Microbial Burden Estimation of Food Items, Built Environments, and the International Space Station Using Film Media
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of Petrifilm and Easy Plate Media Tested
2.2. Food-Item Cultivable Microbial Counts and Media Testing
2.3. Built-Environment Cultivable Microbial Counts and Media Testing
2.4. International Space Station Sampling and Media Testing
3. Results
3.1. Cultivable Population of Food Items
3.2. Cultivable Population of Built-Environment Surfaces
3.3. Cultivable Population of the International Space Station
3.4. Specificity of Media Types for Bacteria or Fungi
3.5. Species and Genus Distributions for Bacterial and Fungal Isolates
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASA. Planetary Protection Provisions for Robotic Extraterrestrial Missions; NPR 8020.12D, April 2011; NASA: Washington, DC, USA, 2011.
- Benardini, J.N., 3rd; La Duc, M.T.; Beaudet, R.A.; Koukol, R. Implementing planetary protection measures on the Mars Science Laboratory. Astrobiology 2014, 14, 27–32. [Google Scholar] [CrossRef]
- Checinska Sielaff, A.; Urbaniak, C.; Mohan, G.B.M.; Stepanov, V.G.; Tran, Q.; Wood, J.M.; Minich, J.; McDonald, D.; Mayer, T.; Knight, R.; et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 2019, 7, 50. [Google Scholar] [CrossRef]
- Ghosh, S.; Osman, S.; Vaishampayan, P.; Venkateswaran, K. Recurrent isolation of extremotolerant bacteria from the clean room where Phoenix spacecraft components were assembled. Astrobiology 2010, 10, 325–335. [Google Scholar] [CrossRef]
- Kwan, K.; Cooper, M.; La Duc, M.T.; Vaishampayan, P.; Stam, C.; Benardini, J.N.; Scalzi, G.; Moissl-Eichinger, C.; Venkateswaran, K. Evaluation of procedures for the collection, processing, and analysis of biomolecules from low-biomass surfaces. Appl. Environ. Microbiol. 2011, 77, 2943–2953. [Google Scholar] [CrossRef]
- La Duc, M.T.; Dekas, A.; Osman, S.; Moissl, C.; Newcombe, D.; Venkateswaran, K. Isolation and characterization of bacteria capable of tolerating the extreme conditions of clean room environments. Appl. Environ. Microbiol. 2007, 73, 2600–2611. [Google Scholar] [CrossRef]
- Nirwati, H.; Sinanjung, K.; Fahrunissa, F.; Wijaya, F.; Napitupulu, S.; Hati, V.P.; Hakim, M.S.; Meliala, A.; Aman, A.T.; Nuryastuti, T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary care hospital, Klaten, Indonesia. BMC Proc. 2019, 13, 20. [Google Scholar] [CrossRef]
- Sukhum, K.V.; Newcomer, E.P.; Cass, C.; Wallace, M.A.; Johnson, C.; Fine, J.; Sax, S.; Barlet, M.H.; Burnham, C.-A.D.; Dantas, G.; et al. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates. Commun. Med. 2022, 2, 62. [Google Scholar] [CrossRef]
- Kot, B.; Piechota, M.; Jakubczak, A.; Gryzinska, M.; Witeska, M.; Gruzewska, A.; Baran, K.; Denkiewicz, P. The prevalence of virulence determinants in methicillin-resistant Staphylococcus aureus isolated from different infections in hospitalized patients in Poland. Sci. Rep. 2022, 12, 5477. [Google Scholar] [CrossRef]
- Bruckner, J.; Osman, S.; Conley, C.; Venkateswaran, K.; Schaechter, M. Space microbiology: Planetary protection, burden, diversity and significance of spacecraft associated microbes. Encycl. Microbiol. 2009, 3, 52–65. [Google Scholar]
- Rettberg, P.; Antunes, A.; Brucato, J.; Cabezas, P.; Collins, G.; Haddaji, A.; Kminek, G.; Leuko, S.; McKenna-Lawlor, S.; Moissl-Eichinger, C.; et al. Biological Contamination Prevention for Outer Solar System Moons of Astrobiological Interest: What Do We Need to Know? Astrobiology 2019, 19, 951–974. [Google Scholar] [CrossRef]
- Spry, J.A.; Siegel, B.; Kminek, G.; Bakermans, C.; Benardini, J.N.; Beltran, E.; Bonaccorsi, R.; Canham, J.; Desjean, M.-C.; Doran, P. Planetary protection knowledge gaps and enabling science for human Mars missions. Bull. Am. Astron. Soc. 2021, 53, 205. [Google Scholar]
- Danko, D.C.; Sierra, M.A.; Benardini, J.N.; Guan, L.; Wood, J.M.; Singh, N.; Seuylemezian, A.; Butler, D.J.; Ryon, K.; Kuchin, K. A comprehensive metagenomics framework to characterize organisms relevant for planetary protection. Microbiome 2021, 9, 82. [Google Scholar] [CrossRef]
- McCarron, J.L.; Keefe, G.P.; McKenna, S.L.B.; Dohoo, I.R.; Poole, D.E. Laboratory evaluation of 3M Petrifilms and University of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. J. Dairy Sci. 2009, 92, 2297–2305. [Google Scholar] [CrossRef]
- 3M. Petrifilm Plates Brochure. 2021. Available online: https://multimedia.3m.com/mws/media/1505478O/3m-petrifilm-plates-brochure.pdf (accessed on 3 June 2022).
