Exploring LSU and ITS rDNA Sequences for Acanthamoeba Identification and Phylogeny
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sequence Retrieval: General Features
3.2. Uncultured Fungi Turned Out to Be Acanthamoeba
3.3. ITS Phylogeny
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Das, S.; Gunasekaran, K.; Ajjampur, S.S.R.; Abraham, D.; George, T.; Janeela, M.A.; Iyadurai, R. Acanthamoeba encephalitis in immunocompetent hosts: A report of two cases. J. Family Med. Prim. Care. 2020, 9, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Kalra, S.K.; Sharma, P.; Shyam, K.; Tejan, N.; Ghoshal, U. Acanthamoeba and its pathogenic role in granulomatous amebic encephalitis. Exp. Parasitol. 2020, 208, 107788. [Google Scholar] [CrossRef] [PubMed]
- Niederkorn, J.Y. The biology of Acanthamoeba keratitis. Exp. Eye Res. 2021, 202, 108365. [Google Scholar] [CrossRef]
- Rammohan, R.; Hajib Naraharirao, M.; Veerappan, S.; Vijayaraghavan, P.; Rajaraman, R.; Manayath, G.J.; Dsouza, P.; Radhakrishnan, S.; Venkatapathy, N.; Lakshmipathi, D.; et al. Cluster of post-operative endophthalmitis caused by Acanthamoeba T10 genotype—A first report. Cornea 2021, 40, 232–241. [Google Scholar] [CrossRef]
- Page, F.C. A New Key to Freshwater and Soil Gymnamoebae; Freshwater Biological Association: Ambleside, UK, 1988; pp. 92–97. [Google Scholar]
- Corsaro, D. Update on Acanthamoeba phylogeny. Parasitol. Res. 2020, 119, 3327–3338. [Google Scholar] [CrossRef]
- Corsaro, D. On the diversity and clinical importance of Acanthamoeba spp. from Group 1. Parasitol. Res. 2021, 120, 2057–2064. [Google Scholar] [CrossRef]
- Putaporntip, C.; Kuamsab, N.; Nuprasert, W.; Rojrung, R.; Pattanawong, U.; Tia, T.; Yanmanee, S.; Jongwutiwes, S. Analysis of Acanthamoeba genotypes from public freshwater sources in Thailand reveals a new genotype, T23 Acanthamoeba bangkokensis sp. nov. Sci. Rep. 2021, 11, 17290. [Google Scholar] [CrossRef] [PubMed]
- Ledee, D.R.; Booton, G.C.; Awwad, M.H.; Sharma, S.; Aggarwal, R.K.; Niszl, I.A.; Markus, M.B.; Fuerst, P.A.; Byers, T.J. Advantages of using mitochondrial 16S rDNA sequences to classify clinical isolates of Acanthamoeba. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1142–1149. [Google Scholar] [CrossRef]
- Rahman, M.M.; Yagita, K.; Kobayashi, A.; Oikawa, Y.; Hussein, A.I.A.; Matsumura, T.; Tokoro, M. Genetic characterization of clinical Acanthamoeba isolates from Japan using nuclear and mitochondrial small subunit ribosomal RNA. Korean J. Parasitol. 2013, 51, 401–411. [Google Scholar] [CrossRef]
- Malavin, S.; Shmakova, L. Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea). Eur. J. Protistol. 2020, 73, 125671. [Google Scholar] [CrossRef]
