Epidemiological and Serological Analysis of a SARS-CoV-2 Outbreak in a Nursing Home: Impact of SARS-CoV-2 Vaccination and Enhanced Neutralizing Immunity Following Breakthrough Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Composition of the Cohort
2.2. Determination of the Antibody Status
2.3. Statistical Data Analysis
3. Results
3.1. Vaccination Status and Infection
3.2. Serological Results
4. Discussion
4.1. Comirnaty Vaccination Protects against SARS-CoV-2 Alpha Variant in a Real Life Nursing Home Setting
4.2. Breakthrough Infection Capable of Enhancing Vaccination-Induced Immune Response in Nursing Home Residents
4.3. Low Infection-Specific Antibody Responses in Breakthrough Infections Possibly Correlate with Higher Viral Loads
4.4. Effect of Comirnaty Vaccination on Viral Loads Remains Uncertain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
-N-antibodies | antibodies directed against the nucleocapsid protein |
-RBD-antibodies | antibodies directed against the receptor binding domain |
-S-antibodies | antibodies directed against the spike glycoprotein |
CI | confidence intervals |
CLIA | chemiluminescence immunoassay |
CMIA | chemiluminescence-based microparticle immunoassay |
Ct values | cycle threshold values |
ECLIA | electrochemiluminescence-based immunoassay |
LGL | Bavarian Health and Food Safety Authority |
N | nucleocapsid protein |
PCR | polymerase chain reaction |
RBD | receptor binding domain |
RR | relative risk |
RT-qPCR | real-time quantitative polymerase chain reaction |
S | spike glycoprotein |
S1 | SARS-CoV-2 S subunit 1 |
S2 | SARS-CoV-2 S subunit 2 |
Appendix A
Assay | All Samples | PCR Positive | PCR Negative |
---|---|---|---|
Architect IgG | 0.627 (p < 0.001) | 0.250 (p = 0.071) | 0.117 (p = 0.403) |
Liaison Trimetrics IgG | 0.857 (p < 0.001) | 0.443 (p < 0.001) | 0.884 (p < 0.001) |
Cobas N-Protein | 0.648 (p < 0.001) | 0.277 (p = 0.045) | −0.025 (p = 0.859) |
Cobas S-Protein | 0.590 (p < 0.001) | 0.261 (p = 0.091) | 0.720 (p < 0.001) |
Lineblot SARS-CoV-2 NP | 0.426 (p < 0.001) | 0.219 (p = 0.114) | |
Lineblot SARS-CoV-2 RBD | 0.587 (p < 0.001) | 0.194 (p = 0.165) | 0.713 (p < 0.001) |
Lineblot SARS-CoV-2 S1 | 0.541 (p < 0.001) | 0.220 (p = 0.113) | 0.636 (p < 0.001) |
Virachip S1 IgG | 0.312 (p = 0.001) | −0.252 (p = 0.069) | 0.689 (p < 0.001) |
Virachip RBD IgG | 0.043 (p = 0.661) | −0.260 (p = 0.060) | 0.315 (p = 0.024) |
Virachip S2 IgG | 0.670 (p < 0.001) | 0.221 (p = 0.112) | 0.438 (p = 0.001) |
Virachip N IgG | 0.583 (p < 0.001) | 0.288 (p = 0.037) | 0.068 (p = 0.637) |
Assay | All Samples | PCR Positive | PCR Negative |
---|---|---|---|
Architect IgG | 0.217 (p = 0.027) | 0.033 (p = 0.819) | −0.131 (p = 0.350) |
Liaison Trimetrics IgG | 0.137 (p = 0.166) | 0.010 (p = 0.943) | −0.305 (p = 0.026) |
Cobas N-Protein | 0.276 (p = 0.005) | −0.046 (p = 0.750) | 0.125 (p = 0.373) |
Cobas S-Protein | −0.127 (p = 0.239) | 0.112 (p = 0.474) | −0.402 (p = 0.006) |
cPass | 0.062 (p = 0.531) | −0.141 (p = 0.323) | −0.321 (p = 0.019) |