- Kikkoman Corporation. Microbial Film Media (Easy Plate). Available online: https://biochemifa.kikkoman.com/e/kit/product/easy-plate/ (accessed on 3 June 2022).
- Ginn, R.E.; Packard, V.S.; Fox, T.L. Evaluation of the 3M Dry Medium Culture Plate (Petrifilm SM) Method for Determining Numbers of Bacteria in Raw Milk (1). J. Food Prot. 1984, 47, 753–755. [Google Scholar] [CrossRef]
- Bailey, J.S.; Cox, N.A. Evaluation of the Petrifilm Sm and Vrb Dry Media Culture Plates for Determining Microbial Quality of Poultry. J. Food Prot. 1987, 50, 643–644. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Nail, B.V.; Brackett, R.E.; Fox, T.L. Evaluation of a Culture Film (Petrifilm() YM) Method for Enumerating Yeasts and Molds in Selected Dairy and High-Acid Foods. J. Food Prot. 1990, 53, 869–874. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Nail, B.V.; Brackett, R.E.; Fox, T.L. Comparison of the Petrifilm™ Yeast and Mold Culture Film Method to Conventional Methods for Enumerating Yeasts and Molds in Foods. J. Food Prot. 1991, 54, 443–447. [Google Scholar] [CrossRef]
- Schraft, H.; Watterworth, L.A. Enumeration of heterotrophs, fecal coliforms and Escherichia coli in water: Comparison of 3M Petrifilm plates with standard plating procedures. J. Microbiol. Methods 2005, 60, 335–342. [Google Scholar] [CrossRef]
- Samarajeewa, A.D.; Glasauer, S.M.; Dunfield, K.E. Evaluation of Petrifilm EC method for enumeration of E. coli from soil. Lett. Appl. Microbiol. 2010, 50, 457–461. [Google Scholar] [CrossRef]
- Nelson, M.T.; LaBudde, R.A.; Tomasino, S.F.; Pines, R.M. Comparison of 3M Petrifilm Aerobic Count Plates to standard plating methodology for use with AOAC antimicrobial efficacy methods 955.14, 955.15, 964.02, and 966.04 as an alternative enumeration procedure: Collaborative study. J. AOAC Int. 2013, 96, 717–722. [Google Scholar] [CrossRef]
- Fritz, B.G.; Walker, D.K.; Goveia, D.E.; Parker, A.E.; Goeres, D.M. Evaluation of Petrifilm aerobic count plates as an equivalent alternative to drop plating on R2A agar plates in a biofilm disinfectant efficacy test. Curr. Microbiol. 2015, 70, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Bird, P.; Flannery, J.; Crowley, E.; Agin, J.; Goins, D.; Jechorek, R. Evaluation of the 3M Petrifilm Rapid Aerobic Count Plate for the Enumeration of Aerobic Bacteria: Collaborative Study, First Action 2015.13. J. AOAC Int. 2016, 99, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Morin, M.; Dubuc, J.; Freycon, P.; Buczinski, S. Diagnostic accuracy of the Petrifilm culture system for identifying colostrum with excessive bacterial contamination in Quebec dairy herds. J. Dairy Sci. 2021, 104, 4923–4928. [Google Scholar] [CrossRef]
- Kabera, F.; Dufour, S.; Keefe, G.; Cameron, M.; Roy, J.-P. Evaluation of quarter-based selective dry cow therapy using Petrifilm on-farm milk culture: A randomized controlled trial. J. Dairy Sci. 2020, 103, 7276–7287. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.; Murphy, S.; Wiedmann, M.; Martin, N. Coliform Petrifilm as an alternative method for detecting total gram-negative bacteria in fluid milk. J. Dairy Sci. 2020, 103, 5043–5046. [Google Scholar] [CrossRef]