- Köhsler, M.; Leitner, B.; Blaschitz, M.; Michel, R.; Aspöck, H.; Walochnik, J. ITS1 sequence variabilities correlate with 18S rDNA sequence types in the genus Acanthamoeba (Protozoa: Amoebozoa). Parasitol. Res. 2006, 98, 86–93. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Corsaro, D.; Venditti, D. Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitol. Res. 2010, 107, 233–238. [Google Scholar] [CrossRef]
- Corsaro, D.; Walochnik, J.; Köhsler, M.; Rott, M.B. Acanthamoeba misidentification and multiple labels: Redefining genotypes T16, T19 and T20, and proposal for Acanthamoeba micheli sp. nov. (genotype T19). Parasitol. Res. 2015, 114, 2481–2490. [Google Scholar] [CrossRef]
- Jobb, G.; von Haeseler, A.; Strimmer, K. TREEFINDER: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 2004, 4, 18. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Yang, Q.; Zwick, M.G.; Paule, M.R. Sequence organization of the Acanthamoeba rRNA intergenic spacer: Identification of transcriptional enhancers. Nucleic Acids Res. 1994, 22, 4798–4805. [Google Scholar] [CrossRef]
- Corsaro, D.; Venditti, D. Nuclear group I introns in the 18S rDNA subtypes of Vermamoeba vermiformis. Biologia 2022, 77, 1899–1907. [Google Scholar] [CrossRef]
- Torres-Machorro, A.L.; Hernández, R.; Cevallos, A.M.; López-Villaseñor, I. Ribosomal RNA genes in eukaryotic microorganisms: Witnesses of phylogeny? FEMS Microbiol. Rev. 2010, 34, 59–86. [Google Scholar] [CrossRef]
- Smirnov, A.V.; Nassonova, E.S.; Cavalier-Smith, T. Correct identification of species makes the amoebozoan rRNA tree congruent with morphology for the order Leptomyxida Page 1987; with description of Acramoeba dendroida n. g., n. sp., originally misidentified as ‘Gephyramoeba sp.’. Eur. J. Protistol. 2008, 44, 35–44. [Google Scholar] [CrossRef]
- Stevens, A.R.; Pachler, P.F. Discontinuity of 26 s rRNA in Acanthamoeba castellani. J. Mol. Biol. 1972, 66, 225–237. [Google Scholar] [CrossRef]
- D’Alessio, J.M.; Harris, G.H.; Perna, P.J.; Paule, M.R. Ribosomal ribonucleic acid repeat unit of Acanthamoeba castellanii: Cloning and restriction endonuclease map. Biochemistry 1981, 20, 3822–3827. [Google Scholar] [CrossRef]
- Petrov, A.S.; Bernier, C.R.; Hershkovits, E.; Xue, Y.; Waterbury, C.C.; Hsiao, C.; Stepanov, V.G.; Gaucher, E.A.; Grover, M.A.; Harvey, S.C.; et al. Secondary structure and domain architecture of the 23S and 5S rRNAs. Nucleic Acids Res. 2013, 41, 7522–7535. [Google Scholar] [CrossRef]
- Natsidis, P.; Schiffer, P.H.; Salvador-Martínez, I.; Telford, M.J. Computational discovery of hidden breaks in 28S ribosomal RNAs across eukaryotes and consequences for RNA Integrity Numbers. Sci. Rep. 2019, 9, 19477. [Google Scholar] [CrossRef]
- Mueller, R.C.; Balasch, M.M.; Kuske, C.R. Contrasting soil fungal community responses to experimental nitrogen addition using the large subunit rRNA taxonomic marker and cellobiohydrolase I functional marker. Mol. Ecol. 2014, 23, 4406–4417. [Google Scholar] [CrossRef]