Lineblot SARS-CoV-2 NP | 0.165 (p = 0.093) | 0.073 (p = 0.612) | |
Lineblot SARS-CoV-2 RBD | 0.046 (p = 0.641) | 0.007 (p = 0.962) | −0.252 (p = 0.069) |
Lineblot SARS-CoV-2 S1 | 0.073 (p = 0.463) | 0.018 (p = 0.899) | −0.170 (p = 0.225) |
Virachip S1 IgG | 0.126 (p = 0.207) | 0.245 (p = 0.084) | −0.176 (p = 0.216) |
Virachip RBD IgG | 0.054 (p = 0.593) | 0.230 (p = 0.104) | −0.149 (p = 0.298) |
Virachip S2 IgG | 0.191 (p = 0.054) | 0.155 (p = 0.277) | −0.136 (p = 0.343) |
Virachip N IgG | 0.321 (p = 0.001) | 0.182 (p = 0.201) | 0.102 (p = 0.478) |
Assay | PCR Positive |
---|---|
Architect IgG | 0.384 (p = 0.005) |
Liaison Trimetrics IgG | 0.078 (p = 0.584) |
Cobas N-Protein | 0.417 (p = 0.002) |
Cobas S-Protein | 0.143 (p = 0.360) |
cPass | 0.171 (p = 0.229) |
Lineblot SARS-CoV-2 NP | 0.370 (p = 0.007) |
Lineblot SARS-CoV-2 RBD | 0.059 (p = 0.682) |
Lineblot SARS-CoV-2 S1 | 0.103 (p = 0.474) |
Virachip S1 IgG | 0.103 (p = 0.472) |
Virachip RBD IgG | 0.108 (p = 0.452) |
Virachip S2 IgG | 0.306 (p = 0.029) |
Virachip N IgG | 0.229 (p = 0.106) |
References
- Rotondo, J.C.; Martini, F.; Maritati, M.; Mazziotta, C.; Di Mauro, G.; Lanzillotti, C.; Barp, N.; Gallerani, A.; Tognon, M.; Contini, C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021, 13, 1687. [Google Scholar] [CrossRef] [PubMed]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Pineles, L.; Perencevich, E.N.; Roghmann, M.C.; Gupta, K.; Cadena, J.; Baracco, G.; Pfeiffer, C.D.; Forrest, G.; Bradley, S.F.; Crnich, C.; et al. Frequency of nursing home resident contact with staff, other residents, and the environment outside resident rooms. Infect. Control. Hosp. Epidemiol. 2019, 40, 815–816. [Google Scholar] [CrossRef] [PubMed]
- Chudasama, D.Y.; Milbourn, H.; Nsonwu, O.; Senyah, F.; Florence, I.; Cook, B.; Marchant, E.; Blomquist, P.B.; Flannagan, J.; Dabrera, G.; et al. Penetration and impact of COVID-19 in long term care facilities in England: Population surveillance study. Int. J. Epidemiol. 2021, 50, 1804–1813. [Google Scholar] [CrossRef]
- Paranthaman, K.; Allen, H.; Chudasama, D.; Verlander, N.Q.; Sedgwick, J. Case-control study to estimate odds of death within 28 days of positive test for SARS-CoV-2 prior to vaccination for residents of long-term care facilities in England, 2020–2021. J. Epidemiol. Community Health 2021, 76, 428–434. [Google Scholar] [CrossRef]
- Levin, A.T.; Jylhävä, J.; Religa, D.; Shallcross, L. COVID-19 prevalence and mortality in longer-term care facilities. Eur. J. Epidemiol. 2022, 37, 227–234. [Google Scholar] [CrossRef]
- Fisman, D.N.; Bogoch, I.; Lapointe-Shaw, L.; McCready, J.; Tuite, A.R. Risk Factors Associated With Mortality Among Residents With Coronavirus Disease 2019 (COVID-19) in Long-term Care Facilities in Ontario, Canada. JAMA Netw. Open 2020, 3, e2015957. [Google Scholar] [CrossRef]
- Frisina Doetter, L.; Preuß, B.; Rothgang, H. Taking stock of COVID-19 policy measures to protect Europe’s elderly living in long-term care facilities. Glob. Soc. Policy 2021, 21, 529–549. [Google Scholar] [CrossRef]
