, N.; Wang, J.; Mocanasu, R.C.; Stoddart, P.R.; Crawford, R.J.; Ivanova, E.P. Impact of nano-topography on bacterial attachment. Biotechnol. J. 2008, 3, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, Y.; Zheng, S.; Xue, J.; Zhou, J.; Tang, Y.; Jiang, L.; Li, W. Effect of enamel morphology on nanoscale adhesion forces of streptococcal bacteria: An AFM study. Scanning 2015, 37, 313–321. [Google Scholar] [CrossRef]
Groups | Roughness Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ra | Rz | ||||||||
Profilometer (n = 54 p/g) AFM (n = 3 p/g) | G1_DE | 0.210 | ± | 0.110 | a | 1.840 | ± | 1.120 | a |
G2_PE | 0.250 | ± | 0.200 | a | 2.070 | ± | 1.530 | a | |
G1_DE | 0.067 | ± | 0.030 | a | 0.082 | ± | 0.038 | a | |
G2_PE | 0.030 | ± | 0.018 | b | 0.037 | ± | 0.023 | b |
Groups (n = 3) | Number of Bacterial Cells × 106/mL | |||||||
---|---|---|---|---|---|---|---|---|
S. Mutans | S. Sanguinis | |||||||
G1_DE | 227.2 | ± | 12.3 | A, a | 374.4 | ± | 6.8 | A, b |
G2_PE | 31.4 | ± | 12.3 | B, a | 87.9 | ± | 8.8 | B, b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teutle-Coyotecatl, B.; Contreras-Bulnes, R.; Rodríguez-Vilchis, L.E.; Scougall-Vilchis, R.J.; Velazquez-Enriquez, U.; Almaguer-Flores, A.; Arenas-Alatorre, J.A. Effect of Surface Roughness of Deciduous and Permanent Tooth Enamel on Bacterial Adhesion. Microorganisms 2022, 10, 1701. https://doi.org/10.3390/microorganisms10091701
Teutle-Coyotecatl B, Contreras-Bulnes R, Rodríguez-Vilchis LE, Scougall-Vilchis RJ, Velazquez-Enriquez U, Almaguer-Flores A, Arenas-Alatorre JA. Effect of Surface Roughness of Deciduous and Permanent Tooth Enamel on Bacterial Adhesion. Microorganisms. 2022; 10(9):1701. https://doi.org/10.3390/microorganisms10091701
Chicago/Turabian StyleTeutle-Coyotecatl, Bernardo, Rosalía Contreras-Bulnes, Laura Emma Rodríguez-Vilchis, Rogelio José Scougall-Vilchis, Ulises Velazquez-Enriquez, Argelia Almaguer-Flores, and Jesús Angel Arenas-Alatorre. 2022. "Effect of Surface Roughness of Deciduous and Permanent Tooth Enamel on Bacterial Adhesion" Microorganisms 10, no. 9: 1701. https://doi.org/10.3390/microorganisms10091701
APA StyleTeutle-Coyotecatl, B., Contreras-Bulnes, R., Rodríguez-Vilchis, L. E., Scougall-Vilchis, R. J., Velazquez-Enriquez, U., Almaguer-Flores, A., & Arenas-Alatorre, J. A. (2022). Effect of Surface Roughness of Deciduous and Permanent Tooth Enamel on Bacterial Adhesion. Microorganisms, 10(9), 1701. https://doi.org/10.3390/microorganisms10091701