- De Jonckheere, J.F.; Michel, R. Species identification and virulence of Acanthamoeba strains from human nasal mucosa. Parasitol. Res. 1988, 74, 314–316. [Google Scholar] [CrossRef]
- Corsaro, D.; Venditti, D. Nuclear Group I introns with homing endonuclease genes in Acanthamoeba genotype T4. Eur. J. Protistol. 2018, 66, 26–35. [Google Scholar] [CrossRef]
- Corsaro, D.; Köhsler, M.; Venditti, D.; Rott, M.R.; Walochnik, J. Recovery of an Acanthamoeba strain with two group I introns in the nuclear 18S rRNA gene. Eur. J. Protistol. 2019, 68, 88–98. [Google Scholar] [CrossRef]
Species | Strain | Culture Collection | SSU rDNA GT 1 | Sequence Source | Length (bp) | ||||
---|---|---|---|---|---|---|---|---|---|
Nuclear | mt | ITS1 | ITS2 | 5.8S | LSU | ||||
A. quina | Vil3 | ATCC 50241 | T4A | T4a1 | CDFN01 | 390 | 599 | 162 | 4259 |
Acanthamoeba sp. | undetermined | undetermined | T4AB | T4a1 | CDFJ01 | 384 | 605 | 162 | 4272 |
Acanthamoeba sp. | undetermined | undetermined | T4AB | T4a1 | CDFL01 | 348 | 621 | 162 | 4276 |
Acanthamoeba sp. | undetermined | undetermined | T4AB | T4a1 | CDFK01 | 350 | 579 | 162 | 4272 |
Acanthamoeba sp. | BCP-EM3VF21-1 | - | T4A | T4a3 | KT185626 | 391 | 580 | 162 | 755 2 |
Acanthamoeba sp. | C3 | ATCC 50739 | T4A | na | JAJGAO01 | 372 | 603 | 162 | 4264 |
A. lugdunensis | L3a | ATCC 50240 | T4A | T4d | CDFB01 | 359 | 586 | 162 | 4251 |
Acanthamoeba sp. | Linc-AP1 | CCAP 1501/18 | T4A | T4d | LQHA01 | 387 | 594 | 162 | 4171 |
A. mauritaniensis | 1652 | ATCC 50253 | T4D | T4e | CDFE01 | 480 | 641 | 162 | 4265 |
A. rhysodes | Singh | ATCC 30973 | T4D | T4e | CDFC01 | 451 | 646 | 162 | 4279 |
A. triangularis | SH621 | ATCC 50254 | T4F | T4g | CDFD01 | 347 | 707 | 162 | 4284 |
A. terricola | Neff | ATCC 30010 | T4G | T4f | JAJGAP01 | 512 | 637 | 162 | 4292 |
A. palestinensis | Reich | ATCC 30870 | T2 | T2 | CDFA01 | 339 | 691 | 160 | 4174 |
Acanthamoeba sp. | unknown | undetermined | T22 | T22 | CDEZ01 | >230 3 | >540 3 | 160 | 4357 |
A. culbertsoni | Lilly-A1 | ATCC 30171 | T10 | T10 | CDFF01 | na | na | 160 | 4173 |
A. lenticulata | 72/2 | ATCC 50704 | T5 | T5 | MSTW01 | 309 | 481 | 160 | 4091 |
A. lenticulata | PT14 | - | T5 2 | T5 | NAVB01 | 316 | 477 | 160 | 4082 |
A. astronyxis | undetermined | undetermined | T7 | T7 | CDFH01 | na | na | 172 | 2599 2 |
A. astronyxis | undetermined | undetermined | T7 | T7 | CDFI01 | na | na | 172 | 2175 2 |
A. byersi | Pb30/40 | ATCC PRA-287 | T18 | T18 | MRZZ01 | 346 | 1155 | 174 | 4103 |
Balamuthia mandrillaris | 2046 | - | - | - | LEOU01 | 396 | 603 | 154 | 3835 |
Rhizamoeba saxonica | 161 | CCAP 1570/2 | - | - | GU001159 | 249 | 273 | 154 | 3677 |