- Rothgang, H.; Domhoff, D.; Friedrich, A.C.; Heinze, F.; Preuss, B.; Schmidt, A.; Seibert, K.; Stolle, C.; Wolf-Ostermann, K. Pflege in Zeiten von Corona: Zentrale Ergebnisse einer deutschlandweiten Querschnittsbefragung vollstationärer Pflegeheime. Pflege 2020, 33, 265–275. [Google Scholar] [CrossRef]
- Akinbami, L.J.; Chan, P.A.; Vuong, N.; Sami, S.; Lewis, D.; Sheridan, P.E.; Lukacs, S.L.; Mackey, L.; Grohskopf, L.A.; Patel, A.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Seropositivity among Healthcare Personnel in Hospitals and Nursing Homes, Rhode Island, USA, July–August 2020. Emerg. Infect. Dis. 2021, 27, 823–834. [Google Scholar] [CrossRef]
- German Federal Ministry of Health. Verordnung zum Anspruch auf Schutzimpfung Gegen das Coronavirus SARS-CoV-2 (Coronavirus-Impfverordnung—CoronaImpfV); German Federal Ministry of Health: Bonn, Germany, 2021.
- Bergwerk, M.; Gonen, T.; Lustig, Y.; Amit, S.; Lipsitch, M.; Cohen, C.; Mandelboim, M.; Levin, E.G.; Rubin, C.; Indenbaum, V.; et al. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N. Engl. J. Med. 2021, 385, 1474–1484. [Google Scholar] [CrossRef] [PubMed]
- Levine-Tiefenbrun, M.; Yelin, I.; Katz, R.; Herzel, E.; Golan, Z.; Schreiber, L.; Wolf, T.; Nadler, V.; Ben-Tov, A.; Kuint, J.; et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 2021, 27, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Lahne, H.; Grahl, A.; Streibl, B.; Büchl, C.; Damzog, M.; Gärtner, S.; Hobmaier, B.; Hoch, M.; Jungnick, S.; Katz, K.; et al. COVID-19- Impfung senkt das Risiko für Infektion, schwere Krankheitsverläufe und Tod–Analyse eines SARS-CoV-2-Ausbruchs in einem Alten- und Pflegeheim. Epidemiol. Bull. 2022, 6, 3–13. [Google Scholar] [CrossRef]
- Kovaiou, R.D.; Herndler-Brandstetter, D.; Grubeck-Loebenstein, B. Age-related changes in immunity: Implications for vaccination in the elderly. Expert Rev. Mol. Med. 2007, 9, 1–17. [Google Scholar] [CrossRef]
- Rivasi, G.; Bulgaresi, M.; Mossello, E.; Buscemi, P.; Lorini, C.; Balzi, D.; Barucci, R.; Del Lungo, I.; Gangemi, S.; Giardini, S.; et al. Course and Lethality of SARS-CoV-2 Epidemic in Nursing Homes after Vaccination in Florence, Italy. Vaccines 2021, 9, 1174. [Google Scholar] [CrossRef]
- Blain, H.; Tuaillon, E.; Gamon, L.; Pisoni, A.; Miot, S.; Delpui, V.; Si-Mohamed, N.; Niel, C.; Rolland, Y.; Montes, B.; et al. Receptor binding domain-IgG levels correlate with protection in residents facing SARS-CoV-2 B.1.1.7 outbreaks. Allergy 2022, 77, 1885–1894. [Google Scholar] [CrossRef]
- Lafuente-Lafuente, C.; Rainone, A.; Guérin, O.; Drunat, O.; Jeandel, C.; Hanon, O.; Belmin, J. COVID-19 Outbreaks in Nursing Homes Despite Full Vaccination with BNT162b2 of a Majority of Residents. Gerontology 2022, 1–9. [Google Scholar] [CrossRef]