- Kock, J.; Wente, N.; Zhang, Y.; Paduch, J.-H.; Leimbach, S.; Krömker, V. Accuracy of 12h-Petrifilm™-plates as a rapid on-farm test for evidence-based mastitis therapy on a dairy farm in Germany. Milk Sci. Int.-Milchwiss. 2018, 71, 10–13. [Google Scholar]
- Nygaard, A.B.; Charnock, C. Longitudinal development of the dust microbiome in a newly opened Norwegian kindergarten. Microbiome 2018, 6, 159. [Google Scholar] [CrossRef]
- Dean, Z.; Stott, K.; Schubert, W.; Seto, E.P.; Chandrapati, S. Qualification of 3M Petrifilm Plates in Rapidly Estimating Bacterial Burden for Planetary Protection Flight Implementation. 2022; unpublished. [Google Scholar]
- Claro, T.; O’Reilly, M.; Daniels, S.; Humphreys, H. Surface microbial contamination in hospitals: A pilot study on methods of sampling and the use of proposed microbiologic standards. Am. J. Infect. Control 2015, 43, 1000–1002. [Google Scholar] [CrossRef]
- Hooker, E.A.; Allen, S.; Gray, L.; Kaufman, C. A randomized trial to evaluate a launderable bed protection system for hospital beds. Antimicrob. Resist. Infect. Control 2012, 1, 27. [Google Scholar] [CrossRef]
- Maturin, L.; Peeler, J. BAM: Aerobic Plate Count; US Food and Drug Administration: Silver Spring, MD, USA, 2001.
- Singh, N.K.; Wood, J.M.; Karouia, F.; Venkateswaran, K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 2018, 6, 204. [Google Scholar] [CrossRef]
- Morrison, M.D.; Thissen, J.B.; Karouia, F.; Mehta, S.; Urbaniak, C.; Venkateswaran, K.; Smith, D.J.; Jaing, C. Investigation of Spaceflight Induced Changes to Astronaut Microbiomes. Front. Microbiol. 2021, 12, 659179. [Google Scholar] [CrossRef] [PubMed]
- Lane, D. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Wiley: Hoboken, NJ, USA, 1991; pp. 115–175. [Google Scholar]
- Toju, H.; Tanabe, A.S.; Yamamoto, S.; Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 2012, 7, e40863. [Google Scholar]
- Chao, K.-H.; Barton, K.; Palmer, S.; Lanfear, R. sangeranalyseR: Simple and interactive processing of Sanger sequencing data in R. Genome Biol. Evol. 2021, 13, evab028. [Google Scholar] [CrossRef] [PubMed]
- Thiele, R.H.; Huffmyer, J.L.; Nemergut, E.C. The “six sigma approach” to the operating room environment and infection. Best Pract. Res. Clin. Anaesthesiol. 2008, 22, 537–552. [Google Scholar] [CrossRef] [PubMed]
- Checinska, A.; Probst, A.J.; Vaishampayan, P.; White, J.R.; Kumar, D.; Stepanov, V.G.; Fox, G.E.; Nilsson, H.R.; Pierson, D.L.; Perry, J.; et al. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome 2015, 3, 50. [Google Scholar] [CrossRef]
- Venkateswaran, K.; Vaishampayan, P.; Cisneros, J.; Pierson, D.L.; Rogers, S.O.; Perry, J. International Space Station environmental microbiome—Microbial inventories of ISS filter debris. Appl. Microbiol. Biotechnol. 2014, 98, 6453–6466. [Google Scholar] [CrossRef]
- Mora, M.; Mahnert, A.; Koskinen, K.; Pausan, M.R.; Oberauner-Wappis, L.; Krause, R.; Perras, A.K.; Gorkiewicz, G.; Berg, G.; Moissl-Eichinger, C. Microorganisms in Confined Habitats: Microbial Monitoring and Control of Intensive Care Units, Operating Rooms, Cleanrooms and the International Space Station. Front. Microbiol. 2016, 7, 1573. [Google Scholar] [CrossRef]