Vermamoeba vermiformis | - | - | 2 4 | - | KT185625 | 224 | 294 | 152 | 3768 |
Group | n | T4AB | T4D | T4G | T4F | T2 | T2/T6 | Gp1 | Gp2 | Gp3 | Gp4 | T5 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | ||||||||||||
T4AB | 9 | 79.4–96.6 | ||||||||||||
T4D | 3 | 53.5 | 89.9–92.6 | |||||||||||
T4G | 4 | 56.0 | 57.2 | 93.4–98.7 | ||||||||||
T4F | 1 | 51.4 | 59.4 | 55.4 | 100 | |||||||||
T2 | 1 | 51.1 | 51.5 | 50.5 | 52.2 | 100 | ||||||||
T2T6 A | 6 | 50.6 | 50.5 | 51.2 | 48.9 | 53.6 | 76.7–95.1 | |||||||
T2T6 B | 3 | 38.5 | 36.1 | 36.4 | 34.3 | 36.5 | 39.5 | 77.7–95.9 | ||||||
T2T6 C | 1 | 50.9 | 52.7 | 53.4 | 52.9 | 60.6 | 55.4 | 36.8 | 100 | |||||
Gp 1 | 1 | 52.0 | 50.8 | 52.6 | 50.7 | 51.1 | 51.7 | 38.4 | 49.0 | 100 | ||||
Gp 2 | 2 | 44.5 | 46.6 | 46.7 | 48.3 | 46.0 | 41.4 | 27.0 | 45.8 | 44.1 | 87.1 | |||
Gp 3 | 2 | 50.5 | 53.0 | 51.3 | 52.3 | 51.9 | 49.1 | 34.6 | 51.1 | 51.4 | 49.7 | 96.0 | ||
Gp 4 | 1 | 44.3 | 49.2 | 46.7 | 48.0 | 49.0 | 47.2 | 29.1 | 48.2 | 44.8 | 50.8 | 47.7 | 100 | |
T5 | 2 | 45.3 | 45.1 | 46.0 | 41.7 | 47.9 | 50.5 | 43.0 | 49.5 | 48.4 | 37.1 | 45.0 | 40.4 | 96.3 |
T18 | 1 | 34.3 | 38.8 | 36.7 | 38.2 | 38.0 | 34.9 | 21.2 | 38.5 | 34.0 | 43.1 | 38.8 | 44.3 | 31.9 |
GT | Species | Total LSU rDNA | 55es1 | |||
---|---|---|---|---|---|---|
Length (bp) | AT% | Length (bp) | AT% | |||
T4AB | Acanthamoeba sp. CDFJ | 4272 | 45.3 | 70 | 70.0 | |
T4AB | Acanthamoeba sp. CDFL | 4276 | 46.4 | 70 | 70.0 | |
T4AB | Acanthamoeba sp. CDFK | 4272 | 45.0 | 70 | 70.0 | |
T4A | A. quina | 4259 | 45.6 | 67 | 65.7 | |
T4A | Acanthamoeba sp. C3 | 4264 | 44.6 | 60 | 65.0 | |
T4A | Acanthamoeba sp. Linc-AP1 | 4171 | 45.0 | 54 | 64.8 | |
T4A | A. lugdunensis | 4251 | 45.0 | 53 | 64.2 | |
T4D | A. rhysodes | 4279 | 46.0 | 77 | 83.1 | |
T4D | A. mauritaniensis | 4265 | 45.9 | 65 | 76.9 | |
T4F | A. triangularis | 4284 | 45.3 | 74 | 77.0 | |
T4G | A. terricola | 4292 | 45.1 | 72 | 63.9 | |
T2 | A. palestinensis | 4174 | 48.3 | 59 | 69.5 | |
T10 | A. culberstoni | 4173 | 48.5 | 10 | 75.0 | |
T22 | Acanthamoeba sp. | 4357 | 41.2 | 46 | 63.2 | |
T5 | A. lenticulata 72/2 | 4091 | 48.9 | 80 | 86.3 | |
T5 | A. lenticulata PT14 | 4082 | 48.7 | 74 | 85.1 | |
T18 | A. byersi Pb30/40 | 4103 | 46.0 | 44 | 68.2 |
Group | n | T4 | T2/T6 | T22 | Gp1/2 | T10 | T5 | Gp3 | Gp4 | MG1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T4A | T4G | T4D | T4F | T2 | A | B | C | Gp1 | Gp2 | |||||||||
T4A | 8 | 98.4 | ||||||||||||||||
T4G | 4 | 98.0 | 99.9 | |||||||||||||||
T4D | 3 | 96.6 | 97.0 | 98.4 | ||||||||||||||
T4F | 1 | 96.7 | 97.3 | 96.1 | 100 | |||||||||||||
T2 | 1 | 87.7 | 88.4 | 88.6 | 89.0 | 100 | ||||||||||||
T2T6 A | 6 | 87.9 | 89.2 | 88.7 | 88.6 | 95.2 | 99.1 | |||||||||||
T2T6 B | 3 | 86.0 | 87.2 | 86.7 | 87.4 | 94.0 | 93.6 | 98.4 | ||||||||||