- Goldin, S.; Adler, L.; Azuri, J.; Mendel, L.; Haviv, S.; Maimon, N. BNT162b2 mRNA COVID-19 (Comirnaty) Vaccine Effectiveness in Elderly Patients Who Live in Long-Term Care Facilities: A Nationwide Cohort. Gerontology 2022. [Google Scholar] [CrossRef]
- Gomes, D.; Beyerlein, A.; Katz, K.; Hoelscher, G.; Nennstiel, U.; Liebl, B.; Überla, K.; von Kries, R. Is the BNT162b2 COVID-19 vaccine effective in elderly populations? Results from population data from Bavaria, Germany. PLoS ONE 2021, 16, e0259370. [Google Scholar] [CrossRef]
- Dyer, A.H.; Noonan, C.; McElheron, M.; Batten, I.; Reddy, C.; Connolly, E.; Pierpoint, R.; Murray, C.; Leonard, A.; Higgins, C.; et al. Previous SARS-CoV-2 Infection, Age, and Frailty Are Associated With 6-Month Vaccine-Induced Anti-Spike Antibody Titer in Nursing Home Residents. J. Am. Med. Dir. Assoc. 2022, 23, 434–439. [Google Scholar] [CrossRef]
- Borgonovo, F.; Stangalini, C.A.; Tinelli, C.; Mariani, C.; Mileto, D.; Cossu, M.V.; Abbati, L.; Bilardo, L.; Gagliardi, G.; Cutrera, M.; et al. Decay rate of antiS1/S2 IgG serum levels after 6 months of BNT162b2 vaccination in a cohort of COVID-19-naive and COVID-19-experienced subjects. Hum. Vaccines Immunother. 2022, 18, 2060018. [Google Scholar] [CrossRef] [PubMed]
- Helle, F.; Moyet, J.; Demey, B.; François, C.; Duverlie, G.; Castelain, S.; Bloch, F.; Brochot, E. Humoral anti-SARS-CoV-2 immune response after two doses of Comirnaty vaccine in nursing home residents by previous infection status. Vaccine 2022, 40, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Moyet, J.; Helle, F.; Bourdenet, G.; Joseph, C.; Gubler, B.; Deschasse, G.; Defouilloy, I.; Slovenski, T.; François, C.; Liabeuf, S.; et al. Kinetics of SARS-CoV-2-Neutralising Antibodies of Residents of Long-Term Care Facilities. J. Nutr. Health Aging 2022, 26, 57–63. [Google Scholar] [CrossRef] [PubMed]
- San Román, J.; Candel, F.J.; Sanz, J.C.; López, P.; Menéndez-Colino, R.; Barreiro, P.; Carretero, M.D.M.; Pérez-Abeledo, M.; Viñuela-Prieto, J.M.; Ramos, B.; et al. Humoral and Cellular Response after mRNA Vaccination in Nursing Homes: Influence of Age and of History of COVID-19. Vaccines 2022, 10, 383. [Google Scholar] [CrossRef] [PubMed]
- Salmerón Ríos, S.; Mas Romero, M.; Cortés Zamora, E.B.; Tabernero Sahuquillo, M.T.; Romero Rizos, L.; Sánchez-Jurado, P.M.; Sánchez-Nievas, G.; Señalada, J.J.B.; García Nogueras, I.; Estrella Cazalla, J.D.; et al. Immunogenicity of the BNT162b2 vaccine in frail or disabled nursing home residents: COVID-A study. J. Am. Geriatr. Soc. 2021, 69, 1441–1447. [Google Scholar] [CrossRef]
- Pannus, P.; Neven, K.Y.; De Craeye, S.; Heyndrickx, L.; Vande Kerckhove, S.; Georges, D.; Michiels, J.; Francotte, A.; Van Den Bulcke, M.; Zrein, M.; et al. Poor antibody response to BioNTech/Pfizer COVID-19 vaccination in SARS-CoV-2 naïve residents of nursing homes. Clin. Infect. Dis. 2021, 75, e695–e704. [Google Scholar] [CrossRef]
- Blain, H.; Tuaillon, E.; Gamon, L.; Pisoni, A.; Miot, S.; Picot, M.C. Strong Decay of SARS-CoV-2 Spike Antibodies after 2 BNT162b2 Vaccine Doses and High Antibody Response to a Third Dose in Nursing Home Residents. J. Am. Med. Dir. Assoc. 2022, 23, 750–753. [Google Scholar] [CrossRef]