- Taylor, R.H.; Allen, M.J.; Geldreich, E.E. Standard plate count: A comparison of pour plate and spread plate methods. J.-Am. Water Work. Assoc. 1983, 75, 35–37. [Google Scholar] [CrossRef]
- Van Soestbergen, A.; Lee, C.H. Pour plates or streak plates? Appl. Microbiol. 1969, 18, 1092–1093. [Google Scholar] [CrossRef]
Wilcoxon | Type II Regression (MA) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Media Target | Study | X | Y | Paired a | Unpaired | Intercept | Slope | R2 | Mean log10 Difference |
Bacteria-specific | Food items | Agar | Easy Plate | -- | –0.36 | 1.05 | 0.94 | −0.143 | |
Food items | Agar | Petrifilm | -- | -- | 0.01 | 0.99 | 0.94 | −0.005 | |
Food items | Easy Plate | Petrifilm | ** | -- | 0.34 | 0.95 | 0.98 | 0.138 | |
Built Environment | Agar | Easy Plate | ** | -- | −0.002 | 0.93 | 0.96 | −0.186 | |
Built Environment | Agar | Petrifilm | -- | -- | 0.06 | 0.97 | 0.96 | −0.018 | |
Built Environment | Easy Plate | Petrifilm | ** | -- | 0.07 | 1.04 | 0.97 | 0.169 | |
ISS | Agar | Easy Plate | -- | -- | 0.06 | 0.74 | 0.80 | −0.044 | |
Fungal-specific | Built Environment | Agar | Easy Plate | -- | -- | 0.01 | 0.77 | 0.72 | −0.338 |
Built Environment | Agar | Petrifilm | -- | -- | 0.05 | 0.75 | 0.73 | −0.29 | |
Built Environment | Easy Plate | Petrifilm | -- | -- | 0.16 | 0.9 | 0.85 | 0.048 | |
ISS | Agar | Easy Plate | * | -- | 0.12 | 1.06 | 0.73 | −0.14 |
Pearson’s Rho | |||
---|---|---|---|
Food Category | n | Easy Plate AC: PCA | Petrifilm AC: PCA |
Multi-component foods or meal Components | 21 | 0.97 | 0.96 |
Fresh produces and fruits | 20 | 0.96 | 0.97 |
Raw meat and ready-to-cook meat products (except poultry) | 8 | 0.95 | 0.94 |
Raw and ready-to-cook fish and seafood (unprocessed) | 5 | 0.99 | 0.99 |
Raw poultry and ready-to-cook poultry products | 4 | 0.33 | 0.17 |
Dried cereals, fruits, nuts, seeds, and vegetables | 4 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simpson, A.C.; Suzuki, T.; Miller, D.R.; Venkateswaran, K. Microbial Burden Estimation of Food Items, Built Environments, and the International Space Station Using Film Media. Microorganisms 2022, 10, 1714. https://doi.org/10.3390/microorganisms10091714
Simpson AC, Suzuki T, Miller DR, Venkateswaran K. Microbial Burden Estimation of Food Items, Built Environments, and the International Space Station Using Film Media. Microorganisms. 2022; 10(9):1714. https://doi.org/10.3390/microorganisms10091714
Chicago/Turabian StyleSimpson, Anna C., Takeo Suzuki, Daniel R. Miller, and Kasthuri Venkateswaran. 2022. "Microbial Burden Estimation of Food Items, Built Environments, and the International Space Station Using Film Media" Microorganisms 10, no. 9: 1714. https://doi.org/10.3390/microorganisms10091714
APA StyleSimpson, A. C., Suzuki, T., Miller, D. R., & Venkateswaran, K. (2022). Microbial Burden Estimation of Food Items, Built Environments, and the International Space Station Using Film Media. Microorganisms, 10(9), 1714. https://doi.org/10.3390/microorganisms10091714