T2T6 C | 1 | 88.0 | 88.7 | 88.2 | 88.7 | 95.4 | 95.6 | 95.3 | 100 | |||||||||
T22 | 1 | 85.8 | 85.7 | 85.4 | 85.5 | 80.5 | 80.9 | 79.5 | 80.8 | 100 | ||||||||
Gp 1 | 1 | 87.0 | 87.7 | 86.7 | 87.8 | 84.5 | 85.1 | 82.9 | 85.0 | 85.2 | 100 | |||||||
Gp 2 | 2 | 88.0 | 88.4 | 88.3 | 88.7 | 84.5 | 84.4 | 84.0 | 84.4 | 84.4 | 90.6 | 99.2 | ||||||
T10 | 1 | 86.1 | 86.8 | 86.2 | 86.4 | 84.1 | 84.7 | 84.2 | 84.7 | 82.6 | 87.5 | 86.6 | 100 | |||||
T5 | 2 | 80.1 | 80.4 | 80.2 | 80.0 | 80.6 | 81.6 | 80.7 | 81.0 | 76.1 | 78.9 | 78.2 | 78.8 | 99.6 | ||||
Gp 3 | 2 | 75.2 | 75.5 | 75.3 | 75.4 | 75.1 | 74.9 | 73.9 | 74.3 | 75.1 | 75.2 | 74.9 | 74.6 | 75.0 | 99.1 | |||
Gp 4 | 1 | 74.8 | 75.6 | 75.2 | 75.6 | 74.6 | 74.0 | 73.7 | 74.2 | 73.2 | 75.2 | 75.2 | 74.0 | 69.9 | 69.3 | 100 | ||
MG1 | 2 | 71.8 | 72.3 | 71.7 | 72.6 | 71.2 | 70.6 | 70.2 | 71.3 | 71.3 | 71.4 | 71.2 | 71.7 | 68.8 | 70.5 | 71.5 | 84.2 |
Group | Clone | GenBank ID | Length (bp) | Acanthamoeba Line | |||
---|---|---|---|---|---|---|---|
ITS1 | ITS2 | 5.8S | |||||
T4 | T4A | 00965 | OU939676 | 427 | 580 | 162 | T4A |
T4G | 02035 | OU940742 | 514 | 651 | 162 | T4G | |
01286 | OU939992 | 520 | 656 | 162 | |||
00540 | OU939249 | 512 | 640 | 162 | |||
T4D | 01066 | OU939772 | 444 | 653 | 162 | T4D | |
T2/T6 | A | 00614 | OU939321 | 325 | 590 | 162 | T2/T6 |
01859 | OU940566 | 323 | 580 | 162 | |||
00968 | OU939674 | 322 | 573 | 162 | |||
04246 | OU942952 | 325 | 589 | 162 | |||
02121 | OU940828 | 311 | 587 | 162 | |||
01656 | OU940362 | 315 | 586 | 162 | |||
B | 01184 | OU939890 | 381 | 296 | 164 | T6 | |
01925 | OU940630 | 405 | 291 | 164 | |||
00972 | OU939679 | 387 | 305 | 164 | |||
C | 01582 | OU940289 | 297 | 675 | 163 | T2/T6 | |
Gp1/2 | 1 | 04289 | OU942995 | 325 | 566 | 160 | undetermined |
2 | 00785 | OU939503 | 483 | 865 | 160 | ||
04178 | OU942885 | 482 | 841 | 159 | |||
Gp3 | 3 | 01687 | OU940393 | 275 | 650 | 155 | undetermined |
04139 | OU942845 | 277 | 660 | 155 | |||
Gp4 | 4 | 01369 | OU940075 | 300 | 768 | 163 | undetermined |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corsaro, D. Exploring LSU and ITS rDNA Sequences for Acanthamoeba Identification and Phylogeny. Microorganisms 2022, 10, 1776. https://doi.org/10.3390/microorganisms10091776
Corsaro D. Exploring LSU and ITS rDNA Sequences for Acanthamoeba Identification and Phylogeny. Microorganisms. 2022; 10(9):1776. https://doi.org/10.3390/microorganisms10091776
Chicago/Turabian StyleCorsaro, Daniele. 2022. "Exploring LSU and ITS rDNA Sequences for Acanthamoeba Identification and Phylogeny" Microorganisms 10, no. 9: 1776. https://doi.org/10.3390/microorganisms10091776
APA StyleCorsaro, D. (2022). Exploring LSU and ITS rDNA Sequences for Acanthamoeba Identification and Phylogeny. Microorganisms, 10(9), 1776. https://doi.org/10.3390/microorganisms10091776