- Bart, S.M.; Harizaj, A.; Pearson, C.L.; Conteh, T.; Grogan, E.; Downing, R.; Kirking, H.L.; Tate, J.E.; Jernigan, J.A.; Leung, V. SARS-CoV-2 Delta outbreak among fully vaccinated nursing home residents likely initiated by a fully vaccinated staff member—Connecticut, July-August 2021. Clin. Infect. Dis. 2021, 75, e909–e911. [Google Scholar] [CrossRef]
- Torres, I.; Bellido-Blasco, J.B.; Gimeno, C.; Burgos, J.S.; Albert, E.; Moya-Malo, R.; Gascó-Laborda, J.C.; Tornero, A.; Soriano, J.; Meseguer-Ferrer, N.; et al. SARS-CoV-2 Delta-variant breakthrough infections in nursing home residents at midterm after Comirnaty® COVID-19 vaccination. J. Med. Virol. 2022, 94, 3776–3782. [Google Scholar] [CrossRef]
- Zürcher, K.; Abela, I.A.; Stange, M.; Dupont, C.; Mugglin, C.; Egli, A.; Trkola, A.; Egger, M.; Fenner, L. Alpha variant coronavirus outbreak in a nursing home despite high vaccination coverage: Molecular, epidemiological and immunological studies. Clin. Infect. Dis. 2022, ciab1005. [Google Scholar] [CrossRef]
- Càmara, J.; González-Díaz, A.; Barrabeig, I.; Fernández-Huerta, M.; Calatayud, L.; Niubó, J.; Martí, S.; Ángeles Domínguez, M.; Ardanuy, C. SARS-CoV-2 outbreak in a nursing home after vaccination with BNT162b2: A role for the quantification of circulating antibodies. Vaccine 2022, 40, 2531–2534. [Google Scholar] [CrossRef] [PubMed]
- Pierobon, A.; Zotto, A.D.; Antico, A.; De Antoni, M.E.; Vianello, L.; Gennari, M.; Di Caprio, A.; Russo, F.; Brambilla, G.; Saugo, M. Outbreak of SARS-CoV-2 B.1.617.2 (delta) variant in a nursing home 28 weeks after two doses of mRNA anti-COVID-19 vaccines: Evidence of a waning immunity. Clin. Microbiol. Infect. 2022, 28, 614.e5–614.e7. [Google Scholar] [CrossRef] [PubMed]
- Canaday, D.H.; Oyebanji, O.A.; White, E.; Keresztesy, D.; Payne, M.; Wilk, D.; Carias, L.; Aung, H.; St Denis, K.; Sheehan, M.L.; et al. COVID-19 vaccine booster dose needed to achieve Omicron-specific neutralisation in nursing home residents. EBioMedicine 2022, 80, 104066. [Google Scholar] [CrossRef] [PubMed]
- Wratil, P.R.; Stern, M.; Priller, A.; Willmann, A.; Almanzar, G.; Vogel, E.; Feuerherd, M.; Cheng, C.C.; Yazici, S.; Christa, C.; et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 2022, 28, 496–503. [Google Scholar] [CrossRef]
- Prasad, N.; Derado, G.; Nanduri, S.A.; Reses, H.E.; Dubendris, H.; Wong, E.; Soe, M.M.; Li, Q.; Dollard, P.; Bagchi, S.; et al. Effectiveness of a COVID-19 Additional Primary or Booster Vaccine Dose in Preventing SARS-CoV-2 Infection Among Nursing Home Residents During Widespread Circulation of the Omicron Variant—United States, February 14–March 27, 2022. Morb. Mortal. Wkly. Rep. 2022, 71, 633–637. [Google Scholar] [CrossRef]
- McConeghy, K.W.; Bardenheier, B.; Huang, A.W.; White, E.M.; Feifer, R.A.; Blackman, C.; Santostefano, C.M.; Lee, Y.; DeVone, F.; Halladay, C.W.; et al. Effectiveness of a SARS-CoV-2 mRNA vaccine booster dose for prevention of infection, hospitalization or death in two nation-wide nursing home systems. medRxiv 2022. [Google Scholar] [CrossRef]
- Follmann, D.; Janes, H.E.; Buhule, O.D.; Zhou, H.; Girard, B.; Marks, K.; Kotloff, K.; Desjardins, M.; Corey, L.; Neuzil, K.M.; et al. Anti-nucleocapsid antibodies following SARS-CoV-2 infection in the blinded phase of the mRNA-1273 Covid-19 vaccine efficacy clinical trial. medRxiv 2022. [Google Scholar] [CrossRef]
- Orsi, A.; Domnich, A.; Pace, V.; Ricucci, V.; Caligiuri, P.; Bottiglieri, L.; Vagge, R.; Cavalleri, M.A.; Orlandini, F.; Bruzzone, B.; et al. Outbreak of SARS-CoV-2 Lineage 20I/501Y.V1 in a Nursing Home Underlines the Crucial Role of Vaccination in Both Residents and Staff. Vaccines 2021, 9, 591. [Google Scholar] [CrossRef]
- Ioannou, P.; Karakonstantis, S.; Astrinaki, E.; Saplamidou, S.; Vitsaxaki, E.; Hamilos, G.; Sourvinos, G.; Kofteridis, D.P. Transmission of SARS-CoV-2 variant B.1.1.7 among vaccinated health care workers. Infect. Dis. 2021, 53, 876–879. [Google Scholar] [CrossRef]
- Saegerman, C.; Diep, A.N.; Renault, V.; Donneau, A.F.; Stamatakis, L.; Coppieters, W.; Michel, F.; Breuer, C.; Dandoy, M.; Ek, O.; et al. A 2-month field cohort study of SARS-CoV-2 in saliva of BNT162b2 vaccinated nursing home workers. Commun. Med. 2022, 2, 1. [Google Scholar] [CrossRef]
- Luo, C.H.; Morris, C.P.; Sachithanandham, J.; Amadi, A.; Gaston, D.; Li, M.; Swanson, N.J.; Schwartz, M.; Klein, E.Y.; Pekosz, A.; et al. Infection with the SARS-CoV-2 Delta Variant is Associated with Higher Infectious Virus Loads Compared to the Alpha Variant in both Unvaccinated and Vaccinated Individuals. medRxiv 2021. [Google Scholar] [CrossRef]
- Levine-Tiefenbrun, M.; Yelin, I.; Alapi, H.; Katz, R.; Herzel, E.; Kuint, J.; Chodick, G.; Gazit, S.; Patalon, T.; Kishony, R. Viral loads of Delta-variant SARS-CoV-2 breakthrough infections after vaccination and booster with BNT162b2. Nat. Med. 2021, 27, 2108–2110. [Google Scholar] [CrossRef] [PubMed]
- Puhach, O.; Adea, K.; Hulo, N.; Sattonnet, P.; Genecand, C.; Iten, A.; Jacquérioz, F.; Kaiser, L.; Vetter, P.; Eckerle, I.; et al. Infectious viral load in unvaccinated and vaccinated individuals infected with ancestral, Delta or Omicron SARS-CoV-2. Nat. Med. 2022, 28, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Xavier, C.; Sachetto Oliveira, R.; da Fonseca Vieira, V.; Lobosco, M.; Weber Dos Santos, R. Characterisation of Omicron Variant during COVID-19 Pandemic and the Impact of Vaccination, Transmission Rate, Mortality, and Reinfection in South Africa, Germany, and Brazil. BioTech 2022, 11, 12. [Google Scholar] [CrossRef]
Test Kit | Manufacturer | Type of Test |
---|---|---|
Architect SARS-CoV-2 IgG Reagent Kit | Abbot, Sligo, Ireland | Chemiluminescence-based microparticle immunoassay (CMIA) for qualitative detection of IgG against the SARS-CoV-2 nucleocapsid (N) |
Liaison SARS-CoV-2 TrimericS IgG | DiaSorin, Stillwater, USA | Chemiluminescence immunoassay (CLIA) for the quantitative detection of IgG against the spike glycoprotein (S) |
Cobas Elecsys anti-SARS-CoV-2 | Roche Diagnostics, Mannheim, Germany | Electrochemiluminescence-based immunoassay (ECLIA), detects antibodies directed against N regardless of antibody class |
Cobas Elecsys anti-SARS-CoV-2 S | Roche Diagnostics, Mannheim, Germany | ECLIA, detects antibodies directed against S regardless of antibody class |
SARS-CoV-2 ViraChip® IgG | Viramed Biotech AG, Planegg, Germany | Detection of IgG antibodies against SARS-CoV-2 S subunit 1 (S1), S2, receptor binding domain (RBD) and N (and against N of the four seasonal human coronaviruses 229E, NL63, OC43 and HKU1) in microarray format |
Mikrogen recomLine SARS-CoV-2 IgG immunoassay | Mikrogen GmbH, Neuried, Germany | Lineblot for the detection of IgG antibodies against SARS-CoV-2 S1, RBD and N, (and against N of the four seasonal human coronaviruses) |
cPass SARS-CoV-2 Neutralization Antibody Detection Kit | GeneScript, Nanjing City, China | Surrogate neutralization assay to detect potentially neutralizing antibodies against SARS-CoV-2 regardless of antibody class |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Streibl, B.I.; Lahne, H.; Grahl, A.; Agsten, P.; Bichler, M.; Büchl, C.; Damzog, M.; Eberle, U.; Gärtner, S.; Hobmaier, B.; et al. Epidemiological and Serological Analysis of a SARS-CoV-2 Outbreak in a Nursing Home: Impact of SARS-CoV-2 Vaccination and Enhanced Neutralizing Immunity Following Breakthrough Infection. Microorganisms 2022, 10, 1809. https://doi.org/10.3390/microorganisms10091809
Streibl BI, Lahne H, Grahl A, Agsten P, Bichler M, Büchl C, Damzog M, Eberle U, Gärtner S, Hobmaier B, et al. Epidemiological and Serological Analysis of a SARS-CoV-2 Outbreak in a Nursing Home: Impact of SARS-CoV-2 Vaccination and Enhanced Neutralizing Immunity Following Breakthrough Infection. Microorganisms. 2022; 10(9):1809. https://doi.org/10.3390/microorganisms10091809
Chicago/Turabian StyleStreibl, Barbara I., Heidi Lahne, Andreas Grahl, Philipp Agsten, Magdalena Bichler, Christa Büchl, Marco Damzog, Ute Eberle, Stefan Gärtner, Bernhard Hobmaier, and et al. 2022. "Epidemiological and Serological Analysis of a SARS-CoV-2 Outbreak in a Nursing Home: Impact of SARS-CoV-2 Vaccination and Enhanced Neutralizing Immunity Following Breakthrough Infection" Microorganisms 10, no. 9: 1809. https://doi.org/10.3390/microorganisms10091809
APA StyleStreibl, B. I., Lahne, H., Grahl, A., Agsten, P., Bichler, M., Büchl, C., Damzog, M., Eberle, U., Gärtner, S., Hobmaier, B., Margos, G., Hoch, M., Jungnick, S., Jonas, W., Katz, K., Laubert, L., Schutt, B., Seidl, C., Treis, B., ... Fingerle, V. (2022). Epidemiological and Serological Analysis of a SARS-CoV-2 Outbreak in a Nursing Home: Impact of SARS-CoV-2 Vaccination and Enhanced Neutralizing Immunity Following Breakthrough Infection. Microorganisms, 10(9), 1809. https://doi.org/10.3390/microorganisms10091809